Skip to main content Accessibility help
×
Hostname: page-component-6d856f89d9-5pczc Total loading time: 0 Render date: 2024-07-16T04:56:44.145Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  04 September 2009

Igor Tolstikhin
Affiliation:
Kola Scientific Centre, Russian Academy of Sciences
Jan Kramers
Affiliation:
Universität Bern, Switzerland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Evolution of Matter
From the Big Bang to the Present Day
, pp. 442 - 488
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, Y. (1993). Physical state of the very early earth. Lithos, 30, 223–35.CrossRefGoogle Scholar
Abia, C., Busso, M., Gallino, R., Dominguez, I., Straniero, O. and Isern, J. (2001). The 85Kr s-process branching and the mass of carbon stars. Astrophys. J., 559, 1117–34.CrossRefGoogle Scholar
Adams, F. C. and Laughlin, G. (2000). Protostellar disk formation and early evolution. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer Acad. Pub., pp. 23–38.Google Scholar
Agnor, C. B., Canup, R. M. and Levison, H. F. (1999). On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus, 142, 219–37.CrossRefGoogle Scholar
Ahrens, T. J. (1990). Earth accretion. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford: Oxford University Press, pp. 211–27.Google Scholar
Ahrens, T. J. (1993). Impact erosion of terrestrial planetary atmospheres. Ann. Rev. Earth Planet. Sci., 21, 525–55.CrossRefGoogle Scholar
Akulov, Y. A. and Mamyrin, B. A. (2004). Difference between the triton beta decay constants in atomic and molecular tritium measured by the helium isotope method. Phys. Lett. B, 600, 41–7.CrossRefGoogle Scholar
Albarède, F. (1998a). Time-dependent models of U–Th–He and K–Ar evolution and the layering of mantle convection. Chem. Geol., 145, 413–29.CrossRefGoogle Scholar
Albarède, F. (1998b). The growth of continental crust. Tectonophysics, 296, 1–14.CrossRefGoogle Scholar
Aleon, J., Robert, F., Duprat, J. and Derenne, S. (2005). Extreme oxygen isotopic ratios in the early solar system. Nature, 437, 385–8.CrossRefGoogle ScholarPubMed
Alexander, C. M. O. (1994). Trace-element distributions within ordinary chondrite chondrules – implications for chondrule formation conditions and precursors. Geochim. Cosmochim. Acta, 58, 3451–67.CrossRefGoogle Scholar
Alexander, C. M. O. (1996). Recycling and volatile loss in chondrule formation. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and , E. R. D.Scott. Cambridge: Cambridge University Press, pp. 233–41.Google Scholar
Alexander, C. M. O. (2004). Chemical equilibrium and kinetic constraints for chondrule and calcium–aluminium-rich inclusions formation conditions. Geochim. Cosmochim. Acta, 68, 3943–69.CrossRefGoogle Scholar
Alexander, C. M. O., Arden, J. W., Ash, R. D. and Pillinger, C. T. (1990a). Presolar components in the ordinary chondrites. Earth Planet. Sci. Lett., 99, 220–9.CrossRefGoogle Scholar
Alexander, C. M. O., Swan, P. and Walker, R. M. (1990b). In situ measurement of interstellar silicon carbide in two CM chondrite meteorites. Nature, 348, 715–7.CrossRefGoogle Scholar
Alfe, D., Gillan, M. J. and Price, G. D. (2000). Constraints on the composition of the Earth's core from ab initio calculations. Nature, 405, 172–5.CrossRefGoogle ScholarPubMed
Alibert, C., Norman, M. D. and McCulloch, M. T. (1994). An ancient Sm–Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochim. Cosmochim. Acta, 58, 2921–6.CrossRefGoogle Scholar
Alibes, A., Labay, J. and Canal, R. (2001). Galactic chemical abundance evolution in the solar neighborhood up to the iron peak. Astron. Astrophys., 370, 1103–21.CrossRefGoogle Scholar
Allan, N. L., Du, Z., Lavrentiev, M. Y., Blundy, J. D., Purton, J. A. and Westrenen, W. (2003). Atomistic simulation of mineral–melt trace-element partitioning. Phys. Earth Planet. Inter., 139, 93–111.CrossRefGoogle Scholar
Allègre, C. J. (1982). Chemical geodynamics. Tectonophysics, 81, 109–32.CrossRefGoogle Scholar
Allègre, C. J. (1997). Limitation on the mass exchange between the upper and lower mantle: the evolving convection regime of the Earth. Earth Planet. Sci. Lett., 150, 1–6.CrossRefGoogle Scholar
Allègre, C. J. and Lewin, E. (1995). Isotopic systems and stirring times of the Earth's mantle. Earth Planet. Sci. Lett., 136, 629–46.CrossRefGoogle Scholar
Allègre, C. J. and Rousseau, D. (1984). The growth of continents through geological time studied by Nd isotope analysis of shales. Earth Planet. Sci. Lett., 67, 19–34.CrossRefGoogle Scholar
Allègre, C. J., Manhes, G. and Goepel, C. (1995a). The age of the Earth. Geochim. Cosmochim. Acta, 59, 1445–56.CrossRefGoogle Scholar
Allègre, C. J., Poirier, J. P., Humler, E. and Hofmann, A. W. (1995b). The chemical composition of the Earth. Earth Planet. Sci. Lett., 134, 515–26.CrossRefGoogle Scholar
Allègre, C., Manhes, G. and Lewin, E. (2001). Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet. Sci. Lett., 185, 49–69.CrossRefGoogle Scholar
Aller, L. H. (1971). Atoms, Stars, and Nebulae. Cambridge, MA: Harvard University Press, p. 352.Google Scholar
Amari, S., Gao, X., Nittler, L. R., Zinner, E., Jose, J., Hernanz, M. and Lewis, R. S. (2001a). Presolar grains from novae. Astrophys. J., 551, 1065–72.CrossRefGoogle Scholar
Amari, S., Nittler, L. R., Zinner, E., Lodders, K. and Lewis, R. S. (2001b). Presolar SiC grains of type A and B: their isotopic compositions and stellar origins. Astrophys. J., 559, 463–83.CrossRefGoogle Scholar
Amelin, Y. and Rotenberg, E. (2004). Sm–Nd systematics of chondrites. Earth Planet. Sci. Lett., 223, 267–82.CrossRefGoogle Scholar
Amelin, Y., Lee, D.-C., Halliday, A. N. and Pidgeon, R. T. (1999). Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 399, 252–5.CrossRefGoogle Scholar
Amelin, Y., Lee, D.-C. and Halliday, A. N. (2000). Early-middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochim. Cosmochim. Acta, 64, 4205–25.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D. and Ulyanov, A. A. (2002). Lead isotope ages of chondrules and calcium–aluminum-rich inclusions. Science, 297, 1678–83.CrossRefGoogle Scholar
Anders, E. and Grevesse, N. (1989). Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214.CrossRefGoogle Scholar
Anderson, D. L. (1993). He-3 from the mantle – primordial signal or cosmic dust. Science, 261, 170–6.CrossRefGoogle ScholarPubMed
Anderson, O. L. and Isaak, D. G. (2002). Another look at the core density deficit of Earth's outer core. Phys. Earth Planet. Inter., 131, 19–27.CrossRefGoogle Scholar
Andersson, U. B., Neymark, L. A. and Billstrom, K. (2002). Petrogenesis of Mesoproterozoic (Subjotnian) rapakivi complexes of central Sweden: implications from U–Pb zircon ages, Nd, Sr and Pb isotopes. Trans. Roy. Soc. Edinburgh: Earth Sci., 92, 201–28.CrossRefGoogle Scholar
Andreasen, R. and Sharma, M. (2006). Heterogeneous distribution of p-process Sm and Nd isotopes in the solar nebula. Geochim. Cosmochim. Acta (Suppl. 6), A18.CrossRefGoogle Scholar
Aoki, W., Ryan, S. G., Norris, J. E.et al. (2001). Neutron capture elements in s-process rich, very metal-poor stars. Astrophys. J., 561, 346–63.CrossRefGoogle Scholar
Arculus, R. J., Holmes, R. D., Powell, R. and Righter, K. (1990). Metal–silicate equilibrium and core formation. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford: Oxford University Press, pp. 251–71.Google Scholar
Arlandini, C., Kappeler, F., Wisshak, K.et al. (1999). Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J., 525, 886–900.CrossRefGoogle Scholar
Arndt, N. T. and Goldstein, S. L. (1989). An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics, 161, 201–12.CrossRefGoogle Scholar
Arnold, G. L., Anbar, A. D., Barling, J. and Lyons, T. W. (2004). Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science, 304, 87–90.CrossRefGoogle ScholarPubMed
Arnould, M., Paulus, G. and Meynet, G. (1997). Short-lived radionuclide production by non-exploding Wolf–Rayet stars. Astron. Astrophys., 321, 452–64.Google Scholar
Ashwal, L. D. (1993). Anorthosites. New York: Springer-Verlag, pp. 422.CrossRefGoogle Scholar
Asmerom, Y. and Jacobsen, S. B. (1993). The Pb isotopic evolution of the Earth: inferences from river water suspended loads. Earth Planet. Sci. Lett., 115, 245–56.CrossRefGoogle Scholar
Ayres, M. and Harris, N. (1997). REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chem. Geol., 139, 249–69.CrossRefGoogle Scholar
Azbel, I. Y. and Tolstikhin, I. N. (1988). Radiogenic Isotopes and the Evolution of the Earth's Mantle, Crust and Atmosphere. Apatity, Russia: Kola Sci. Center Publ., pp. 140.Google Scholar
Azbel, I. Y. and Tolstikhin, I. N. (1990). Geodynamics, magmatism, and degassing of the Earth. Geochim. Cosmochim. Acta, 54, 139–54.CrossRefGoogle Scholar
Azbel, I. Y. and Tolstikhin, I. N. (1993). Accretion and early degassing of the Earth: constraints from Pu–U–I–Xe isotopic systematic. Meteoritics, 28, 609–21.CrossRefGoogle Scholar
Azbel, I. Y., Tolstikhin, I. N., Kramers, J. D., Pechernikova, G. V. and Vitiazev, A. V. (1993). Core growth and siderophile element depletion of the mantle during homogeneous Earth accretion. Geochim. Cosmochim. Acta, 57, 2889–98.CrossRefGoogle Scholar
Baker, J., Bizzarro, M., Wittig, N., Connelly, J. and Haack, H. (2005). Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature, 436, 1127–31.CrossRefGoogle ScholarPubMed
Balashov, Y. A. (2004). Geochemical peculiarities and genesis of alkaline granites of Keivy region (Kola Peninsula). In Proc. Conf. Isotope Geochim., Vol. 17. Moscow: Vernadsky Inst. Geochemistry Analyt. Chem., pp. 22–3.Google Scholar
Ballentine, C. J. and Barfod, D. N. (2000). The origin of air-like noble gases in mid-ocean ridge basalt and ocean-island basalt. Earth Planet. Sci. Lett., 180, 39–48.CrossRefGoogle Scholar
Barbarin, B. (1999). A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46, 605–26.CrossRefGoogle Scholar
Barling, J. and Anbar, A. D. (2004). Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet. Sci. Lett., 217, 315–29.CrossRefGoogle Scholar
Barth, M. G., McDonough, W. F. and Rudnick, R. L. (2000). Tracking the budget of Nb and Ta in the continental crust. Chem. Geol., 165, 197–213.CrossRefGoogle Scholar
Basford, J. R., Dragon, J. C., Pepin, R. O., Coscio, M. R. J. and Murthy, V. R. (1973). Krypton and xenon in lunar fines. In Proc. Lunar Planet. Sci. Conf., Vol. 2, pp. 1915–55.Google Scholar
Batiza, R. (1982). Abundances, distribution and sizes of volcanoes in the Pacific Ocean and implications for the origin of non-hotspot volcanoes. Earth Planet. Sci. Lett., 60, 195–206.CrossRefGoogle Scholar
Beard, B. L., Taylor, L. A., Scherer, E. E., Jonson, C. M. and Snyder, G. A. (1998). The source region and melting mineralogy of high-titanium and low-titanium lunar basalts deduced from Lu–Hf isotope data. Geochim. Cosmochim. Acta, 62, 525–44.CrossRefGoogle Scholar
Becker, H., Jochum, K. P. and Carlson, R. W. (2000). Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chem. Geol., 163, 65–99.CrossRefGoogle Scholar
Becker, H., Horan, M. F., Walker, R. J., Gao, S., Lorand, J.-P. and Rudnick, R. L. (2006). Highly siderophile element composition of the Earth's primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta, 70, 4528–50.CrossRefGoogle Scholar
Beckett, J. R. and Stolper, E. (1994). The stability of hibonite, melilite and other aluminous phases in silicate melts: implications for the origin of hibonite-bearing inclusions from carbonaceous chondrites. Meteoritics, 29, 41–65.CrossRefGoogle Scholar
Beckwith, S., Sargent, A. I., Chini, R. S. and Gusten, R. (1990). A survey for circumstellar disks around young stellar object. Astron. J., 99, 924–45.CrossRefGoogle Scholar
Beech, M. and Mitalas, R. (1994). Formation and evolution of massive stars. Astrophys. J. Suppl., 95, 517–34.CrossRefGoogle Scholar
Beers, T. C. and Christlieb, N. (2005). The discovery and analysis of very metal-poor stars in the Galaxy. Ann. Rev. Astron. Astrophys., 43, 531–80.CrossRefGoogle Scholar
Bejina, F., Jaoul, O. and Liebermann, R. C. (2003). Diffusion in minerals at high pressure: a review. Phys. Earth Planet. Inter., 139, 3–20.CrossRefGoogle Scholar
Bell, D. R. and Rossman, G. R. (1992). Water in the Earth's mantle: the role of nominally anhydrous minerals. Science, 255, 1391–7.CrossRefGoogle ScholarPubMed
Othman, Ben D., White, W. M. and Patchett, J. (1989). The geochemistry of marine sediments, island arc magma genesis, and crust–mantle recycling. Earth Planet. Sci. Lett., 94, 1–21.CrossRefGoogle Scholar
Benkert, J.-P., Baur, H., Signer, P. and Wieler, R. (1993). He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. J. Geophys. Res., 98(E7), 13147–62.CrossRefGoogle Scholar
Bennett, V. C. (2003). Compositional evolution of the mantle. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Amsterdam: Elsevier-Pergamon, pp. 493–519.Google Scholar
Benz, W. (2000). Low velocity collisions and the growth of planetesimals. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 279–94.CrossRefGoogle Scholar
Benz, W. and Asphaug, E. (1999). Catastrophic disruptions revisited. Icarus, 142, 5–20.CrossRefGoogle Scholar
Benz, W. and Cameron, A. G. W. (1990). Terrestrial effects of the giant impact. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 61–7.Google Scholar
Benz, W., Slattery, W. L. and Cameron, A. G. W. (1986). The origin of the Moon and the single-impact hypothesis. 1. Icarus, 66, 515–35.CrossRefGoogle Scholar
Benz, W., Slattery, W. L. and Cameron, A. G. W. (1987). The origin of the Moon and the single-impact hypothesis. 2. Icarus, 71, 30–45.CrossRefGoogle Scholar
Benz, W., Cameron, A. G. W. and Melosh, H. J. (1989). The origin of the Moon and the single-impact hypothesis. 3. Icarus, 81, 113–31.CrossRefGoogle Scholar
Benz, W., Asphaug, E. and Ryan, E. V. (1994). Numerical simulations of catastrophic disruption – recent results. Planet. Space Sci., 42, 1053–66.CrossRefGoogle Scholar
Berger, M. and Rollinson, H. (1997). Isotopic and geochemical evidence for crust–mantle interaction during late Archaean crustal growth. Geochim. Cosmochim. Acta, 61, 4809–29.CrossRefGoogle Scholar
Bernard-Griffiths, J., Peucat, J. J. and Menot, R. P. (1991). Isotopic (Rb–Sr, U–Pb and Sm–Nd) and trace element geochemistry of eclogites from Pan-African belt: a case study of REE fractionation during high-grade metamorphism. Lithos, 27, 43–57.CrossRefGoogle Scholar
Bernatowicz, T. J., Podosek, F. A., Swindle, T. D. and Honda, M. (1988). I–Xe systematic in LL chondrites. Geochim. Cosmochim. Acta, 52, 1113–21.CrossRefGoogle Scholar
Betehtin, A. G. (1951). The Course of Mineralogy. Moscow: State Publ. Geol. Literature, pp. 543.Google Scholar
Binzel, R. P., Gaffey, M. J., Thomas, P. C., Zellner, B. H., Storrs, A. D. and Wells, E. N. (1997). Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus, 128, 95–103.CrossRefGoogle Scholar
Birch, F. (1952). Elasticity and constitution of the earth's interior. J. Geophys. Res., 57, 227–86.CrossRefGoogle Scholar
Birck, J. L. and Allègre, C. J. (1978). Chronology and chemical history of the parent body of basaltic achondrites studied by the 87Rb–87Sr method. Earth Planet. Sci. Lett., 39, 37–51.CrossRefGoogle Scholar
Bizimis, M., Sen, G. and Salters, V. J. M. (2003). Hf–Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii. Earth Planet. Sci. Lett., 217, 43–58.CrossRefGoogle Scholar
Bizzarro, M., Baker, J. A. and Haack, H. (2004). Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature, 431, 275–8.CrossRefGoogle Scholar
Black, D. C. and Matthews, M. S., eds. (1985). Protostars and Planets II. Tucson, AZ: University of Arizona Press, pp. 1313.Google Scholar
Blichert-Toft, J. and Albarède, F. (1997). The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet. Sci. Lett., 148, 243–58.CrossRefGoogle Scholar
Blichert-Toft, J. and Arndt, N. T. (1999). Hf isotope compositions of komatiites. Earth Planet. Sci. Lett., 171, 439–51.CrossRefGoogle Scholar
Bloemen, H., Wijnands, R., Bennet, K.et al. (1994). COMPTEL observations of the Orion complex: evidence for cosmic-ray induced gamma-ray lines. Astron. Astrophys., 281, L5–L8.Google Scholar
Bochsler, P. (1987). Solar wind ion composition. Physica Scripta, 18, 55–60.CrossRefGoogle Scholar
Bodinier, J.-L. and Godard, M. (2003). Orogenic, ophiolitic, and abyssal peridotites. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Amsterdam: Elsevier-Pergamon, pp. 103–70.Google Scholar
Boehler, R. (1996). Melting temperature of the Earth's mantle and core: Earth's thermal structure. Ann. Rev. Earth Planet. Sci., 24, 15–40.CrossRefGoogle Scholar
Boesenberg, J. S. and Delaney, J. S. (1997). A model composition of the basaltic achondrite planetoid. Geochim. Cosmochim. Acta, 61, 3205–25.CrossRefGoogle Scholar
Bogard, D. D., Clayton, R. N., Marti, K., Owen, T. and Turner, G. (2001). Martian volatiles: isotopic composition, origin, and evolution. Space Sci. Rev., 96, 425–58.CrossRefGoogle Scholar
Bolhar, R., Kamber, B. S., Moorbath, S., Fedo, C. M. and Whitehouse, M. J. (2004). Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett., 222, 43–60.CrossRefGoogle Scholar
Bolhar, R., Kamber, B. S., Moorbath, S., Whitehouse, M. and Collerson, K. D. (2005). Chemical characterization of earth's most ancient clastic metasediments from the Isua Greenstone Belt, southern West Greenland. Geochim. Cosmochim. Acta, 69, 1555–73.CrossRefGoogle Scholar
Borg, L., Norman, M., Nyquist, L.et al. (1999). Isotopic studies of ferroan anorthosite 62236: a young lunar crustal rock from a light rare-earth-element-depleted source. Geochim. Cosmochim. Acta, 63, 2679–91.CrossRefGoogle Scholar
Borisov, A. and Palme, H. (1997). Experimental determination of the solubility of platinum in silicate melts. Geochim. Cosmochim. Acta, 61, 4349–57.CrossRefGoogle Scholar
Borisov, A., Palme, H. and Spettel, B. (1994). Solubility of palladium in silicate melts – implications for core formation in the Earth. Geochim. Cosmochim. Acta, 58, 705–16.CrossRefGoogle Scholar
Boss, A. P. (1996). A concise guide to chondrule formation models. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 257–63.Google Scholar
Boss, A. P. and Graham, J. A. (1993). Clumpy disk accretion and chondrule formation. Icarus, 106, 168–78.CrossRefGoogle Scholar
Boss, A. P. and Vanhala, H. A. T. (2000). Triggering protostellar collapse, injection, and disk formation. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 13–22.Google Scholar
Bourdon, B., Langmuir, C. H. and Zindler, A. (1996a). Ridge-hotspot interaction along the Mid-Atlantic Ridge between 37°30′ and 40°30′N: the U–Th disequilibrium evidence. Earth Planet. Sci. Lett., 142, 175–89.CrossRefGoogle Scholar
Bourdon, B., Zindler, A., Elliott, T. and Langmuir, C. H. (1996b). Constraints on mantle melting at mid-ocean ridges from global 238U-230Th disequilibrium data. Nature, 384, 231–5.CrossRefGoogle Scholar
Bourdon, B., Turner, S. and Dosseto, A. (2003). Dehydration and partial melting in subduction zones: constraints from U-series disequilibria. J. Geophys. Res., 108 (B6), 2291–310.CrossRefGoogle Scholar
Bourles, D. L., Brown, E. T., Raisbeck, G. M., Yiou, F. and Gieskes, J. M. (1992). Beryllium isotope geochemistry of hydrothermally altered sediments. Earth Planet. Sci. Lett., 109, 47–56.CrossRefGoogle Scholar
Boyet, M. and Carlson, R. W. (2005). 142Nd evidence for early (> 4.53 billion year) global differentiation of the silicate Earth. Science, 309, 576–81.CrossRefGoogle Scholar
Boyet, M. and Carlson, R. W. (2006). A new geochemical model for the Earth's mantle inferred from 146Sm–42Nd systematics. Earth Planet. Sci. Lett., 250, 254–68.CrossRefGoogle Scholar
Boyet, M., Blichert-Toft, J., Rosing, M., Storey, M., Teoluk, P. and Albarede, F. (2003). 142Nd evidence for early Earth differentiation. Earth Planet. Sci. Lett., 214, 427–42.CrossRefGoogle Scholar
Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry, ed. Henderson, P.. Amsterdam: Elsevier, pp. 63–114.Google Scholar
Boynton, W. V. (1985). Meteoritic evidence concerning conditions in the solar nebula. In Protostars and Planets II, eds. Black, D. C. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 772–87.Google Scholar
Branch, D. (1998). Type Ia Supernovae and the Hubble constant. Ann. Rev. Astron. Astrophys., 36, 17–55.CrossRefGoogle Scholar
Brandon, A. D., Walker, R. J., Puchtel, I. S., Becker, H., Humayun, M. and Revillon, S. (2003). 186Os–187Os systematics of Gorgona Island komatiites: implications for very early growth of the inner core. Earth Planet. Sci. Lett., 206, 411–26.CrossRefGoogle Scholar
Brandon, A. D., Walker, R. J. and Puchtel, I. S. (2006). Platinum–osmium isotope evolution of the Earth's mantle: constraints from chondrites and Os-rich alloys. Geochim. Cosmochim. Acta, 70, 2093–103.CrossRefGoogle Scholar
Brazzle, R. H., Pravdivtseva, O. V., Meshik, A. P. and Hohenberg, C. M. (1999). Verification and interpretation of the I–Xe chronometer. Geochim. Cosmochim. Acta, 63, 739–60.CrossRefGoogle Scholar
Brearley, A. J. (2003). Nebular versus parent-body processing. In Meteorites, Comets, and Planets, Vol. 1, ed. Davis, A. M.. Amsterdam: Elsevier-Pergamon, pp. 247–68.Google Scholar
Bridges, J. C., Franchi, I. A., Hutchison, R., Sexton, A. S. and Pillinger, C. T. (1998). Correlated mineralogy, chemical compositions, oxygen isotopic compositions and size of chondrules. Earth Planet. Sci. Lett., 155, 183–96.CrossRefGoogle Scholar
Bridges, J. C., Franchi, I. A., Sexton, A. S. and Pillinger, C. T. (1999). Mineralogical controls on the oxygen isotopic compositions of unequilibrated ordinary chondritess. Geochim. Cosmochim. Acta, 63, 945–51.CrossRefGoogle Scholar
Broecker, W. S. (1985). How to Build a Habitable Planet. Tucson, AZ: Eldigio Press, pp. 291.Google Scholar
Bromm, V. and Larson, R. B. (2004). The first stars. Ann. Rev. Astron. Astrophys., 42, 79–118.CrossRefGoogle Scholar
Brown, E. T., Measures, C. I., Edmond, J. M., Bourles, D. L., Raisbeck, G. M. and Yiou, F. (1992b). Continental input of beryllium to the oceans. Earth Planet. Sci. Lett., 114, 101–11.CrossRefGoogle Scholar
Brown, G., Hawkesworth, C. and Wilson, C. (1992a). Understanding the Earth. Cambridge, UK: Cambridge University Press, pp. 563.Google Scholar
Brown, G. C. and Mussett, A. E. (1981). The Inaccessible Earth. London, UK: Allen and Unwin, pp. 261.Google Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A. and Hoyle, F. (1957). Synthesis of the elements in stars. Rev. Modern Phys., 29, 547–650.CrossRefGoogle Scholar
Burles, S., Nollett, K. M. and Turner, M. S. (2001). Big Bang nucleosynthesis predictions for precision cosmology. Astrophys. J., 552, L1–5.CrossRefGoogle Scholar
Burris, D. L., Pilachowski, C. A., Armandroff, T. E., Sneden, C., Cowan, J. J. and Roe, H. (2000). Neutron-capture elements in the early galaxy: insights from a large sample of metal-poor giants. Astrophys. J., 544, 302–19.CrossRefGoogle Scholar
Burrows, A. (2000). Supernova explosions in the Universe. Nature, 403, 727–33.CrossRefGoogle ScholarPubMed
Busemann, H. and Eugster, O. (2002). The trapped noble gas component in achondrites. Meteorit. Planet. Sci., 37, 1865–91.CrossRefGoogle Scholar
Busemann, H., Baur, H. and Wieler, R. (2000). Primordial noble gas in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci., 35, 949–73.CrossRefGoogle Scholar
Busemann, H., Eugster, O., Baur, H. and Wieler, R. (2003). The ingredients of the “subsolar” noble gas component. In Proc. Lunar Planet. Sci. Conf., Vol. 34, p. 1674.Google Scholar
Busso, M., Gallino, R. and Wasserburg, G. J. (1999). Nucleosynthesis in asymptotic giant branch stars: relevance for Galactic enrichment and solar system formation. Ann. Rev. Astron. Astrophys., 37, 239–309.CrossRefGoogle Scholar
Busso, M., Gallino, R., Lambert, D. L., Travaglio, C. and Smith, V. V. (2001). Nucleosynthesis and mixing on the asymptotic giant branch. III. Predicted and observed s-process abundances. Astrophys. J., 557, 802–21.CrossRefGoogle Scholar
Butler, W. A., Jeffery, P. M., Reynolds, J. H. and Wasserburg, G. J. (1963). Isotopic variations in terrestrial gases. Geophys. Res., 68, 3283–91.CrossRefGoogle Scholar
Caffee, M. W., Hudson, G. B., Velsko, C., Huss, G. R., Alexander, E. C. Jr. and Chivas, A. R. (1999). Primordial noble gases from Earth's mantle: identification of a primitive volatile component. Science, 285, 2115–18.CrossRefGoogle ScholarPubMed
Calvert, A. J., Sawyer, E. W., Davis, W. J. and Ludden, J. N. (1995). Archean subduction inferred from seismic images of a mantle suture in the Superior province. Nature, 375, 670–4.CrossRefGoogle Scholar
Cameron, A. G. W. (1976). Final stage of solar evolution. In Frontiers of Astrophysics, ed. Avrett, E. H.. Cambridge, MA: Harvard University Press, pp. 131–59.Google Scholar
Cameron, A. G. W. (1983). Origin of the atmospheres of terrestrial planets. Icarus, 56, 195–201.CrossRefGoogle Scholar
Cameron, A. G. W. (1995). The first 10-million years in the Solar nebula. Meteoritics, 30, 133–61.CrossRefGoogle Scholar
Cameron, A. G. W. (2000). Higher-resolution simulations of the giant impact. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 133–44.Google Scholar
Cameron, A. G. W. (2001a). Extinct radioactivities, core-collapse supernovae, jets, and the r-process. Nucl. Phys., A688, 289C–96C.Google Scholar
Cameron, A. G. W. (2001b). From interstellar gas to the Earth–Moon system. Meteorit. Planet. Sci., 36, 9–22.CrossRefGoogle Scholar
Cameron, A. G. W. (2001c). Some properties of r-process: accretion disks and jets. Astrophys. J., 562, 456–69.CrossRefGoogle Scholar
Cameron, A. G. W. and Benz, W. (1991). The origin of the Moon and the single impact hypothesis – IV. Icarus, 92, 204–16.CrossRefGoogle Scholar
Cameron, A. G. W., Hoflich, P., Myers, P. C. and Clayton, D. D. (1995). Massive supernovae, Orion gamma-rays, and the formation of the Solar system. Astrophys. J., 447, L53–7.CrossRefGoogle Scholar
Cameron, A. G. W., Vanhala, H. and Hoflich, P. (1997). Some aspects of triggered star formation. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. Physics, pp. 665–93.Google Scholar
Canup, R. M. (2004). Simulations of a late lunar-forming impact. Icarus, 168, 433–56.CrossRefGoogle Scholar
Canup, R. M. and Asphaug, E. (2001). Origin of the Moon in a giant impact near the end of the Earth's formation. Nature, 412, 708–13.CrossRefGoogle Scholar
Canup, R. M. and Righter, K., eds. (2000). Origin of the Earth and Moon. Tucson, AZ: University of Arizona Press, pp. 555.Google Scholar
Carlson, R. W. and Hauri, E. H. (2001). Extending the Pd-107–Ag-107 chronometer to low Pd/Ag meteorites with multicollector plasma-ionization mass spectrometry. Geochim. Cosmochim. Acta, 65, 1839–48.CrossRefGoogle Scholar
Carlson, R. W. and Lugmair, G. W. (1988). The age of ferroan anorthosite 60025: oldest crust on a young Moon. Geochim. Cosmochim. Acta, 90, 119–30.Google Scholar
Carlson, R. W. and Lugmair, G. W. (2000). Timescales of planetesimal formation and differentiation based on extinct and extant radioisotopes. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 25–44.Google Scholar
Carlson, R. W., Pearson, D. G. and James, D. E. (2005). Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys., 43, RG1001, doi:10.1029/2004 RG000156.CrossRefGoogle Scholar
Caro, G., Bourdon, B., Birck, J.-L. and Moorbath, S. (2003). 146Sm–142Nd evidence for early differentiation of the earth mantle. Nature, 423, 428–31.CrossRefGoogle Scholar
Caro, G., Bourdon, B., Birck, J.-L. and Moorbath, S. (2006). High-precision 142Nd / 144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth's mantle. Geochim. Cosmochim. Acta, 70, 164–91.CrossRefGoogle Scholar
Cartigny, P., Harris, J. W. and Javoy, M. (2001). Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ13C–N concentrations in diamonds. Earth Planet. Sci. Lett., 185, 85–98.CrossRefGoogle Scholar
Cassen, P. (1996). Models for the fractionation of moderately volatile elements in the solar nebula. Meteorit. Planet. Sci., 31, 793–806.CrossRefGoogle Scholar
Catling, D. C. and Claire, M. W. (2005). How Earth's atmosphere evolved to an oxic state: a status report. Earth Planet. Sci. Lett., 237, 1–20.CrossRefGoogle Scholar
Catling, D. C., Zahnle, K. J. and McKay, C. P. (2001). Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science, 293, 839–43.CrossRefGoogle ScholarPubMed
Cayrel, R., Hill, V., Beers, T. C.et al. (2001). Measurement of stellar age from uranium decay. Nature, 409, 691–2.CrossRefGoogle ScholarPubMed
Chabaux, F., Riotte, J. and Dequincey, O. (2003). Weathering and surface waters. Rev. Mineral. Geochem., 52, 533–76.CrossRefGoogle Scholar
Chambers, J. E. (2004). Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett., 223, 241–52.CrossRefGoogle Scholar
Chambers, J. E. and Wetherill, G. W. (1998). Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus, 136, 304–27.CrossRefGoogle Scholar
Chambers, J. E. and Wetherill, G. W. (2001). Planets in the asteroids belts. Meteorit. Planet. Sci., 36, 381–99.CrossRefGoogle Scholar
Chase, C. G. and Patchett, P. J. (1988). Stored mafic/ultramafic crust and early Archean mantle depletion. Earth Planet. Sci. Lett., 91, 66–72.CrossRefGoogle Scholar
Chaussidon, M., Robert, F. and McKeegan, K. D. (2006). Li and B isotopic variations in an Allende calcium–aluminium-rich inclusions: evidence for the in situ decay of short-lived 10Be and for the possible presence of the short-lived nuclide 7Be in the early solar system. Geochim. Cosmochim. Acta., 70, 224–45.CrossRefGoogle Scholar
Chauvel, C. and Blichert-Toft, J. (2001). A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet. Sci. Lett., 190, 137–51.CrossRefGoogle Scholar
Chauvel, C., Goldstein, S. L. and Hofmann, A. W. (1995). Hydration and dehydration of oceanic crust controls Pb evolution in the mantle. Chem. Geol., 126, 65–75.CrossRefGoogle Scholar
Chen, G. Q. and Ahrens, T. J. (1997). Erosion of terrestrial planet atmosphere by surface motion after a large impact. Phys. Earth Planet. Inter., 100, 21–6.CrossRefGoogle Scholar
Chen, J. H. and Wasserburg, G. J. (1981). The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates. Earth Planet. Sci. Lett., 52, 1–15.CrossRefGoogle Scholar
Chen, J. H. and Wasserburg, G. J. (1996). Live 107Pd in the early solar system and implications for planetary evolution. In Earth Processes: Reading the Isotopic Code, eds. Basu, A. R. and Hart, S. R.. A.G.U. Monograph no. 95, pp. 1–20.Google Scholar
Chiappini, C. and Matteucci, F. (2001). Galactic chemical evolution. In Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F.. New York: Amer. Inst. Physics, pp. 227–38.Google Scholar
Chiappini, C., Matteucci, F. and Romano, D. (2001). Abundance gradients and the formation of the Milky Way. Astrophys. J., 554, 1044–58.CrossRefGoogle Scholar
Choi, B.-G., Krot, A. N. and Wasson, J. T. (2000). Oxygen isotopes in magnetite and fayalite in CV chondrites Kaba and Mokoia. Meteorit. Planet. Sci., 35, 1239–48.CrossRefGoogle Scholar
Chokshi, A., Tielens, A. G. M. and Hollenbuch, D. (1993). Dust coagulation. Astrophys. J., 407, 806–19.CrossRefGoogle Scholar
Chopin, C. (2003). Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth Planet. Sci. Lett., 212, 1–14.CrossRefGoogle Scholar
Christensen, U. (1995). Effects of phase-transitions on mantle convection. Ann. Rev. Earth Planet. Sci., 23, 65–87.CrossRefGoogle Scholar
Christensen, U. R. and Hofmann, A. W. (1994). Segregation of subducted oceanic-crust in the convecting mantle. J. Geophys. Res. – Solid Earth, 99 (B10), 19, 867–84.CrossRefGoogle Scholar
Christlieb, N., Gustafsson, B., Korn, A. J.et al. (2004). HE 0107–5240, a chemically ancient star. A detailed abundance analysis. Astrophys. J., 603, 708–28.CrossRefGoogle Scholar
Clarke, D. B. (1996). Two centuries after Hutton's “Theory of the Earth”: the status of granite science. Trans. Roy. Soc. Edinburgh: Earth Sci., 87, 353–9.CrossRefGoogle Scholar
Clarke, W. B., Beg, M. A. and Craig, H. (1969). Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett., 6, 213–20.CrossRefGoogle Scholar
Clayton, D. D. (1994). Production of 26Al and other extinct radionuclides by low energy heavy cosmic ray in molecular clouds. Nature, 368, 222–4.CrossRefGoogle Scholar
Clayton, D. D. and Jin, L. (1995). Gamma rays, cosmic rays, and extinct radioactivity in molecular clouds. Astrophys. J., 451, 681–99.CrossRefGoogle Scholar
Clayton, D. D. and Timmes, F. X. (1997). Implications of presolar grains for galactic chemical evolution. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. Physics, pp. 237–64.Google Scholar
Clayton, R. N. (1993). Oxygen isotopes in meteorites. Ann. Rev. Earth Planet. Sci., 21, 115–49.CrossRefGoogle Scholar
Clayton, R. N. (2002). Self-shielding in the Solar nebula. Nature, 415, 860–1.CrossRefGoogle Scholar
Clayton, R. N. (2003). Oxygen isotopes in the Solar system. Space Sci. Rev., 106, 19–32.CrossRefGoogle Scholar
Clayton, R. N., Grossman, L. and Mayeda, T. K. (1973). A component of primitive nuclear composition in carbonaceous meteorites. Science, 182, 485–8.CrossRefGoogle ScholarPubMed
Clayton, R. N., Mayeda, T. K. and Molini-Velsko, C. (1985). Isotopic variations in Solar System material: evaporation and condensation of silicates. In Protostars and Planets II, eds. Black, D. C. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 755–71.Google Scholar
Clayton, R. N., Hinton, R. W. and Davis, A. M. (1988). Isotopic variations in the rock-forming elements in meteorites. Phil. Trans. Roy. Soc. London, A325, 483–501.CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. (1996). Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta, 60, 1999–2017.CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. (1999). Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta, 63, 2089–104.CrossRefGoogle Scholar
Coffin, M. F. and Eldholm, O. (1994). Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys., 32, 1–36.CrossRefGoogle Scholar
Collier, M. R., Hamilton, D. C. and Gloeckler, G. (1998). Oxygen 16 to oxygen 18 abundance ratio in the solar wind observed by Wind/Mass. J. Geophys. Res., 103 (A1), 7–14.CrossRefGoogle Scholar
Coltice, N. and Ricard, Y. (1999). Geochemical observations and one layer mantle convection. Earth Planet. Sci. Lett., 174, 125–37.CrossRefGoogle Scholar
Conder, J. A., Wiens, D. A. and Morris, J. (2002). On the decompression melting structure at volcanic arcs and back-arc spreading centers. Geophys. Res. Lett. 29, 1727–31.CrossRefGoogle Scholar
Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust – contrasting results from surface samples and shales. Chem. Geol., 104, 1–37.CrossRefGoogle Scholar
Condie, K. C. (1994). Greenstones through time. In Archean Crustal Evolution, ed. Condie, K. C.. Amsterdam: Elsevier, pp. 85–120.Google Scholar
Condie, K. C. (1998). Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett., 163, 97–108.CrossRefGoogle Scholar
Condie, K. C. (2000). Episodic continental growth models: afterthoughts and extensions. Tectonophysics, 322, 153–62.CrossRefGoogle Scholar
Condie, K. C. (2005). tonalite, trondhjemite and granodiorite rockss and adakites: are they both slab melts? Lithos, 80, 33–44.CrossRefGoogle Scholar
Connolly, H. C., Jr. and Hewins, R. H. (1995). Chondrules as products of dust collisions with totally molten droplets within a dust-rich nebular environment – an experimental investigation. Geochim. Cosmochim. Acta, 59, 3231–46.CrossRefGoogle Scholar
Connolly, H. C., Jr. and Love, S. G. (1998). The formation of chondrules: petrologic tests of the shock wave model. Science, 280, 62–7.CrossRefGoogle Scholar
Cowan, J. and Sneden, C. (2006). Heavy element synthesis in the oldest stars and the early Universe. Nature, 440, 1151–6.CrossRefGoogle ScholarPubMed
Cowan, J. J., Pfeiffer, B., Kratz, K. L., Thielemann, F. K., Sneden, C., Burles, S., Tytler, D. and Beers, T. C. (1999). r-Process abundances and chronometers in metal-poor stars. Astrophys. J., 521, 194–205.CrossRefGoogle Scholar
Crabb, J., Lewis, R. S. and Anders, E. (1982). Extinct 129I in C3 chondrites. Geochim. Cosmochim. Acta, 46, 2511–25.CrossRefGoogle Scholar
Crisp, J. A. (1984). Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res., 20, 177–211.CrossRefGoogle Scholar
Cuzzi, J. N., Dobrovolskis, A. R. and Hogan, R. C. (1996). Turbulence, chondrules and planetesimals. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 35–43.Google Scholar
Cuzzi, J. N., Davis, S. S. and Dobrovolskis, A. R. (2003). Blowing in the wind. II. Creation and redistribution of refractory inclusions in turbulent protoplanetary nebula. Icarus, 166, 385–402.CrossRefGoogle Scholar
Dalpe, C. and Baker, D. R. (2000). Experimental investigation of large-ion-lithophile-element-, high-field-strength-element-, and rare-earth-element-partitioning between calcic amphibole and basaltic melt: the effects of pressure and oxygen fugacity. Contrib. Mineral. Petrol., 140, 223–50.Google Scholar
Davies, G. F. (1990). Heat and mass transport in the early Earth. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 175–94.Google Scholar
Davies, J. H. and Blanckenburg, F. (1995). Slab break off – a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett., 129, 85–102.CrossRefGoogle Scholar
Davis, A. C., Bickle, M. J. and Teagle, D. A. H. (2003). Imbalance in the oceanic strontium budget. Earth Planet. Sci. Lett., 211, 173–87.CrossRefGoogle Scholar
Day, J. M. D., Floss, C., Taylor, L. A., Anand, M. and Patchen, A. D. (2006). Evolved mare basalt magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogenesis of Antarctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007. Geochim. Cosmochim. Acta, 70, 5957–89.CrossRefGoogle Scholar
Deloule, E. and Robert, F. (1995). Interstellar water in meteorites? Geochim. Cosmochim. Acta, 59, 4695–706.CrossRefGoogle ScholarPubMed
Deloule, E., Robert, F. and Doukhan, J. C. (1998). Interstellar hydroxyl in meteoritic chondrules: implications for the origin of water in the inner solar system. Geochim. Cosmochim. Acta, 62, 3367–78.CrossRefGoogle Scholar
DePaolo, D. J., Linn, A. M. and Schubert, G. (1991). The continental crustal age distribution – methods of determining mantle separation ages from Sm–Nd isotopic data and application to the Southwestern United States. J. Geophys. Res., 96 (B2), 2071–88.CrossRefGoogle Scholar
Deruelle, B., Dreibus, G. and Jambon, A. (1992). Iodine abundances in oceanic basalts: implications for Earth dynamics. Earth Planet. Sci. Lett., 108, 217–27.CrossRefGoogle Scholar
Wit, M. J. (1998). On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambrian Res., 91, 181–226.CrossRefGoogle Scholar
Dikov, Y. P., Ivanov, A. V., Wlotzka, F., Galimov, E. M. and Wänke, G. (2002). The nature of volatiles in the lunar regolith. Solar System Res., 36, 1–11.CrossRefGoogle Scholar
Dobson, D. P. (2000). 57Fe and Co tracer diffusion in liquid Fe–FeS at 2 and 5 GPa. Phys. Earth Planet. Inter., 120, 137–44.CrossRefGoogle Scholar
Downes, H. (1993). The nature of the lower continental crust of Europe: petrological and geochemical evidence from xenoliths. Phys. Earth Planet. Inter., 79, 195–218.CrossRefGoogle Scholar
Draine, B. T. (2003). Interstellar dust grains. Ann. Rev. Astron. Astrophys., 41, 241–89.CrossRefGoogle Scholar
Drake, M. J. (1986). Is lunar bulk material similar to earth's mantle? In Origin of the Moon, eds. Hartmann, W. K., Phillips, R. J. and Taylor, G. J.. Houston, TX: Lunar Planet. Inst., pp. 105–24.Google Scholar
Drake, M. J. (2001). The eucrite/Vesta story. Meteorit. Planet. Sci., 36, 501–13.CrossRefGoogle Scholar
Dreibus, G., Bruckner, J. and Wänke, H. (1997). On the core mass of the asteroid Vesta. Meteorit. Planet. Sci., 32, A-36.Google Scholar
Drouart, A., Dubrulle, B., Gautier, D. and Robert, F. (1999). Structure and transport in the solar nebula from constraints on deuterium enrichment and giant planets formation. Icarus, 140, 129–55.CrossRefGoogle Scholar
Drozd, R. J. and Podosek, F. A. (1976). Primordial 129Xe in meteorites. Earth Planet. Sci. Lett., 31, 15–30.CrossRefGoogle Scholar
Ducea, M. and Saleeby, J. B. (1998). The age and origin of a thick mafic-ultramafic keel from beneath the Sierra Nevada batholith. Contrib. Mineral. Petrol., 133, 169–85.CrossRefGoogle Scholar
Ebel, D. S. and Grossman, L. (2000). Condensation in dust-enriched systems. Geochim. Cosmochim. Acta, 64, 339–66.CrossRefGoogle Scholar
Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E. and Tomkin, J. (1993). The chemical evolution of the galactic disk. 1. Analysis and results. Astron. Astrophys., 275, 101–52.Google Scholar
Eiler, J. M., Farley, K. A. and Stolper, E. M. (1998). Correlated helium and lead isotope variations in Hawaiian lavas. Geochim. Cosmochim. Acta, 62, 1977–84.CrossRefGoogle Scholar
Eiler, J. M., Crawford, A., Elliott, T., Farley, K. A., Valley, J. W. and Stolper, E. M. (2000). Oxygen isotope geochemistry of oceanic-arc lavas. J. Petrol., 41, 229–56.CrossRefGoogle Scholar
Eisele, J., Sharma, M., Galer, S. J. G., Blichert-Toft, J., Devey, C. W. and Hofmann, A. W. (2002). The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett., 196, 197–212.CrossRefGoogle Scholar
Elderfield, H. and Pagett, R. (1986). Rare earth elements in ichthyolites: variations with redox conditions and depositional environment. Sci. Total Envir., 49, 175–97.CrossRefGoogle Scholar
Elkins-Tanton, L. T., Hager, B. H. and Grove, T. L. (2004). Magmatic effects of the lunar late heavy bombardment. Earth Planet. Sci. Lett., 222, 17–27.CrossRefGoogle Scholar
Elliott, B. A. (2001). Crystallization conditions of the Wiborg rapakivi batholith, SE Finland: an evaluation of amphibole and biotite mineral chemistry. Mineral. Petrol., 72, 305–24.CrossRefGoogle Scholar
Elliott, T., Plank, T., Zindler, A., White, W. and Bourdon, B. (1997). Element transport from slab to volcanic front at the Mariana Arc. J. Geophys. Res., 102, 14991–15 019.CrossRefGoogle Scholar
Elliott, T., Zindler, A. and Bourdon, B. (1999). Exploring the kappa conundrum: the role of recycling in the lead isotope evolution of the mantle. Earth Planet. Sci. Lett., 169, 129–45.CrossRefGoogle Scholar
Elmegreen, B. G. (1981). Grain formation behind shocks and the origin of isotopically anomalous meteorite inclusions. Astrophys. J., 251, 820–33.CrossRefGoogle Scholar
Elmegreen, B. G. (1985). Molecular clouds and star formation: an overview. In Protostars and Planets II, eds. Black, D. C. and Matthews, M. S.. Tucson, AZ: University of Arizona, Press, pp. 33–58.Google Scholar
Endress, M. and Bischoff, A. (1996). Carbonates in CI chondrites: clues to parent body evolution. Geochim. Cosmochim. Acta, 60, 489–507.CrossRefGoogle ScholarPubMed
Ernst, W. G. (2001). Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices – implications for arcs and continental growth. Phys. Earth Planet. Inter., 127, 253–75.CrossRefGoogle Scholar
Essene, E. J. (1989). The current status of thermobarometry in metamorphic rocks. In Evolution of Metamorphic Belts, Vol. 43, eds. Daily, J. S., Cliff, R. A. and Yardley, B. W. D.. Geol. Soc. Spec. Pub., pp. 1–44.Google Scholar
Evans, N. J. II (1999). Physical conditions in regions of star formation. Ann. Rev. Astron. Astrophys., 37, 311–62.CrossRefGoogle Scholar
Fagan, T. J., McKeegan, K. D., Krot, A. N. and Keil, K. (2001). Calcium–aluminum-rich inclusions in enstatite chondrites (II): oxygen isotopes. Meteorit. Planet. Sci., 36, 223–30.CrossRefGoogle Scholar
Fahey, A. J., Zinner, E. K., Crozaz, G. and Kornacki, A. S. (1987). Micro distributions of Mg isotopes and REE abundances in a Type A calcium–aluminum-rich inclusion from Efremovka. Geochim. Cosmochim. Acta, 51, 3215–29.CrossRefGoogle Scholar
Farouqi, K., Freiburghaus, C., Kratz, K.-L., Pfeiffer, B., Rauscher, T. and Thielemann, F.-K. (2005). Astrophysical conditions for an r-process in the high-entropy wind scenario of type II supernovae. Nuclear Physics, A758, 631c-4.Google Scholar
Farquhar, J. and Wing, B. A. (2003). Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett., 213, 1–13.CrossRefGoogle Scholar
Farquhar, J., Chacko, T. and Frost, B. R. (1993). Strategies for high-temperature oxygen isotope thermometry: a worked example from the Laramie Anorthosite Complex, Wyoming, USA. Earth Planet. Sci. Lett., 117, 407–22.CrossRefGoogle Scholar
Farquhar, J., Chacko, T. and Ellis, D. J. (1996). Preservation of oxygen isotope compositions in granulites from Northwestern Canada and Enderby Land, Antarctica: implications for high-temperature isotopic thermometry. Contrib. Mineral. Petrol., 125, 213–24.CrossRefGoogle Scholar
Farquhar, J., Savarino, J., Airieau, S. and Thiemens, M. H. (2001). Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J. Geophys. Res., 106 (E12), 32, 829–39.CrossRefGoogle Scholar
Feigelson, E. D. and Montmerle, T. (1999). High-energy processes in young stellar objects. Ann. Rev. Astron. Astrophys., 37, 363–408.CrossRefGoogle Scholar
Fitton, J. G. and Dunlop, H. M. (1985). The Cameroon line, West Africa, and its bearing on the origin of oceanic and continental alkali basalts. Earth Planet. Sci. Lett., 72, 23–38.CrossRefGoogle Scholar
Flam, F. (1991). Seeing stars in a handful of dust. Science, 253, 380–1.Google Scholar
Floss, C., James, O. B., McGee, J. J. and Crozaz, G. (1998). Lunar ferroan anorthosite petrogenesis: clues from trace element distributions in FAN subgroups. Geochim. Cosmochim. Acta, 62, 1255–83.CrossRefGoogle Scholar
Foley, S., Tiepolo, M. and Vannucci, R. (2002). Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 412, 837–40.CrossRefGoogle Scholar
Forsyth, D. and Uyeda, S. (1975). On the relative importance of the driving forces of plate motion. Geophys. J. Roy. Astron. Soc., 43, 163–200.CrossRefGoogle Scholar
Fortenfant, S. S., Rubie, D. C., Reid, J., Dalpé, C., Capmas, F. and Gessmann, C. K. (2003). Partitioning of Re and Os between liquid metal and magnesiowüstite at high pressure. Phys. Earth Planet. Inter., 139, 77–91.CrossRefGoogle Scholar
Francois, P., Spite, M. and Spite, F. (1993). On the galactic age problem – determination of the [Th/Eu] ratio in halo stars. Astron. Astrophys., 274, 821–4.Google Scholar
Frebel, A., Aoki, W., Christlieb, N.et al. (2005). Nucleosynthetic signatures of the first stars. Nature, 434, 871–3.CrossRefGoogle ScholarPubMed
Freedman, W. L. and Turner, M. S. (2003). Measuring and understanding the universe. Rev. Mod. Phys., 75, 1433–48.CrossRefGoogle Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K.et al. (2001). Final results from the Hubble space telescope key project to measure the Hubble constant. Astrophys. J., 553, 47–72.CrossRefGoogle Scholar
Frick, U. and Chang, S. (1978). Elimination of chromite and novel sulfides as important carrier phases of noble gases in carbonaceous chondrites. Meteoritics, 13, 465–70.Google Scholar
Friedmann, A. (1922). On the curvature of space. Zeitschrift fur Physik, 10, 377–86.Google Scholar
Gaillardet, J., Viers, J. and Dupré, B. (2003). Trace elements in river waters. In Surface and Ground Water, Weathering, and Soils, Vol. 5, ed. Drever, J. I.. Amsterdam: Elsevier-Pergamon, pp. 225–72.Google Scholar
Galer, S. J. G. and Goldstein, S. L. (1996). Influence of accretion on the lead in the Earth. In Earth Processes: Reading the Isotopic Code, eds. Basu, A. and Hart, S.. A.G.U. Monograph no. 95, pp. 75–98.Google Scholar
Galer, S. J. G. and O'Nions, R. K. (1985). Residence time of thorium, uranium and lead in the mantle and implications for mantle convection. Nature, 316, 778–82.CrossRefGoogle Scholar
Gallino, R., Busso, M. and Lugaro, M. (1997). Neutron capture nucleosynthesis in asymptotic giant branch phase in stellar evolution stars. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. J. and Zinner, E.. New York: Amer. Inst. Physics Vol. 402, pp. 115–53.Google Scholar
Gary, M., McAfee, R. Jr. and Wolf, C. L. (1973). Glossary of Geology. New York: Amer. Geol. Inst. Publ., pp. 805.Google Scholar
Gast, P. W. (1968). Upper mantle chemistry and the evolution of the earth's crust. In The History of the Earth's Crust, ed. Phinney, R. A.. Princeton, NJ: Princeton University Press, pp. 15–27.Google Scholar
Gast, P. W., Tilton, G. R. and Hedge, C. (1964). Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145, 1181–5.CrossRefGoogle ScholarPubMed
Geiss, J. and Gloeckler, G. (1998). Abundances of deuterium and helium-3 in the protosolar cloud. In Primordial Nuclei and their Galactic Evolution, eds. Prantzos, N., Tosi, M. and Steiger, R.. Dordrecht: Kluwer Acad. Publ., pp. 239–50.Google Scholar
Geiss, J. and Reeves, H. (1972). Cosmic and solar system abundances of deuterium and helium-3. Astron. Astrophys., 18, 126–32.Google Scholar
Genda, H. and Abe, Y. (2003). Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus, 164, 149–62.CrossRefGoogle Scholar
Gerling, E. K. and Levsky, L. K. (1956). On the origin of inert gases in stony meteorites. Geochimiya, 7, 59–64.Google Scholar
Gessmann, C. K., Wood, B. J., Rubie, D. C. and Kilburn, M. R. (2001). Solubility of silicon in liquid metal at high pressure: implications for the composition of the Earth's core. Earth Planet. Sci. Lett., 184, 367–76.CrossRefGoogle Scholar
Ghosh, A. and McSween, H. Y. J. (1998). A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187–206.CrossRefGoogle Scholar
Gibert, B., Schilling, F. R., Tommasi, A. and Mainprice, D. (2003). Thermal diffusivity of olivine single-crystals and polycrystalline aggregates at ambient conditions – a comparison. Geophys. Res. Lett., 30, 2172–7.CrossRefGoogle Scholar
Gill, J. A. (1981). Orogenic Andesites and Plate Tectonics. New York: Springer-Verlag, pp. 390.CrossRefGoogle Scholar
Gilroy, K. K., Sneden, C., Pilachowski, C. A. and Cowan, J. J. (1988). Abundances of n-capture elements in Population II stars. Astrophys. J., 327, 298–320.CrossRefGoogle Scholar
Gilmour, J. D., Whitby, J. A., Turner, G., Bridges, J. C. and Hutchison, R. (2000). The iodine–xenon system in clasts and chondrules from ordinary chondrites: implications for early solar system chronology. Meteorit. Planet. Sci., 35, 445–55.CrossRefGoogle Scholar
Gloeckler, G. and Geiss, J. (2001). Composition of the local interstellar cloud from observations and interstellar pickup ions. In Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F.. New York: Amer. Inst. Phys., pp. 281–90.Google Scholar
Godard, M., Jousselin, D. and Bodinier, J.-L. (2000). Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth Planet. Sci. Lett., 180, 133–48.CrossRefGoogle Scholar
Goldstein, S. L. and Hemming, S. R. (2003). Long-lived isotopic tracers in oceanography, paleo-oceanography, and ice-sheet dynamics. In The Oceans and Marine Geochemistry, Vol. 6, ed. Elderfield, H.. Amsterdam: Elsevier-Pergamon, pp. 453–90.Google Scholar
Goldstein, S. J. and Jacobsen, S. B. (1987). The Nd and Sr isotopic systematics of river-water dissolved material: implications for the sources of Nd and Sr in seawater. Chem. Geol., 66, 245–72.Google Scholar
Goldstein, S. J. and Jacobsen, S. B. (1988). Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett., 87, 249–65.CrossRefGoogle Scholar
Göpel, C., Manhes, G. and Allègre, C. J. (1994). U–Pb systematics of phosphates from equilibrated ordinary chondrites. Earth Planet. Sci. Lett., 121, 153–71.CrossRefGoogle Scholar
Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E. and Lee, T. (2001). Extinct radioactivities and protosolar cosmic rays: self-shielding and light elements. Astrophys. J., 548, 1051–70.CrossRefGoogle Scholar
Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E. and Lee, T. (2006). The irradiation origin of beryllium radioisotopes and other short-lived radionuclides. Astrophys. J., 640, 1163–70.CrossRefGoogle Scholar
Grady, M. M. and Wright, L. P. (2003). Elemental and isotopic abundances of carbon and nitrogen in meteorites. Space Sci. Rev., 106, 231–48.CrossRefGoogle Scholar
Graham, A. L., Bewan, A. W. R. and Hutchison, R. (1985). Catalogue of Meteorites. Tucson, AZ: University of Arizona Press, pp. 199.Google Scholar
Graham, D. W. (2002). Noble gas isotope geochemistry of mid-ocean ridges and ocean island basalts: characterization of mantle source reservoirs. In Noble Gases in Geochemistry and Cosmochemistry, Vol. 47, eds. Porcelli, D., Ballentine, C. J. and Wieler, R.. Washington DC: Mineral. Soc. Amer., pp. 247–318.Google Scholar
Grand, S. P. (1994). Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99 (B6), 11 591–621.CrossRefGoogle Scholar
Graner, F. and Dubrulle, B. (1994). Titius–Bode laws in the solar system: I. Scale invariance explains everything. Astron. Astrophys., 282, 262–8.Google Scholar
Gratton, R. G. and Sneden, C. (1994). Abundances of neutron-capture elements in metal-poor stars. Astron. Astrophys., 287, 927–46.Google Scholar
Gray, C. M., Papanastassiou, D. A. and Wasserburg, G. J. (1973). The identification of early condensates from the solar nebula. Icarus, 20, 213–39.CrossRefGoogle Scholar
Green, D. H. and Ringwood, A. E. (1963). Mineral assemblages in a model mantle composition. J. Geophys. Res., 68, 937–45.CrossRefGoogle Scholar
Green, D. H. and Ringwood, A. E. (1967). The genesis of basaltic magmas. Contrib. Mineral. Petrol., 15, 103–90.CrossRefGoogle Scholar
Grevesse, N. and Sauval, A. J. (1998). Standard solar composition. Space Sci. Rev., 85, 161–74.CrossRefGoogle Scholar
Grossman, J. N., Rubin, A. E., Nagahara, N. and King, E. A. (1988). Properties of chondrules. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 619–59.Google Scholar
Grossman, L. (1972). Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597–619.CrossRefGoogle Scholar
Grossman, L. (1975). Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta, 39, 433–54.CrossRefGoogle Scholar
Grossman, L., Ganapathy, R. and Davis, A. M. (1977). Trace elements in the Allende meteorite – III. Coarse-grained inclusions revisited. Geochim. Cosmochim. Acta 41, 1647–64.CrossRefGoogle Scholar
Grossman, L., Ebel, D. S., Simon, S. B., Davis, A. M., Richter, F. M. and Parsad, N. M. (2000). Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: the separate roles of condensation and evaporation. Geochim. Cosmochim. Acta, 64, 2879–94.CrossRefGoogle Scholar
Grossman, L., Ebel, D. S. and Simon, S. B. (2002). Formation of refractory inclusions by evaporation of condensate precursors. Geochim. Cosmochim. Acta, 66, 145–61.CrossRefGoogle Scholar
Grove, T. L. (2000). Origin of magmas. In Encyclopedia of Volcanoes. San Diego, CA: Academic Press, pp. 133–47.Google Scholar
Haack, H., Rasmussen, K. L. and Warren, P. H. (1990). Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids. J. Geophys. Res., 95, 5111–24.CrossRefGoogle Scholar
Haapala, I. and Ramo, O. T. (1999). Rapakivi granites and related rocks: an introduction. Precambrian Res., 95, 1–7.CrossRefGoogle Scholar
Haapala, I., Ramo, O. T. and Frindt, S. (2005). Comparison of Proterozoic and Phanerozoic rift-related basaltic–granitic magmatism. Lithos, 80, 1–32.CrossRefGoogle Scholar
Haederle, M. and Atherton, M. P. (2002). Shape and intrusion style of the Coastal Batholith, Peru. Tectonophysics, 345, 17–28.CrossRefGoogle Scholar
Halliday, A. N. and Porcelli, D. (2001). In search of lost planets – the paleocosmochemistry of the inner solar system. Earth Planet. Sci. Lett., 192, 545–59.CrossRefGoogle Scholar
Halliday, A. N., Lee, D.-C. and Jacobsen, S. B. (2000). Tungsten isotopes, the timing of metal–silicate fractionation and the origin of the Earth and Moon. In Origin of the Earth and Moon, eds. Righter, K. and Canup, R.. Tucson, AZ: University of Arizona Press, pp. 45–62.Google Scholar
Hanowski, N. P. and Brearley, A. J. (2000). Iron-rich aureoles in the CM carbonaceous chondrites Murray, Murchison and Allan Hills 81002: evidence for in situ aqueous alteration. Meteorit. Planet. Sci., 35, 1291–308.CrossRefGoogle Scholar
Hansen, B. M. S. and Liebert, J. (2003). Cool white dwarfs. Ann. Rev. Astron. Astrophys., 41, 465–515.CrossRefGoogle Scholar
Hansen, U. and Yuen, D. A. (1988). Numerical simulation of thermal–chemical instabilities at the core–mantle boundary. Nature, 334, 237–40.CrossRefGoogle Scholar
Harley, S. L. (1989). The origins of granulites: a metamorphic perspective. Geol. Mag., 126, 215–47.CrossRefGoogle Scholar
Harris, M. J., Lambert, D. L. and Goldman, A. (1987). The 12C/13C and 16O/18O ratios in the solar photosphere. Mon. Not. Roy. Astr. Soc., 224, 237–55.CrossRefGoogle Scholar
Harris, W. E., Durrell, P. R., Pierce, M. J. and Secker, J. (1998). Constraints on the Hubble constant from observations of the brightest red-giant stars in a Virgo-cluster galaxy. Nature, 395, 45–7.CrossRefGoogle Scholar
Harrison, T. M., Blichert-Toft, J., Muller, W., Albarède, F., Holden, P. and Mojzsis, S. J. (2005). Heterogeneous hadean hafnium: evidence of continental crust at 4.4 to 4.5 Gyr. Science, 310, 1947–50.CrossRefGoogle Scholar
Hart, S. R. and Zindler, A. (1986). In search of a bulk-earth composition. Chem. Geol., 57, 247–67.CrossRefGoogle Scholar
Hartmann, L. (2000). Observational constraint on transport (and mixing) in pre-main sequence disks. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 55–68.CrossRefGoogle Scholar
Hartmann, L. and Kenyon, S. J. (1985). On the nature of FU Orionis objects. Astrophys. J., 299, 462–78.CrossRefGoogle Scholar
Hartmann, L., Ballesteros-Paredes, J. and Bergin, E. A. (2001). Rapid formation of molecular clouds and stars in the solar neighborhood. Astrophys. J., 562, 852–68.CrossRefGoogle Scholar
Hartmann, W. K., Phillips, R. J. and Taylor, G. J., eds. (1984). Origin of the Moon. Houston: Lunar and Planetary Inst., pp. 781.Google Scholar
Hawkesworth, C. J. and Kemp, A. I. S. (2006). The differentiation and rates of generation of the continental crust. Chem. Geol., 226, 134–43.CrossRefGoogle Scholar
Hay, W. W., Wold, C. N., Soding, E. and Floegel, E. (2001). Evolution of sediment fluxes and ocean salinity. In Geologic Modeling and Simulation: Sedimentary Systems, eds. Merriam, D. F. and Davis, J. C.. Dordrecht: Kluwer/Plenum, pp. 153–67.Google Scholar
Hayashi, C., Nakazava, K. and Mizuno, H. (1979). Earth melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett., 43, 22–48.CrossRefGoogle Scholar
Heber, V. S., Brooker, R. A., Kelley, S. P. and Wood, B. J. (2007). Crystal–melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim. Cosmochim. Acta, 71, 1041–61.CrossRefGoogle Scholar
Herzog, G. F., Anders, E., Alexander, E. C. Jr.. and Lewis, R. S. (1973). Iodine-129 / Xenon-129 age of magnetite from the Orgueil meteorite. Science, 180, 489–91.CrossRefGoogle ScholarPubMed
Hewins, R. H. (1988). Experimental studies of chondrules. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 660–79.Google Scholar
Hewins, R. H. (1996). Chondrules and protoplanetary disk: an overview. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 3–9.Google Scholar
Hewins, R. H. and Newsom, H. E. (1988). Igneous activity in the early solar system. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 73–101.Google Scholar
Hewins, R. H., Jones, R. H. and Scott, E. R. D., eds. (1996). Chondrules and the Protoplanetary Disk. Cambridge, UK: Cambridge University Press, pp. 346.Google Scholar
Hewitt, J., McKenzie, D. P. and Weiss, N. O. (1975). Dissipative heating in convective flows. J. Fluid Mech., 68, 721–38.CrossRefGoogle Scholar
Hillebrandt, W. and Niemeyer, J. C. (2000). Type Ia supernova explosion models. Ann. Rev. Astron. Astrophys., 38, 191–230.CrossRefGoogle Scholar
Hilton, D. R., Fischer, T. P. and Marty, B. (2002). Noble gases and volatiles recycling at subduction zones. In Noble Gases in Geochemistry and Cosmochemistry, Vol. 47, eds. Porcelli, D., Ballentine, C. J. and Wieler, R.. Washington DC: Mineral. Soc. Amer., pp. 319–70.Google Scholar
Hinton, R. W., Davis, A. M., Scatena-Wachel, D. E., Grossman, L. and Draus, R. J. (1988). A chemical and isotopic study of hibonite-rich refractory inclusions in primitive meteorites. Geochim. Cosmochim. Acta, 52, 2573–98.CrossRefGoogle Scholar
Hiroi, T., Pieters, C. M., Zolensky, M. E. and Lipschutz, M. E. (1993). Evidence of thermal metamorphism on the C-asteroid, G-asteroid, B-asteroid, and F-asteroid. Science, 261 (5124), 1016–18.CrossRefGoogle Scholar
Hiyagon, H. (1994). Retention of solar helium and neon in interplanetary dust particles in deep-sea sediment. Science, 263 (5151), 1257–9.CrossRefGoogle ScholarPubMed
Hiyagon, H. and Ozima, M. (1986). Partition of noble gases between olivine and basalt melt. Geochim. Cosmochim. Acta, 50, 2045–57.CrossRefGoogle Scholar
Hoefs, J. (2005). Stable Isotope Geochemistry (3rd edition). Berlin: Springer-Verlag, pp. 197.Google Scholar
Hofmann, A. W. (1988). Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90, 297–314.CrossRefGoogle Scholar
Hofmann, A. W. (2003). Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Amsterdam: Elsevier-Pergamon, pp. 61–101.Google Scholar
Hofmann, A. W. and White, W. M. (1982). Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett., 57, 421–36.CrossRefGoogle Scholar
Hohenberg, C. M., Hudson, B., Kennedy, B. M. and Podosek, F. A. (1981). Noble gas retention chronologies for the St Severin meteorite. Geochim. Cosmochim. Acta, 45, 535–46.CrossRefGoogle Scholar
Holland, H. D. (2002). Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta, 66, 3811–26.CrossRefGoogle Scholar
Holloway, J. R. (1998). Graphite–melt equilibria during mantle melting: constraints on CO2 in mid-ocean ridge basalt magmas and the carbon content in the mantle. Chem. Geol., 147, 89–97.CrossRefGoogle Scholar
Holzheid, A., Sylvester, P., O'Neill, H. S. C., Rubie, D. C. and Palme, H. (2000). Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum. Nature, 406, 396–9.CrossRefGoogle ScholarPubMed
Honda, M., McDougall, I., Patterson, D. B., Doulgeris, A. and Clague, D. A. (1993). Noble-gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii – a solar component in the Earth. Geochim. Cosmochim. Acta, 57, 859–74.CrossRefGoogle Scholar
Honda, S., Aoki, W., Kajino, T.et al. (2004). Spectroscopic studies of extremely metal-poor stars with the Subaru high dispersion spectrograph. II. The r-process elements, including thorium. Astrophys. J., 607, 474–98.CrossRefGoogle Scholar
Hood, L. L. (1998). Thermal processing of chondrule precursors in planetesimal bow shocks. Meteorit. Planet. Sci., 33, 97–107.CrossRefGoogle Scholar
Hood, L. L. and Ceisla, F. (2001). The scale size of chondrule formation regions: constraints imposed by chondrule cooling rates. Meteorit. Planet. Sci., 36, 1571–85.CrossRefGoogle Scholar
Hood, L. L. and Horanyi, M. (1993). The nebular shock-wave model for chondrule formation – one-dimensional calculations. Icarus, 106, 179–89.CrossRefGoogle Scholar
Hood, L. L. and Kring, D. A. (1996). Models for multiple heating mechanisms. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 265–76.Google Scholar
Hood, L. L. and Zuber, M. T. (2000). Recent refinements in geophysical constraints on Lunar origin and evolution. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 397–409.Google Scholar
Hoppe, P. and Ott, U. (1997). Mainstream silicon carbide grains from meteorites. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. Phys., pp. 27–57.Google Scholar
Hsu, W. B., Wasserburg, G. J. and Huss, G. R. (2000). High time resolution by use of the 26Al chronometer in the multistage formation of a calcium–aluminium-rich inclusions. Earth Planet. Sci. Lett., 182, 15–29.CrossRefGoogle Scholar
Hubble, E. P. (1929). A clue to the structure of the Universe. Astron. Soc. Pacific Leaflets, 1, 93.Google Scholar
Humayun, M. and Cassen, P. (2000). Processes determining the volatile abundances of the meteorites and terrestrial planets. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona, Press, pp. 3–23.Google Scholar
Humler, E., Langmuir, C. and Daux, V. (1999). Depth versus age: new perspectives from the chemical compositions of ancient crust. Earth Planet. Sci. Lett., 173, 7–23.CrossRefGoogle Scholar
Hunten, D. M., Pepin, R. O. and Walker, J. C. G. (1987). Mass fractionation in hydrodynamic escape. Icarus, 69, 532–49.CrossRefGoogle Scholar
Hurley, P. M. (1968). Absolute abundance and distribution of Rb, K, and Sr in the Earth. Geochim. Cosmochim. Acta, 32, 273–84.CrossRefGoogle Scholar
Huss, G. R. (1990). Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism. Nature, 347, 159–62.CrossRefGoogle Scholar
Huss, G. R., Lewis, R. S. and Hemkin, S. (1996). The “normal planetary” noble gas component in primitive chondrites: compositions, carrier, and metamorphic history. Geochim. Cosmochim. Acta, 60, 3311–40.CrossRefGoogle Scholar
Huss, G. R., Hutcheon, I. D. and Wasserburg, G. J. (1997). Isotopic systematic of presolar silicon carbide from the Orgueil (CI) chondrite: implication for Solar system formation and stellar nucleosynthesis. Geochim. Cosmochim. Acta, 61, 5117–48.CrossRefGoogle Scholar
Huss, G. R., MacPherson, G. J., Wasserburg, G. J., Russell, S. S. and Srinivasan, G. (2001). Aluminum-26 in calcium–aluminum-rich inclusions and chondrules from unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 36, 975–97.CrossRefGoogle Scholar
Huss, G. R., Meshik, A. P., Smith, J. B. and Hohenberg, C. M. (2004). Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula. Geochim. Cosmochim. Acta, 67, 4823–48.CrossRefGoogle Scholar
Ingersoll, R. V. and Busby, C. J. (1995). Tectonics of sedimentary basins. In Tectonics of Sedimentary Basins, eds. Busby, C. J. and Ingersoll, R. V.. Oxford, UK: Blackwell, pp. 1–51.Google Scholar
Isern, J., Bravo, E., Garcia-Berro, E., Dominguez, I. and Salaris, M. (2001). On the internal composition of white dwarfs. Nucl. Phys., A688, 122c–5.Google Scholar
Israelian, G., Lopez, R. J. G. and Rebolo, R. (1998). Oxygen abundances in unevolved metal-poor stars from near-ultraviolet OH lines. Astrophys. J., 507, 805–17.
Israelian, G., Rebolo, R., Basri, G., Casares, J. and Martin, E. L. (1999). Evidence of a supernova origin for the black hole in the system GRO J1655-40. Nature, 401, 142–4.CrossRefGoogle Scholar
Israelian, G., Rebolo, R., Garcia, L. G.et al. (2001). Oxygen in the very early galaxy. Astrophys. J., 551, 833–51.CrossRefGoogle Scholar
Istomin, V. G., Grechnev, K. V. and Kochnev, V. A. (1983). Venera-13 and Venera-14: mass spectrometry of the atmosphere. Kosmicheskie Issledovaniya, 21, 410–20.
Iwamori, H. (1994). 238U–230Th–226Ra and 235U–231Pa disequilibria produced by mantle melting with porous and channel flows. Earth Planet. Sci. Lett., 125, 1–16.CrossRefGoogle Scholar
Jackson, M. D., Cheadle, M. J. and Atherton, M. P. (2003). Quantitative modeling of granitic melt generation and segregation in the continental crust. J. Geophys. Res., 108 (B7), 2332–53.CrossRefGoogle Scholar
Jacobsen, S. B. (1988). Isotopic constraints on crustal growth and recycling. Earth Planet. Sci. Lett., 90, 315–29.CrossRefGoogle Scholar
Jacobsen, S. B. (2005). The Hf–W isotopic system and the origin of the Earth and Moon. Ann. Rev. Earth Planet. Sci., 33, 18. 1–40.CrossRefGoogle Scholar
Jacobsen, S. B. and Wasserburg, G. J. (1979). The mean age of mantle and crustal reservoirs. J. Geophys. Res., 84, 7411–27.CrossRefGoogle Scholar
Jacobsen, S. B. and Wasserburg, G. J. (1984). Sm–Nd isotopic evolution of chondrites and achondrites, II. Earth Planet. Sci. Lett., 67, 137–50.CrossRefGoogle Scholar
Jagoutz, E., Palme, H., Baddenhausen, H.et al. (1979). The abundance of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. In Proc. Lunar Planet. Sci. Conf., Vol. 10, pp. 2031–50.Google Scholar
Jakosky, B. M., Pepin, R. O., Johnson, R. E. and Fox, J. L. (1994). Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus, 111, 271–88.CrossRefGoogle Scholar
Jana, D. and Walker, D. (1997a). The influence of silicate melt composition on distribution of siderophile elements among metal and silicate liquids. Earth Planet. Sci. Lett., 150, 463–72.CrossRefGoogle Scholar
Jana, D. and Walker, D. (1997b). The influence of sulfur on partitioning of siderophile elements. Geochim. Cosmochim. Acta, 61, 5255–77.CrossRefGoogle Scholar
Javoy, M. (1998). The birth of the Earth's atmosphere: the behaviour and fate of its major elements. Chem. Geol., 147, 11–25.CrossRefGoogle Scholar
Jerram, D. A. and Widdowson, M. (2005). The anatomy of continental flood basalt provinces: geological constraints on the processes and products of flood volcanism. Lithos, 79, 385–405.CrossRefGoogle Scholar
Jewitt, D., Luu, J. and Trujillo, C. (1998). Large Kuiper Belt objects: the Mauna Kea 8K CCD survey. Astron. J., 115, 2125–35.CrossRefGoogle Scholar
Jochum, K. P., Hofmann, A. W., Ito, E., Seufert, H. M. and White, W. M. (1983). K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature, 306, 431–6.CrossRefGoogle Scholar
Jochum, K. P., Hofmann, A. W. and Seufert, H. M. (1993). Tin in mantle-derived rocks: constraints on Earth evolution. Geochim. Cosmochim. Acta, 57, 3585–95.CrossRefGoogle Scholar
John, T., Scherer, E. E., Haase, K. and Schenk, V. (2004). Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu–Hf–Sm–Nd isotope systematics. Earth Planet. Sci. Lett., 227, 441–56CrossRefGoogle Scholar
Johnson, K. T. M. (1998). Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib. Mineral. Petrol., 133, 60–8.CrossRefGoogle Scholar
Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. and Neal, C. R., eds. (2006). New views of the Moon. In Reviews in Mineralogy and Geochemistry, Vol. 60. Washington DC: Mineral. Soc. Amer., pp. 721.Google Scholar
Jones, J. H. (1996). Chondrite models for the composition of the Earth's mantle and core. Phil. Trans. Roy. Soc. London, A354, 1481–94.CrossRefGoogle Scholar
Jones, J. H. and Drake, M. J. (1986). Geochemical constraints on core formation in the Earth. Nature, 322, 221–8.CrossRefGoogle Scholar
Jones, J. H. and Hood, L. L. (1990). Does the Moon have the same chemical composition as the Earth's upper mantle? In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 85–98.Google Scholar
Jones, J. H. and Palme, H. (2000). Geochemical constraints on the origin of the Earth and Moon. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 197–216.Google Scholar
Jull, M. and Kelemen, P. B. (2001). On the conditions for lower crustal convective instability. J. Geophys. Res., 106 (B4), 6423–46.CrossRefGoogle Scholar
Jull, M., Kelemen, P. B. and Sims, K. (2002). Consequences of diffuse and channelled porous melt migration on uranium series disequilibria. Geochim. Cosmochim. Acta, 66, 4133–48.CrossRefGoogle Scholar
Jurewicz, A. J. G., Mittlefehldt, D. W. and Jones, J. H. (1993). Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts. Geochim. Cosmochim. Acta, 57, 2123–39.CrossRefGoogle Scholar
Jurewicz, A. J. G., Mittlefehldt, D. W. and Jones, J. H. (1995). Experimental partial melting of the St Severin (LL) and Lost City (H) chondrites. Geochim. Cosmochim. Acta, 59, 391–408.CrossRefGoogle Scholar
Kallemeyn, G. W. and Wasson, J. T. (1981). The compositional classification of chondrites: I, The carbonaceous chondrite groups. Geochim. Cosmochim. Acta, 45, 1217–30.CrossRefGoogle Scholar
Kallenbach, R. (2001). Isotopic composition measured in situ in different solar wind regimes by CELIAS/MTOF on board SOHO. In Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F.. New York: Amer. Inst. Phys, pp. 113–19.Google Scholar
Kallenbach, R. and Ott, U. (2003). Glossary. Space Sci. Rev., 106, 413–22.CrossRefGoogle Scholar
Kamber, B. S., Ewart, A., Collerson, K. D., Bruce, M. C. and McDonald, G. D. (2002). Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contrib. Mineral. Petrol., 144, 38–56.CrossRefGoogle Scholar
Kamber, B. S., Collerson, K. D., Moorbath, S. and Whitehouse, M. J. (2003). Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust. Contrib. Mineral. Petrol., 145, 25–46.CrossRefGoogle Scholar
Kappeler, F., Beer, H. and Wisshak, K. (1989). s-Process nucleosynthesis – nuclear physics and the classical model. Rep. Progress Phys., 52, 945–1013.CrossRefGoogle Scholar
Karato, S. and Murthy, V. R. (1997). Core formation and chemical equilibrium in the Earth. 1. Physical considerations. Phys. Earth Planet. Inter., 100, 61–79.CrossRefGoogle Scholar
Kasting, J. F., Eggler, D. H. and Raeburn, S. P. (1993). Mantle redox evolution and the oxidation-state of the Archean atmosphere. J. Geol., 101, 245–57.CrossRefGoogle ScholarPubMed
Kato, T., Ringwood, A. E. and Irifune, T. (1988). Constraints on element partition coefficients between MgSiO3 perovskite and liquid determined by direct measurements. Earth Planet. Sci. Lett., 90, 65–8.CrossRefGoogle Scholar
Kaula, W. M. (1999). Constraint on Venus evolution from radiogenic argon. Icarus, 139, 32–39.CrossRefGoogle Scholar
Kay, R. W. and Kay, S. M. (1993). Delamination and delamination magmatism. In Plate Tectonic Signatures in the Continental Lithosphere, eds. Green, A. G., Kroner, A., Gotze, H.-J. and Pavlenkova, N.. Tectonophysics, Vol. 219, pp. 177–89.Google Scholar
Kelemen, P. B., Hanghoj, K. and Greene, A. R. (2003). One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In The Crust, Vol. 3, ed. Rudnick, R. L.. Amsterdam: Elsevier-Pergamon, pp. 593–659.Google Scholar
Kelemen, P. B., Yogodzinski, G. M. and Scholl, D. W. (2004). Along-strike variation in lavas of the Aleutian island arc: implications for the genesis of high Mg# andesite and the continental crust. In Inside the Subduction Factory, Vol. 138, ed. Eiler, J.. Washington DC: AGU Monograph, pp. 223–76.Google Scholar
Kelley, K. A., Plank, T., Farr, L., Ludden, J. and Staudigel, H. (2005). Subduction cycling of U, Th, and Pb. Earth Planet. Sci. Lett., 234, 369–83.CrossRefGoogle Scholar
Kellogg, J. B., Jacobsen, S. B. and O'Connell, R. J. (2002). Modeling the distribution of isotopic ratios in geochemical reservoirs. Earth Planet. Sci. Lett., 204, 183–202.CrossRefGoogle Scholar
Kellogg, L. H. (1997). Growing the Earth's D′′ layer: effect of density variations at the core–mantle boundary. Geophys. Res. Lett., 24, 2749–52.CrossRefGoogle Scholar
Kellogg, L. H., Hager, B. H. and Hilst, R. D. (1999). Compositional stratification in the deep mantle. Science, 283, 1881–4.CrossRefGoogle ScholarPubMed
Kemp, A. I. S. and Hawkesworth, C. J. (2003). Granitic perspectives on the generation and secular evolution of the continental crust. In The Crust, Vol. 3, ed. Rudnick, R. L.. Amsterdam: Elsevier-Pergamon, pp. 350–410.Google Scholar
Kendall, J.-M., Stuart, G. W., Ebinger, C. J., Bastow, I. D. and Keir, D. (2005). Magma-assisted rifting in Ethiopia. Nature, 433, 147–9.CrossRefGoogle ScholarPubMed
Kerridge, J. F. (1993). What can meteorites tell us about nebular conditions and processes during planetesimal accretion? Icarus, 106, 135–50.CrossRefGoogle ScholarPubMed
Kerridge, J. F. and Matthews, M. S., eds. (1988). Meteorites and the Early Solar System. Tucson, AZ: University of Arizona Press, 1286. pp.Google Scholar
Kessel, R., Schmidt, M. W., Ulmer, P. and Pettke, T. (2005). Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437, 724–7.CrossRefGoogle ScholarPubMed
Kilburn, M. R. and Wood, B. J. (1997). Metal–silicate partitioning and the incompatibility of S and Si during core formation. Earth Planet. Sci. Lett., 152, 139–48.CrossRefGoogle Scholar
Kim, J. S. and Marti, K. (1992). Solar-type xenon: isotopic abundances in Pesyanoe. In Proc. Lunar Planet. Sci. Conf., Vol. 22, pp. 145–51.Google Scholar
Kirschbaum, C. (1987). Carrier phases for iodine in the Allende meteorite and their associated 129Xe/127I ratios: a laser microprobe study. Geochim. Cosmochim. Acta, 52, 679–99.CrossRefGoogle Scholar
Kirsten, T. (1983). Geochemical double beta decay experiments. In Science Underground, Vol. 96, eds. Nieto, M. M., Haxton, W. C., Hofman, C. M., Kolb, E. W., Sandberg, V. D. and Toevs, J. W.. New York: Amer. Inst. Phys, pp. 396–410.Google Scholar
Klein, E. M. (2003). Geochemistry of the igneous oceanic crust. In The Crust, Vol. 3, ed. Rudnick, R. L.. Amsterdam: Elsevier-Pergamon, pp. 433–63.Google Scholar
Klein, E. M. and Langmuir, C. H. (1987). Global correlations of oceanic basalt chemistry with axial depth and crustal thickness. J. Geophys. Res., 92, 8089–115.CrossRefGoogle Scholar
Kleine, T., Munker, C., Mezger, K. and Palme, H. (2002). Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418, 952–5.CrossRefGoogle ScholarPubMed
Kleinhanns, I. C., Kramers, J. D. and Kamber, B. S. (2003). Importance of water for Archaean granitoid petrology: a comparative study of tonalite, trondhjemite and granodiorite rocks and potassic granitoids from Barberton Mountain Land, South Africa. Contrib. Mineral. Petrol., 145, 377–89.CrossRefGoogle Scholar
Knesel, K. M. and Davidson, J. P. (2002). Insights into collisional magmatism from isotopic fingerprints of melting reactions. Science, 296, 2206–8.CrossRefGoogle ScholarPubMed
Knittle, E. and Jeanloz, R. (1991). Earth's core–mantle boundary: results of experiments at high pressures and temperatures. Science, 251, 1438–43.CrossRefGoogle ScholarPubMed
Kohut, E. J., Stern, R. J., Kent, A. J. R., Nielsen, R. L., Bloomer, S. H. and Leybourne, M. (2006). Evidence for adiabatic decompression melting in the Southern Mariana Arc from high-Mg lavas and melt inclusions. Contrib. Mineral. Petrol., 152, 201–21.CrossRefGoogle Scholar
Kong, P. and Ebihara, M. (1997). The origin and nebular history of the metal phase of ordinary chondrites. Geochim. Cosmochim. Acta, 61 (11), 2317–29.CrossRefGoogle Scholar
Kong, P. and Palme, H. (1999). Compositional and genetic relationship between chondrules, chondrule rims, metal, and matrix in the Renazzo chondrite. Geochim. Cosmochim. Acta, 63, 3673–82.CrossRefGoogle Scholar
Kong, P., Ebihara, M. and Palme, H. (1999). Distribution of siderophile elements in CR chondrites: evidence for evaporation and recondensation during chondrule formation. Geochim. Cosmochim. Acta, 63, 2637–52.CrossRefGoogle Scholar
Kortenkamp, S. J., Kokubo, E. and Weidenschilling, S. J. (2000). Formation of planetary embryos. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 85–100.Google Scholar
Kostitsyn, Y. A. (2000). Origin of peraluminous rare-metal granites: a review of Rb–Sr and Sm–Nd isotopic data. In Ore-Bearing Granites of Russia and Adjacent Countries, eds. Kremenetsky, A., Lehmann, B. and Seltmann, R.. Moscow: IMGRE, pp. 143–55.Google Scholar
Kostitsyn, Y. A. (2004). Terrestrial Sm–Nd and Lu–Hf isotopic systematics: do they correspond to chondrites? Petrologiya, 12, 451–66.Google Scholar
Kramers, J. D. (1998). Reconciling siderophile element data in the Earth and Moon, W isotopes and the upper lunar age limit in a simple model of homogeneous accretion. Chem. Geol., 145, 461–78.CrossRefGoogle Scholar
Kramers, J. D. (2003). Volatile element abundance patterns and the early liquid water ocean on Earth. Precambrian Res., 126, 379–94.CrossRefGoogle Scholar
Kramers, J. D. (2007). Hierarchical Earth accretion and the Hadean Eon (Invited bicentennial review). J. Geol. Soc., 164, 2–17.CrossRefGoogle Scholar
Kramers, J. R. and Tolstikhin, I. N. (1997). Two terrestrial lead isotope paradoxes, forward transport modeling, core formation and the history of the continental crust. Chem. Geol., 139, 75–110.CrossRefGoogle Scholar
Kramers, J. D., Kreissig, K. and Jones, M. Q. W. (2001). Crustal heat production and style of metamorphism: a comparison between two Archean high grade provinces in the Limpopo Belt, Southern Africa. Precambrian Res., 112, 149–63.CrossRefGoogle Scholar
Kratz, K.-L. (2001). Measurements of r-process nuclei. Nucl. Phys., A688, 308c-17.Google Scholar
Kratz, K.-L., Bitouzet, J.-P., Thielemann, F.-K., Moeller, P. and Pfeiffer, B. (1993). Isotopic r-process abundances and nuclear structure far from stability – implications for the r-process mechanism. Astrophys. J., 403, 216–38.CrossRefGoogle Scholar
Kreissig, K., Nagler, T. F., Kramers, J. D., Reenen, D. D. and Smit, C. A. (2000). An isotopic and geochemical study of the northern Kaapvaal Craton and the Southern Marginal Zone of the Limpopo Belt: are they juxtaposed terranes? Lithos, 50, 1–25.CrossRefGoogle Scholar
Krot, A. N., Hutcheon, I. D., Yurimoto, H., Cuzzi, J. N., McKeegan, K. D., Scott, E. R. D., Libourel, G., Chaussidon, M., Aleon, J. and Petaev, M. I. (2005). Evolution of oxygen isotopic composition in the inner solar nebula. Astrophys. J., 622, 1333–42.CrossRefGoogle Scholar
Krot, A. N., McKeegan, K. D., Huss, G. R., Liffman, K., Sahijpal, S., Hutcheon, I. D., Srinivasan, G., Bischoff, A. and Keil, K. (2006). Aluminum–magnesium and oxygen isotope study of relict Ca–Al-rich inclusions in chondrules. Astrophys. J., 639, 1227–37.CrossRefGoogle Scholar
Kuehner, S. M., Laughlin, J. R., Grossman, L., Johnson, M. L. and Burnett, D. S. (1989). Determination of trace element mineral/liquid partition coefficients in melilite and diopside by ion and electron microprobe techniques. Geochim. Cosmochim. Acta, 53, 3115–30.CrossRefGoogle Scholar
Kung, C. C. and Clayton, R. N. (1978). Nitrogen abundances and isotopic compositions in stony meteorites. Earth Planet. Sci. Lett., 38, 421–35.CrossRefGoogle Scholar
Kunz, J., Staudacher, T. and Allègre, C. J. (1998). Plutonium-fission xenon found in Earth's mantle. Science, 280, 877–80.CrossRefGoogle ScholarPubMed
Kuramoto, K. (1997). Accretion, core formation, H and C evolution of the Earth and Mars. Phys. Earth Planet. Inter., 100, 3–20.CrossRefGoogle Scholar
Kurz, M. D., Jenkins, W. J. and Hart, S. R. (1982a). Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature, 297, 43–7.CrossRefGoogle Scholar
Kurz, M. D., Jenkins, W. J., Schilling, J. G. and Hart, S. R. (1982b). Helium isotopic variations in the mantle beneath the central North Atlantic Ocean. Earth Planet. Sci. Lett., 58, 1–14.CrossRefGoogle Scholar
Lackey, J. S., Valley, J. W. and Saleeby, J. B. (2005). Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: evidence from high-δ18O zircon. Earth Planet. Sci. Lett., 235, 315–30.CrossRefGoogle Scholar
Lagabrielle, Y., Goslin, J., Martin, H., Thirot, J.-L. and Auzende, J.-M. (1997). Multiple active spreading centers in the hot North Fiji Basin (Southwest Pacific): a possible model for Archaean seafloor dynamics? Earth Planet. Sci. Lett., 149, 1–13.CrossRefGoogle Scholar
Laming, J. M. (2001). The electron temperature and 44Ti decay rate in Cassiopeia A. In Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F.. New York: Amer. Inst. Phys, pp. 411–16.Google Scholar
Larsen, T. B., Yuen, D. A. and Storey, M. (1999). Ultrafast mantle plumes and implications for flood basalt volcanism in the Northern Atlantic Region. Tectonophysics, 311, 31–43.CrossRefGoogle Scholar
Larson, R. B. (1981). Turbulence and star formation in molecular clouds. Mon. Not. Roy. Astr. Soc., 194, 809–26.CrossRefGoogle Scholar
LaTourrette, T. and Wasserburg, G. J. (1998). Mg diffusion in anorthite: implications for the formation of early solar system planetesimals. Earth Planet. Sci. Lett., 158, 91–108.CrossRefGoogle Scholar
Lecluse, C. and Robert, F. (1994). Hydrogen isotope-exchange reaction-rates – origin of water in the inner Solar-System. Geochim. Cosmochim. Acta, 58, 2927–39.CrossRefGoogle Scholar
Lecuyer, C., Gillet, P. and Robert, F. (1998). The hydrogen isotope composition of seawater and the global water cycle. Chem. Geol., 145, 249–61.CrossRefGoogle Scholar
Lecuyer, C., Simon, L. and Guyot, F. (2000). Comparison of carbon, nitrogen and water budgets on Venus and the Earth. Earth Planet. Sci. Lett., 181, 33–40.CrossRefGoogle Scholar
Lee, H. Y. and Ganguly, J. (1988). Equilibrium composition of coexisting garnet and orthopyroxene: experimental determinations in the system FeO–MgO–Al2O3–SiO2, and applications. J. Petrol., 29, 93–113.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A. and Wasserburg, G. J. (1976). Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys. Res. Lett., 3, 109–12.CrossRefGoogle Scholar
Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S. M. F., Upreti, B. N. and Vidal, P. (1987). Crustal generation of the Himalayan leucogranites. Tectonophys., 134, 39–57.CrossRefGoogle Scholar
Lehmann, B. E., Lehmann, M., Neftel, A., Gut, A. and Tarakanov, S. V. (1999). Radon-220 calibration of near-surface turbulent gas transport. Geophys. Res. Lett., 26, 607–10.CrossRefGoogle Scholar
Pichon, X. (1968). Sea-floor spreading and continental drift. J. Geophys. Res., 73, 3660–97.CrossRefGoogle Scholar
Lewis, J. S. (2004). Physics and Chemistry of the Solar System. London, UK: Academic Press, pp. 655.Google Scholar
Lewis, R. S. and Anders, E. (1975). Condensation time of the solar nebula from extinct 129I in primitive meteorites. Proc. Nat. Acad. Sci. USA, 72, 268–73.CrossRefGoogle Scholar
Lewis, R. S., Srinivasan, B. and Anders, E. (1975). Host phase of a strange xenon component in Allende. Science, 190, 1251–62.CrossRefGoogle Scholar
Leya, I. and Wieler, R. (1999). Nucleogenic production of Ne isotopes in Earth's crust and upper mantle induced by alpha particles from the decay of U and Th. J. Geophys. Res. – Solid Earth, 104, 15, 439–50.CrossRefGoogle Scholar
Leya, I., Halliday, A. N. and Wieler, R. (2003). The predictable collateral consequences of nucleosynthesis by spallation reaction in the early Solar system. Astrophys. J., 594, 605–16.CrossRefGoogle Scholar
Li, J. and Agee, C. B. (2001). Element partitioning constraints on the light element composition of the Earth's core. Geophys. Res. Lett., 28, 81–4.CrossRefGoogle Scholar
Liffman, K. and Toscano, M. (2000). Chondrule fine-grained mantle formation by hypervelocity impact of chondrules with a dusty gas. Icarus, 143, 106–25.CrossRefGoogle Scholar
Lin, J.-F., Heinz, D. L., Campbell, A. J., Devine, J. M. and Shen, G. (2002). Iron–silicon alloy in Earth's core? Science, 295, 313–15.CrossRefGoogle ScholarPubMed
Lin, J.-F., Campbell, A. J., Heinz, D. L. and Shen, G. (2003). Static compression of iron–silicon alloys: implications for silicon in the Earth's core. J. Geophys. Res. – Solid Earth, 108, 2045.CrossRefGoogle Scholar
Lissauer, J. J. and Safronov, V. S. (1991). The random component of planetary rotation. Icarus, 93, 288–97.CrossRefGoogle Scholar
Liu, L.-G. and Huh, C.-A. (2000). Effect of pressure on the decay rate of 7Be. Earth Planet. Sci. Lett., 180, 163–7.CrossRefGoogle Scholar
Liu, Y., Gao, S., Yuan, H., Zhou, L., Liu, X., Wang, X., Hu, Z. and Wang, L. (2004). U–Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chem. Geol., 211, 87–109.CrossRefGoogle Scholar
Lodders, K. and Fegley, B. Jr. (1992). Trace element condensation in circumstellar envelopes of carbon stars. Meteoritics, 27, 250.Google Scholar
Lowrie, W. (1997). Fundamentals of Geophysics. Cambridge, UK: Cambridge University Press, pp. 368.Google Scholar
Lugmair, G. W. and Galer, S. J. G. (1992). Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochim. Cosmochim. Acta, 56, 1673–94.CrossRefGoogle Scholar
Lugmair, G. W. and Shukolyukov, A. (1998). Early solar system timescales according to 53Mn–53Cr systematics. Geochim. Cosmochim. Acta, 62, 2863–86.CrossRefGoogle Scholar
Lugmair, G. W. and Shukolyukov, A. (2001). Early solar system events and time scales. Meteorit. Planet. Sci., 36, 1017–26.CrossRefGoogle Scholar
Lux, G. (1987). The behavior of noble gases in silicate liquids: solution, diffusion, bubbles and surface effects, with implications to natural samples. Geochim. Cosmochim. Acta, 51, 1549–60.CrossRefGoogle Scholar
Lynden-Bell, D. and Pringle, J. S. (1974). The evolution of viscous discs and the origin of nebular variables. Mon. Not. Roy. Astr. Soc., 168, 603–37.CrossRefGoogle Scholar
Lyons, J. R. and Young, E. D. (2005). CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature, 435, 317–20.CrossRefGoogle ScholarPubMed
MacPherson, G. J. and Davis, A. M. (1993). A petrologic and ion microprobe study of a Vigarano type B refractory inclusion. Evolution by multiple stages of alteration and melting. Geochim. Cosmochim. Acta, 57, 231–43.CrossRefGoogle Scholar
MacPherson, G. J. and Davis, A. M. (1994). Refractory inclusions in the prototypical CM chondrite Mighei. Geochim. Cosmochim. Acta, 58, 5599–625.CrossRefGoogle Scholar
MacPherson, G. J., Bar-Matthews, M., Tanaka, T., Olsen, E. and Grossman, L. (1983). Refractory inclusions in the Murchison meteorite. Geochim. Cosmochim. Acta 47, 823–39.CrossRefGoogle Scholar
MacPherson, G. J., Crozaz, G. and Lundberg, L. L. (1989). The evolution of a complex type B Allende inclusion: an ion microprobe trace element study. Geochim. Cosmochim. Acta, 53, 2413–27.CrossRefGoogle Scholar
MacPherson, G. J., Davis, A. M. and Zinner, E. K. (1995). The distribution of Al-26 in the early Solar-system – a reappraisal. Meteoritics 30 (4), 365–86.CrossRefGoogle Scholar
Mahaffy, P., Donahue, T. M., Atreya, S. K., Owen, T. C. and Niemann, H. B. (1998). Galileo probe measurements of D/H and 3He/4He in Jupiter's atmosphere. In Primordial Nuclei and their Galactic Evolution, eds. Prantzos, N., Tosi, M. and Steiger, R.. Dordrecht: Kluwer, pp. 251–63.Google Scholar
Makalkin, A. B. and Dorofeeva, V. A. (1995). Structure of proto-planetary accretion disk around the Sun on the T-Tauri stage: initial data, equations and modeling. Astron. Vestnik, 29, 99–122.Google Scholar
Malamud, B. D. and Turcotte, D. L. (1999). How many plumes are there? Earth Planet. Sci. Lett., 174, 113–24.CrossRefGoogle Scholar
Mamyrin, B. A. and Tolstikhin, I. N. (1984). Helium Isotopes in Nature. Amsterdam: Elsevier, pp. 273.Google Scholar
Mamyrin, B. A., Tolstikhin, I. N., Anufriev, G. S. and Kamensky, I. L. (1969). Anomalous helium isotopic composition in volcanic gases. Dokl. Acad. Nauk USSR, 184, 1197–9.Google Scholar
Manhes, G., Allègre, C. J. and Provost, A. (1984). U–Th–Pb systematics of the eucrite Juvinas: precise age determination and evidence for exotic lead. Geochim. Cosmochim. Acta, 48, 2247–64.CrossRefGoogle Scholar
Mao, W. L., Shen, G., Prakapenka, V. B., Meng, Y., Campbell, A. J., Heinz, D. L., Shu, J., Hemley, R. J. and Mao, H. (2004). Ferromagnesian postperovskite silicates in the D′′ layer of the Earth. Proc. Nat. Acad. Sci., 101, 15, 867–9.CrossRefGoogle Scholar
Marhas, K. K., Goswami, J. N. and Davis, A. M. (2002). Short-lived nuclides in hibonite grains from Murchison: evidence for solar system evolution. Science, 298, 2182–5.CrossRefGoogle ScholarPubMed
Martin, H. (1994). The Archean grey gneisses and genesis of continental crust. In Archean Crustal Evolution, ed. Condie, K. C.. Amsterdam: Elsevier, pp. 205–59.Google Scholar
Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46, 411–29.CrossRefGoogle Scholar
Martin, H. and Moyen, J.-F. (2002). Secular changes in tonalite–trondhjemite–granodiorite composition as markers of the progressive cooling of Earth. Geology, 30, 319–22.2.0.CO;2>CrossRefGoogle Scholar
Marty, B. and Marti, K. (2002). Signatures of early differentiation of Mars. Earth Planet. Sci. Lett., 196, 251–63.CrossRefGoogle Scholar
Marty, B. and Tolstikhin, I. N. (1998). CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol., 145, 233–48.CrossRefGoogle Scholar
Marty, B. and Zimmermann, L. (1999). Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition. Geochim. Cosmochim. Acta, 63, 3619–33.CrossRefGoogle Scholar
Mason, B. (1962). Meteorites. New York: Wiley and Sons, pp. 274.Google Scholar
Mathew, K. J. and Marti, K. (2002). Martian atmospheric and interior volatiles in the meteorite Nakhla. Earth Planet. Sci. Lett., 199, 7–20.CrossRefGoogle Scholar
Mathew, K. J., Kim, J. S. and Marti, K. (1998). Martian atmospheric and indigenous components of xenon and nitrogen in the Shergotty, Nakhla, and Chassigny group meteorites. Meteorit. Planet. Sci., 33, 655–64.CrossRefGoogle Scholar
Matsui, T. and Abe, Y. (1986). Evolution of an impact-induced atmosphere and magma ocean on the accreting Earth. Nature, 319, 303–5.CrossRefGoogle Scholar
Matsumoto, T., Seta, A., Matsuda, J., Takebe, M., Chen, Y. and Arai, S. (2002). Helium in the Archean komatiites revisited: significantly high 3He/4He ratios revealed by fractional crushing gas extraction. Earth Planet. Sci. Lett., 196, 213–25.CrossRefGoogle Scholar
Matteucci, F. and Recchi, S. (2001). On the typical timescale for the chemical enrichment from type Ia Supernovae in Galaxies. Astrophys. J., 558, 351–8.CrossRefGoogle Scholar
McDade, P., Blundy, J. D. and Wood, B. J. (2003). Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa. Phys. Earth Planet. Inter., 139, 129–47.CrossRefGoogle Scholar
McDonough, W. F. and Sun, S.-S. (1995). The composition of the Earth. Chem. Geol., 120, 223–53.CrossRefGoogle Scholar
McKenzie, D. P. (1968). The influence of the boundary conditions and rotation on convection in the Earth's mantle. Geophys. J. Roy. Astron. Soc., 15, 457–500.CrossRefGoogle Scholar
McKenzie, D. P. (1984). The generation and compaction of partially molten rock. J. Petrol., 25, 713–65.CrossRefGoogle Scholar
McKenzie, D. (1985). 230Th–238U disequilibrium and the melting processes beneath ridge axes. Earth Planet. Sci. Lett., 72, 149–57.CrossRefGoogle Scholar
McKenzie, D. (2000). Constraints on melt generation and transport from U-series activity ratios. Chem. Geol., 162, 81–94.CrossRefGoogle Scholar
McKenzie, D. P. and Bickle, M. J. (1988). The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 29, 625–79.CrossRefGoogle Scholar
McKenzie, D. and Nions, O' R. K. (1991). Partial melt distributions from inversion of rare earth element concentrations. J. Petrol., 32, 1021–91.CrossRefGoogle Scholar
McKenzie, D. and Nions, O' R. K. (1995). The source regions of ocean island basalts. J. Petrol., 36, 133–59.CrossRefGoogle Scholar
McKenzie, D. and Nions, O' R. K. (1998). Melt production beneath oceanic islands. Phys. Earth Planet. Inter., 107, 143–82.CrossRefGoogle Scholar
McKenzie, D., Nimmo, F., Jackson, J. A., Gans, P. B. and Miller, E. L. (2000). Characteristics and consequences of flow in the lower crust. J. Geophys. Res. – Solid Earth), 105 (B5), 11, 029–46.Google Scholar
McKenzie, D., Stracke, A., Blichert-Toft, J., Albarede, F., Gronvold, K. and Nions, O' R. K. (2004). Source enrichment processes responsible for isotopic anomalies in oceanic island basalts. Geochim. Cosmochim. Acta, 68, 2699–724.CrossRefGoogle Scholar
McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst., 2, 2000GC000109.CrossRefGoogle Scholar
McWilliam, A. (1997). Abundance ratios and galactic chemical evolution. Ann. Rev. Astron. Astrophys., 35, 503–56.CrossRefGoogle Scholar
McWilliam, A. (1998). Ba abundances in extremely metal-poor stars. Astron. J., 115, 1640–7.CrossRefGoogle Scholar
McWilliam, A., Preston, G. W., Sneden, C. and Searle, L. (1995). Spectroscopic analysis of 33 of the most metal poor stars. II. Astron. J., 109, 2757–99.CrossRefGoogle Scholar
Meibom, A. and Anderson, D. L. (2003). The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217, 123–39.CrossRefGoogle Scholar
Meibom, A. and Clark, B. E. (1999). Evidence for the insignificance of ordinary chondritic material in the asteroid belt. Meteorit. Planet. Sci., 34, 7–24.CrossRefGoogle Scholar
Meisel, T., Walker, R. J., Irving, A. J. and Lorand, J.-P. (2001). Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim. Cosmochim. Acta, 65, 1311–23.CrossRefGoogle Scholar
Melosh, H. J. (2003). The history of air. Nature, 424, 22–3.CrossRefGoogle ScholarPubMed
Melosh, H. J. and Tonks, W. B. (1993). Swapping rocks: ejection and exchange of surface material among the terrestrial planets. Meteoritics, 28, 398.Google Scholar
Melosh, H. J., Vickery, A. M. and Tonks, W. B. (1993). Impacts and the early environment and evolution of the terrestrial planets. In Protostars and Planets, III, eds. Levy, E. H. and Lunine, J. I.. Tucson, AZ: University of Arizona Press, pp. 1339–70.Google Scholar
Metzler, K., Bischoff, A. and Stoffler, D. (1992). Accretionary dust mantles in CM chondrites – evidence for solar nebula processes. Geochim. Cosmochim. Acta, 56, 2873–97.CrossRefGoogle Scholar
Meybeck, M. (2003). Global occurrence of major elements in rivers. In Surface and Ground Water, Weathering, and Soils, Vol. 5, ed. Drever, J. I.. Amsterdam: Elsevier-Pergamon, pp. 207–23.Google Scholar
Meyer, B. S. (1997). Supernova nucleosynthesis. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. Phys., pp. 155–78.Google Scholar
Meyer, B. S. and Clayton, D. D. (2000). Short-lived radioactivities and the birth of the Sun. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 133–52.Google Scholar
Millar, T. J., Bennett, A. and Herbst, E. (1989). Deuterium fractionation in dense interstellar clouds. Astrophys. J. Suppl., 340, 906–20.CrossRefGoogle Scholar
Minster, J.-F., Birck, J.-L. and Allègre, C. J. (1982). Absolute age of formation of chondrites by the 87Rb–87Sr method. Nature, 300, 414–19.CrossRefGoogle Scholar
Mitchell, R. C., Baron, E., Branch, D., Lundqvist, P., Blinnikov, S., Hauschildt, P. H. and Pun, C. S. J. (2001). 56Ni mixing in the outer layers of SN 1987A. Astrophys. J., 556, 979–86.CrossRefGoogle Scholar
Mittlefehldt, D. W., McCoy, V. J., Goodrich, C. A. and Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In Reviews in Mineralogy: Planetary Materials, Vol. 36, ed. Papike, J. J.. Washington DC: Mineral. Soc. Amer., pp. 4.1–4.195.Google Scholar
Mochizuki, Y. (2001). 44Ti: its initial abundance in Cas A and its detection possibility in SNe 1987 A with INTEGRAL. Nucl. Phys., A688, 58c–61c.Google Scholar
Moecher, D. P. and Sharp, Z. D. (1999). Comparison of conventional and garnet-aluminosilicate-quartz O isotope thermometry: insights for mineral equilibration in metamorphic rocks. Amer. Mineral., 84, 1287–303.CrossRefGoogle Scholar
Molnar, P. and Stock, J. (1987). Relative motions of hotspots in the Pacific, Atlantic and Indian oceans since late Cretaceous time. Nature, 327, 587–91.CrossRefGoogle Scholar
Morbidelli, A., Chambers, J., Lunine, J. I.et al. (2000). Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci., 35, 1309–20.CrossRefGoogle Scholar
Moreira, M., Doucelance, R., Kurz, M. D., Dupre, B. and Allègre, C. J. (1999). Helium and lead isotope geochemistry of the Azores Archipelago. Earth Planet. Sci. Lett., 169, 189–205.CrossRefGoogle Scholar
Moreira, M., Breddam, K., Curtice, J. and Kurz, M. D. (2001). Solar neon in the Icelandic mantle: new evidence for an undegassed lower mantle. Earth Planet. Sci. Lett., 185, 15–23.CrossRefGoogle Scholar
Morfill, G., Spruit, H. and Levy, E. H. (1993). Physical processes and conditions associated with the formation of protoplanetary disks. In Protostars and Planets, III, eds. Levy, E. H. and Lunine, J.. Tucson, AZ: University of Arizona Press, pp. 939–78.Google Scholar
Morgan, J. W. and Anders, E. (1980). Chemical composition of Earth, Venus and Mercury. Proc. Nat. Acad. Sci. USA, 77, 6973–7.CrossRefGoogle ScholarPubMed
Morgan, J. W., Walker, R. J., Brandon, A. D. and Horan, M. F. (2001). Siderophile elements in Earth's upper mantle and lunar breccias: data synthesis suggests manifestations of the same late influx. Meteorit. Planet. Sci., 36, 1257–75.CrossRefGoogle Scholar
Morgan, W. J. (1968). Rises, trenches, great faults, and crustal blocks. J. Geophys. Res., 73, 1959–83.CrossRefGoogle Scholar
Morlok, A., Bischoff, A., Stephan, T., Floss, C., Zinner, E. and Jessberger, E. K. (2006). Brecciation and chemical heterogeneities of CI chondrites. Geochim. Cosmochim. Acta, 70, 5371–94.CrossRefGoogle Scholar
Morris, J. D. and Ryan, J. G. (2003). Subduction zone processes and implications for changing composition of the upper and lower mantle. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Amsterdam: Elsevier-Pergamon, pp. 451–70.Google Scholar
Morris, J., Gosse, J., Brachfeld, S. and Tera, F. (2002). Cosmogenic 10Be and the solid earth: studies in active tectonics, geomagnetism and subduction zone processes. In Reviews in Mineralogy, Vol. 50, ed. Grew, E.. Washington DC: Mineral. Soc. Amer., pp. 207–70.Google Scholar
Morse, J. W. (2003). Formation and diagenesis of carbonate sediments. In Sediments, Diagenesis and Sedimentary Rocks, Vol. 7, ed. Mackenzie, F. T.. Amsterdam: Elsevier-Pergamon, pp. 67–85.Google Scholar
Mostefaoui, S., Lugmair, G. W., Hoppe, P. and Goresy, A. E. (2004). Evidence for live 60Fe in meteorites. New Astron. Rev., 48, 155–9.CrossRefGoogle Scholar
Mundt, R., Stocke, J., Strom, S. E., Strom, K. M. and Anderson, E. R. (1985). The optical spectrum of L1551 IRS 5. Astrophys. J., 297, L41–5.CrossRefGoogle Scholar
Muramatsu, Y. and Wedepohl, K. H. (1998). The distribution of iodine in the earth's crust. Chem. Geol., 147, 201–16.CrossRefGoogle Scholar
Muramatsu, Y., Fehn, U. and Yoshida, S. (2001). Recycling of iodine in fore-arc areas: evidence from the iodine brines in Chiba, Japan. Earth Planet. Sci. Lett., 192, 583–93.CrossRefGoogle Scholar
Murphy, D. T., Kamber, B. S. and Collerson, K. D. (2002). A refined solution to the first terrestrial Pb-isotope paradox. J. Petrol., 43, 39–53.Google Scholar
Murthy, V. R. and Karato, S. (1997). Core formation and chemical equilibrium in the Earth. 2. Chemical consequences for the mantle and core. Phys. Earth Planet. Inter., 100, 81–95.CrossRefGoogle Scholar
Nagataki, S., Hashimoto, M., Sato, K., Yamada, S. and Mochizuki, Y. S. (1998). The high ratio of Ti-44/Ni-56 in Cassiopeia A and the axisymmetric collapse-driven supernova explosion. Astrophys. J., 492, L45–8.CrossRefGoogle Scholar
Nägler, T. F. and Kramers, J. D. (1998). Nd isotopic evolution of the upper mantle during the Precambrian: models, data and the uncertainty of both. Precambrian Res., 91, 233–52.CrossRefGoogle Scholar
Nägler, T. F., Siebert, J., Luschen, H. and Bottcher, M. E. (2005). Sedimentary Mo isotope record across the Holocene fresh–brackish water transition of the Black Sea. Chem. Geol., 219, 283–95.CrossRefGoogle Scholar
Nakajima, J., Takei, Y. and Hasegawa, A. (2005). Quantitative analysis of the inclined low-velocity zone mantle wedge of northeastern Japan: a systematic change in melt-filled pore shapes with depth and its implications for melt migration. Earth Planet. Sci. Lett., 234, 59–70.CrossRefGoogle Scholar
Nakamura, T., Nagao, K. and Takaoka, N. (1999a). Microdistribution of primordial noble gases in CM chondrites determined by in situ laser microprobe analysis: decipherment of nebular processes. Geochim. Cosmochim. Acta, 63, 241–55.CrossRefGoogle Scholar
Nakamura, T., Nagao, K., Metzler, K. and Takaoka, N. (1999b). Heterogeneous distribution of solar and cosmogenic noble gases in CM chondrites and implications for the formation of CM parent bodies. Geochim. Cosmochim. Acta, 63, 257–73.CrossRefGoogle Scholar
Nataf, H. C. (2000). Seismic imaging of mantle plumes. Ann. Rev. Earth Planet. Sci., 28, 391–417.CrossRefGoogle Scholar
Nemchin, A. A., Pidgeon, R. T. and Whitehouse, M. J. (2006). Re-evaluation of the origin and evolution of >4.2 Gyr zircons from the Jack Hills metasedimentary rocks. Earth Planet. Sci. Lett., 244, 218–33.CrossRefGoogle Scholar
Newman, W. I., Symbalisty, E. M. D., Ahrens, T. J. and Jones, E. M. (1999). Impact erosion of planetary atmospheres: some surprising results. Icarus, 138, 224–40.CrossRefGoogle Scholar
Newsom, H. E. (1990). Accretion and core formation in the Earth: evidence from siderophile elements. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 273–88.Google Scholar
Newsom, H. E. (1995). Composition of the Solar system, planets, meteorites, and major terrestrial reservoirs. In Global Earth Plysics: A Handbook of Physical Constants, Vol. 1, ed. Ahrens, T. J.. AGU Reference Shelf, pp. 159–89.Google Scholar
Newsom, H. E. and Sims, K. W. W. (1991). Core formation during early accretion of the Earth. Science, 252, 926–33.CrossRefGoogle Scholar
Newsom, H. E. and Taylor, S. R. (1989). Geochemical implications of the formation of the Moon by a single giant impact. Nature, 338, 29–34.CrossRefGoogle Scholar
Nicolet, M. (1957). The aeronomic problem of helium. Ann. Geophys., 13, 1–21.Google Scholar
Niida, K. and Green, D. H. (1999). Stability and chemical composition of pargasitic amphibole in mid-ocean ridge basalt pyrolite under upper mantle conditions. Contrib. Mineral Petrol, 135, 18–40.CrossRefGoogle Scholar
Nittler, L. R. (1997). Presolar oxide grains in meteorites. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. Phys., pp. 59–81.Google Scholar
Nittler, L. R., Alexander, C. M. O., Gao, X., Walker, R. M. and Zinner, E. (1994). Interstellar oxide grains from the Tieschitz ordinary chondrite. Nature, 370, 443–6.CrossRefGoogle Scholar
Nolet, G., Karato, S.-I. and Montelli, R. (2006). Plume fluxes from seismic tomography. Earth Planet. Sci. Lett., 248, 685–99.CrossRefGoogle Scholar
Norman, M. D., Borg, L. E., Nyquist, L. E. and Bogard, D. D. (2003). Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteorit. Planet. Sci., 38, 645–61.CrossRefGoogle Scholar
Norman, M. D., Yaxley, G. M., Bennett, V. C. and Brandon, A. D. (2006). Magnesium isotopic composition of olivine from the Earth, Mars, Moon, and pallasite parent body. Geophys. Res. Lett., 33, L15202 doi:10.1029/2006GL026446.CrossRefGoogle Scholar
Nutman, A. P., Bennett, V. C., Friend, C. R. L. and Rosing, M. T. (1997). 3710 and 3790 Myr volcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotope implications. Chem. Geol., 141, 271–87.CrossRefGoogle Scholar
Ohtani, E., Yurimoto, H. and Seto, S. (1997). Element partitioning between metallic liquid, silicate liquid, and lower-mantle minerals: implications for core formation of the Earth. Phys. Earth Planet. Inter., 100, 97–114.CrossRefGoogle Scholar
Okuchi, T. (1997). Hydrogen partitioning into molten iron at high pressure: implications for Earth's core. Science, 278, 1781–4.CrossRefGoogle ScholarPubMed
Olsen, E. J. and Bunch, T. E. (1984). Equilibration temperatures of the ordinary chondrites; a new evaluation. Geochim. Cosmochim. Acta, 48, 1363–5.CrossRefGoogle Scholar
Olsen, E. J., Mayeda, T. K. and Clayton, R. N. (1981). Cristobalite-pyroxene in an L6 chondrite – implication for metamorphism. Earth Planet. Sci. Lett., 56, 82–8.CrossRefGoogle Scholar
O'Neil, J. R. (1986). Theoretical and experimental aspects of isotopic fractionation. In Reviews in Mineralogy, Vol. 16, Stable Isotopes, ed. Ribbe, P.. New York: Mineral. Soc. Amer., pp. 1–40.Google Scholar
O'Neill, H. S. (1991a). The origin of the Moon and the early history of the Earth – a chemical model. Part 1: the Moon. Geochim. Cosmochim. Acta, 55, 1135–57.CrossRefGoogle Scholar
O'Neill, H. S. (1991b). The origin of the Moon and the early history of the Earth – a chemical model. Part 2: the Earth. Geochim. Cosmochim. Acta, 55, 1159–72.CrossRefGoogle Scholar
O'Neill, H. S., Canil, D. and Rubie, D. C. (1998). Oxide-metal equilibria to 2500 degrees C and 25 GPa: implications for core formation and the light component in the Earth's core. J. Geophys. Res. – Solid Earth, 103, 12, 239–60.CrossRefGoogle Scholar
O'Nions, R. K. and McKenzie, D. (1993). Estimates of mantle thorium/uranium ratios from Th, U and Pb isotope abundances in basaltic melts. Phil. Trans. Roy. Soc. London A, 342, 65–77.CrossRefGoogle Scholar
O'Nions, R. K. and Oxburgh, E. R. (1983). Heat and helium in the Earth. Nature, 306, 429–32.CrossRefGoogle Scholar
O'Nions, R. K., Evensen, N. M. and Hamilton, P. J. (1979). Geochemical modelling of mantle differentiation and crustal growth. J. Geophys. Res., 84, 6091–101.CrossRefGoogle Scholar
Ott, U. (1996). Interstellar diamond xenon and timescales of supernova ejecta. Astrophys. J., 463, 344–8.CrossRefGoogle Scholar
Ott, U. (2002). Noble gases in meteorites – trapped components. In Noble Gases in Geochemistry and Cosmochemistry, Vol. 47, eds. Porcelli, D., Ballentine, C. J. and Wieler, R.. Washington DC: Mineral. Soc. Amer., pp. 71–100.Google Scholar
Ott, U. (2003). Isotopes of volatiles in pre-solar grains. Space Sci. Rev., 106, 33–48.CrossRefGoogle Scholar
Ott, U., Kronenbitter, J., Flores, J. and Chang, S. (1984). Colloidally separated samples from Allende residues: noble gases, carbon and an ESCA study. Geochim. Cosmochim. Acta, 48, 267–80.CrossRefGoogle Scholar
Owen, C. and Bar-Nun, A. (2001). Contributions of icy planetesimals to the earth's early atmosphere. Origins of Life and Evolution of the Biosphere, 31, 435–58.CrossRefGoogle ScholarPubMed
Owen, T. and Encrenaz, T. (2003). Element abundances and isotope ratios in the giant planets and Titan. Space Sci. Rev., 106, 121–38.CrossRefGoogle Scholar
Ozima, M. and Podosek, F. A. (2002). Noble Gas Geochemistry. Cambridge, UK: Cambridge University Press, pp. 286.Google Scholar
Ozima, M., Wieler, R., Marty, B. and Podosek, F. A. (1998). Comparative studies of solar, Q-gases and terrestrial noble gases, and implications on the evolution of the solar nebula. Geochim. Cosmochim. Acta, 62, 301–14.CrossRefGoogle Scholar
Ozima, M., Podosek, F. A., Higuchi, T., Yin, Q.-Z. and Yamada, A. (2007). On the mean oxygen isotope composition of the Solar System. Icarus, 186, 562–70.CrossRefGoogle Scholar
Pagel, B. E. J. (1994). Chemical evidence on galaxy formation and evolution. In The Formation and Evolution of Galaxies, eds. Munoz-Tunon, C. and Sanchez, F.. Cambridge, UK: Cambridge University Press, pp. 149–230.Google Scholar
Pagel, B. E. J. (2001). Chemical evolution of galaxies. Publ. Astronom. Soc. Pacific, 113, 137–41.CrossRefGoogle Scholar
Palme, H. (2000). Are there chemical gradients in the inner solar system? In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 237–62.Google Scholar
Palme, H. and Jones, A. P. (2003). Solar system abundances of the elements. In Meteorites, Comets, and Planets, Vol. 1, ed. Davis, A. M.. Amsterdam: Elsevier-Pergamon, pp. 41–61.Google Scholar
Palme, H. and Nickel, K. G. (1985). Ca/Al ratio and composition of the Earth's upper mantle. Geochim. Cosmochim. Acta, 49, 2123–32.CrossRefGoogle Scholar
Palme, H. and O'Neill, H. S. C. (2003). Cosmochemical estimates of mantle composition. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Amsterdam: Elsevier-Pergamon, pp. 1–38.Google Scholar
Palmer, M. R. and Edmond, J. M. (1989). The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett., 92, 11–26.CrossRefGoogle Scholar
Papanastassiou, D. A. and Wasserburg, G. J. (1969). Initial strontium isotopic abundances and the resolution of small time differences in formation of planetary objects. Earth Planet. Sci. Lett., 5, 361–76.CrossRefGoogle Scholar
Parada, M. A., Nyström, J. O. and Levi, B. (1999). Multiple sources for the Coastal Batholith of central Chile (31–34 °S): geochemical and Sr–Nd isotopic evidence and tectonic implications. Lithos, 46, 505–21.CrossRefGoogle Scholar
Patchett, P. J., White, W. M., Feldmann, H., Kielinczuk, S. and Hofmann, A. W. (1984). Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's mantle. Earth Planet. Sci. Lett., 69, 365–78.CrossRefGoogle Scholar
Patchett, P. J., Vervoort, J. D., Soderlund, U. and Salters, V. J. M. (2004). Lu–Hf and Sm–Nd isotopic systematics in chondrites and their constraints on the Lu–Hf properties of the Earth. Earth Planet. Sci. Lett., 222, 29–41.CrossRefGoogle Scholar
Patino, D. A. E. and Harris, N. (1998). Experimental constraints on Himalayan anatexis. J. Petrol., 39, 689–710.CrossRefGoogle Scholar
Pattison, D. R. M. and Newton, R. C. (1989). Reversed experimental calibration of the garnet-clinopyroxene Fe–Mg exchange thermometer. Contrib. Mineral. Petrol., 101, 87–103.CrossRefGoogle Scholar
Pavlov, A. and Kasting, J. F. (2002). Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology, 2, 27–41.CrossRefGoogle ScholarPubMed
Pavlov, A. K. and Pavlov, A. A. (1997–1998). Atmospheric losses under dust bombardment in the ancient atmospheres. Earth, Moon and Planets, 76, 157–83.CrossRefGoogle Scholar
Peacock, J. A. (1999). Cosmological Physics. Cambridge, UK: Cambridge University Press, pp. 682.Google Scholar
Peacock, S. M., Keken, P. E., Holloway, S. D., Hacker, B. R., Abers, G. A. and Fergason, R. L. (2005). Thermal structure of the Costa Rica–Nicaragua subduction zone. Phys. Earth Planet. Inter., 149, 187–200.CrossRefGoogle Scholar
Pearson, D. G., Canil, D. and Shirey, S. B. (2003). Mantle samples included in volcanic rocks: xenoliths and diamonds. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Cambridge, UK: Elsevier-Pergamon, pp. 171–275.Google Scholar
Peck, W. H., Valley, J. W., Wilde, S. A. and Grahams, C. M. (2001). Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochim. Cosmochim. Acta, 65, 4215–29.CrossRefGoogle Scholar
Pedroni, A. and Begemann, F. (1994). On unfractionated solar gases in the H3-6 meteorite Acfer 111. Meteoritics, 29, 632–42.CrossRefGoogle Scholar
Penzias, A. A. and Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 mc/S. Astrophys. J., 142, 419.CrossRefGoogle Scholar
Pepin, R. O. (1991). On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus, 92, 1–79.CrossRefGoogle Scholar
Pepin, R. O. (1992). Origin of noble-gases in the terrestrial planets. Ann. Rev. Earth Planet. Sci., 20, 389–430.CrossRefGoogle Scholar
Pepin, R. O. (1994). Evolution of the Martian atmosphere. Icarus, 111, 289–304.CrossRefGoogle Scholar
Pepin, R. O. and Phinney, D. (1978). Components of xenon in the Solar System. Unpublished preprint, Minneapolis, Minnesota: University of Minnesota, pp. 176.Google Scholar
Pepin, R. O. and Porcelli, D. (2002). Origin of noble gases in the terrestrial planets. In Noble Gases in Geochemistry and Cosmochemistry, Vol. 47, eds. Porcelli, D., Ballentine, C. J. and Wieler, R.. Washington DC: Mineral. Soc. Amer., pp. 191–246.Google Scholar
Pepin, R. O. and Porcelli, D. (2006). Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth. Earth Planet. Sci. Lett., 250, 470–85.CrossRefGoogle Scholar
Petaev, M. I. and Wood, J. A. (1998). The condensation with partial isolation (CWPI) model of condensation in the solar nebula. Meteorit. Planet. Sci., 33, 1123–37.CrossRefGoogle Scholar
Pettini, M. and Bowen, D. V. (2001). A new measurement of the primordial abundance of deuterium: toward convergence with the baryon density from the cosmic microwave background? Astrophys. J., 560, 41–8.CrossRefGoogle Scholar
Pfeiffer, B., Ott, U. and Kratz, K.-L. (2001). Stellar and nuclear-physics constraints on two r-process components in the early Galaxy. Nucl. Phys., A688, 575c-7.Google Scholar
Phinney, D., Tennyson, J. and Frick, U. (1978). Xenon in CO2 well gas revisited. J. Geophys. Res., 83 (B5), 2313–19.CrossRefGoogle Scholar
Pinto, P. A., Eastman, R. G. and Rogers, T. (2001). A test for the nature of the Type Ia Supernova explosion mechanism. Astrophys. J., 551, 231–43.CrossRefGoogle Scholar
Plank, T. and Langmuir, C. H. (1993). Tracing trace elements from sediment input to volcanic output at subduction zones. Nature, 362, 739–42.CrossRefGoogle Scholar
Plank, T. and Langmuir, C. H. (1998). The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., 145, 325–94.CrossRefGoogle Scholar
Podosek, F. A. (1970). Dating of meteorites by high-temperature release of iodine-correlated 129Xe. Geochim. Cosmochim. Acta, 34, 341–65.CrossRefGoogle Scholar
Podosek, F. A. and Cassen, P. (1994). Theoretical, observational, and isotopic estimates on the lifetime of the solar nebula. Meteoritics, 29, 6–25.CrossRefGoogle Scholar
Poirier, J. P. (1994). Light elements in the earth's outer core – a critical review. Phys. Earth Planet. Inter., 85, 319–37.CrossRefGoogle Scholar
Pollack, H. N., Hurter, S. J. and Johnston, R. (1993). Heat loss from the earth's interior: analysis of the global data set. Rev. Geophys., 31, 267–80.CrossRefGoogle Scholar
Polyak, B. G. and Tolstikhin, I. N. (1985). Isotope composition of Earth's helium and the problem of the motive forces of tectogenesis. Chem. Geol., 52, 9–33.Google Scholar
Polyak, B. G., Prasolov, E. M., Buachidze, G. I., Kononov, V. I., Mamyrin, B. A., Surovtseva, L. I., Khabarin, L. V. and Yudenich, V. S. (1979). He and Ar isotopic compositions in the fluids of Alp–Appenine region and their connection with volcanism. Dokl. Acad. Nauk USSR, 247, 1220–6.Google Scholar
Porcelli, D. and Ballentine, C. J. (2002). Models for distribution of terrestrial noble gases and evolution of the atmosphere. In Noble Gases in Geochemistry and Cosmochemistry, Vol. 47, eds. Porcelli, D., Ballentine, C. J. and Wieler, R.. Washington DC: Mineral. Soc. Amer., pp. 411–80.Google Scholar
Porcelli, D. and Halliday, A. N. (2001). The core as a possible source of mantle helium. Earth Planet. Sci. Lett., 192, 45–56.CrossRefGoogle Scholar
Premo, W. R., Tatsumoto, M., Misawa, K., Nakamura, N. and Kita, N. I. (1999). Pb-isotopic systematics of lunar highland rocks (> 3.9 Ga): constraints on early lunar evolution. Int. Geol. Rev., 41, 95–128.CrossRefGoogle Scholar
Pritchard, M. E. and Stevenson, D. J. (2000). Thermal aspects of a lunar origin by giant impact. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 179–96.Google Scholar
Pudovkin, M. I., Tolstikhin, I. N. and Golovchanskaya, I. V. (1981). Recent achievements in helium isotope dissipation research. Geochim. J., 15, 51–61.CrossRefGoogle Scholar
Puster, P. and Jordan, T. H. (1997). How stratified is mantle convection? J. Geophys. Res. – Solid Earth, 102, 7625–46.CrossRefGoogle Scholar
Pyle, J. M. and Spear, F. S. (2000). An empirical garnet (YAG) – xenotime thermometer. Contrib. Mineral. Petrol., 138, 51–8.CrossRefGoogle Scholar
Qian, Y.-Z. (2002). Neutrino-induced fission and r-process nucleosynthesis. Astrophys. J., 569, L103–6.CrossRefGoogle Scholar
Qian, Y.-Z. and Wasserburg, G. J. (2003). Stellar sources for heavy r-process nuclei. Astrophys. J., 588, 1099–109.CrossRefGoogle Scholar
Qian, Y. Z., Vogel, P. and Wasserburg, G. J. (1999). Neutrino fluence after r-process freezeout and abundances of Te isotopes in presolar diamonds. Astrophys. J., 513, 956–60.CrossRefGoogle Scholar
Quitté, G., Birck, J. L. and Allègre, C. J. (2000). 182Hf–182W systematics in eucrites: the puzzle of iron segregation in the early solar system. Earth Planet. Sci. Lett., 184, 83–94.CrossRefGoogle Scholar
Ragnarsson, S.-I. (1995). Planetary distances: a new simplified model. Astron. Astrophys., 301, 609–12.Google Scholar
Raheim, A. and Green, D. H. (1974). Experimental determination of temperature and pressure-dependence of Fe–Mg partition coefficient for coexisting garnet and clinopyroxene. Contrib. Mineral. Petrol., 48, 179–203.CrossRefGoogle Scholar
Rankenburg, K., Brandon, A. D. and Neal, C. R. (2006). Neodymium isotope evidence for a chondritic composition of the Moon. Science, 312, 1369–72.CrossRefGoogle Scholar
Rea, D. K. and Ruff, L. J. (1996). Composition and mass flux of sediment entering the world's subduction zones: implications for global sediment budgets, great earthquakes, and volcanism. Earth Planet. Sci. Lett., 140, 1–12.CrossRefGoogle Scholar
Reagan, M. K., Morris, J. D., Herrstrom, E. A. and Murrell, M. T. (1994). Uranium series and beryllium isotope evidence for an extended history of subduction modification of the mantle below Nicaragua. Geochim. Cosmochim. Acta, 58, 4199–212.CrossRefGoogle Scholar
Reddy, B. E., Tomkin, J., Lambert, D. L. and Allende, P. C. (2003). The chemical compositions of Galactic disc F and G dwarfs. Mon. Not. Roy. Astron. Soc., 340, 304–40.CrossRefGoogle Scholar
Reeves, H. (1998). Concluding remarks. In Primordial Nuclei and their Galactic Evolution, eds. Prantzos, N., Tosi, M. and Steiger, R.. Dordrecht: Kluwer, pp. 319–24.Google Scholar
Reifarth, R., Arlandini, C., Heil, M., Kappler, F., Sedyshev, P., Mengoni., A., Herman, M., Rauscher, T., Gallino, R. and Travaglio, C. (2003). Stellar neutron capture on Promethium: implications for the s-process neutron density. Astrophys. J., 582, 1251–62.CrossRefGoogle Scholar
Richter, S., Ott, U. and Begemann, F. (1998). Tellurium in pre-solar diamonds as an indicator for rapid separation of supernova ejecta. Nature, 391, 261–3.CrossRefGoogle Scholar
Righter, K. (2002). Does the Moon have a metallic core? Constraints from giant impact modeling and siderophile elements. Icarus, 158, 1–13.CrossRefGoogle Scholar
Righter, K. and Drake, M. J. (1996). Core formation in Earth's Moon, Mars and Vesta. Icarus, 124, 513–29.CrossRefGoogle Scholar
Righter, K. and Drake, M. J. (1997). A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci., 32, 929–44.CrossRefGoogle Scholar
Righter, K. and Drake, M. J. (1999). Effect of water on metal–silicate partitioning of siderophile elements: a high pressure and temperature terrestrial magma ocean and core formation. Earth Planet. Sci. Lett., 171, 383–99.CrossRefGoogle Scholar
Righter, K. and Drake, M. J. (2000). Metal–silicate equilibrium in the early Earth – new constraints from the volatile moderately siderophile elements Ga, Cu, P, and Sn. Geochim. Cosmochim. Acta, 64, 3581–97.CrossRefGoogle Scholar
Righter, K., Drake, M. J. and Yaxley, G. (1997). Prediction of siderophile element metal–silicate partition coefficients to 20 GPa and 2800 °C: the effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt compositions. Phys. Earth Planet. Inter., 100, 115–34.CrossRefGoogle Scholar
Ringwood, A. E. (1975). Composition and Petrology of the Earth's Mantle. New York: McGraw-Hill, pp. 618.Google Scholar
Ringwood, A. E. (1979). Origin of the Earth and Moon. New York: Springer-Verlag, pp. 295.CrossRefGoogle Scholar
Ringwood, A. E. (1984). The earth's core: its composition, formation and bearing upon the origin of the earth. Proc. Roy. Soc. Lond., A395, 1–46.CrossRefGoogle Scholar
Ringwood, A. E. (1990). Earliest history of the Earth–Moon system. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 101–34.Google Scholar
Robert, F. (2001). The origin of water on Earth. Science, 293, 1056–8.CrossRefGoogle ScholarPubMed
Robert, F. (2003). The D/H ratio in chondrites. Space Sci. Rev., 106, 87–101.CrossRefGoogle Scholar
Robert, F., Gautier, D. and Dubrulle, B. (2000). The solar system D/H ratio: observations and theories. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 201–24.Google Scholar
Rocholl, A. and Jochum, K. P. (1993). Th, U and other trace-elements in carbonaceous chondrites: implications for the terrestrial and solar-system Th/U ratios. Earth Planet. Sci. Lett., 117, 265–78.CrossRefGoogle Scholar
Ronov, A. B. (1982). The Earth's sedimentary shell (quantitative patterns of its structure, compositions, and evolution). Int. Geol. Rev., 24, 1313–88.CrossRefGoogle Scholar
Ronov, A. B. and Yaroshevsky, A. A. (1976). A new model of chemical composition of the Earth crust. Geochimiya, 12, 1763–96.Google Scholar
Rood, R. T., Bania, T. M., Balser, D. S. and Wilson, T. L. (1998). Helium-3: status and prospects. In Primordial Nuclei and their Galactic Evolution, eds. Prantzos, N., Tosi, M. and Steiger, R.. Dordrecht: Kluwer, pp. 185–98.Google Scholar
Rouxel, O. J., Bekker, A. and Edwards, K. J. (2005). Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307, 1088–91.CrossRefGoogle ScholarPubMed
Rubin, A. E. (1995). Petrologic evidence for collisional heating of chondritic asteroids. Icarus, 113, 156–67.CrossRefGoogle Scholar
Rubin, A. E. (1997). Mineralogy of meteorite groups. Meteorit. Planet. Sci., 32, 231–47.CrossRefGoogle Scholar
Rubin, A. E. (2000). Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Sci. Rev., 50, 3–27.CrossRefGoogle Scholar
Rubin, A. M. and Krot, A. N. (1996). Multiple heating of chondrules. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 173–80.Google Scholar
Rubin, K. H., Zander, I., Smith, M. C. and Bergmanis, E. C. (2005). Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria. Nature, 437, 534–8.CrossRefGoogle ScholarPubMed
Rudnick, R. L. (1992). Restites, Eu anomalies, and the lower continental crust. Geochim. Cosmochim. Acta, 56, 963–70.CrossRefGoogle Scholar
Rudnick, R. and Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., 33, 267–309.CrossRefGoogle Scholar
Rudnick, R. L. and Gao, S. (2003). Composition of the continental crust. In The Crust, Vol. 3, ed. Rudnick, R. L.. Amsterdam: Elsevier-Pergamon, pp. 1–64.Google Scholar
Rudnick, R. and Goldstein, S. L. (1990). The Pb isotopic composition of lower crustal xenoliths and the evolution of lower crustal Pb. Earth Planet. Sci. Lett., 98, 192–207.CrossRefGoogle Scholar
Rudnick, R. L. and Presper, T. (1990). Geochemistry of intermediate- to high-pressure granulites. In Granulites and Crustal Evolution, eds. Vielzeuf, D. and Vidal, P.. Dordrecht: Kluwer, pp. 523–50.Google Scholar
Rudnick, R. and Taylor, S. R. (1987). The composition and petrogenesis of lower crust: a xenolith study. J. Geophys. Res., 92, 139814 14005.CrossRefGoogle Scholar
Rudnick, R. L., Barth, M., Horn, I. and McDonough, W. F. (2000). Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science, 287, 278–81.CrossRefGoogle ScholarPubMed
Russell, S. S., Srinivasan, G., Huss, G. R., Wasserburg, G. J. and MacPherson, G. J. (1996). Evidence for widespread 26Al in the solar nebula and constraints for nebula time scales. Science, 273, 757–62.CrossRefGoogle ScholarPubMed
Russell, S. S., Huss, G. R., Fahey, A. J., Greenwood, R. C., Hutchison, R. and Wasserburg, G. J. (1998). An isotopic and petrologic study of calcium–aluminum-rich inclusions from CO3 meteorites. Geochim. Cosmochim. Acta, 62, 689–714.CrossRefGoogle Scholar
Ruzicka, A., Snyder, G. A. and Taylor, L. A. (2001). Comparative geochemistry of basalts from the Moon, Earth, howardite, eucrite and diogenite achondrites asteroid, and Mars: implications for the origin of the Moon. Geochim. Cosmochim. Acta, 65, 979–97.CrossRefGoogle Scholar
Rydgren, A. E. and Cohen, M.(1985). Young stellar objects and their circumstellar dust: an overview. In Protostars and Planets II, eds. Black, D. C. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 371–85.Google Scholar
Saal, A. E., Hart, S. R., Shimizu, N., Hauri, E. H., Layne, G. D. and Eiler, J. M. (2005). Pb isotopic variability in melt inclusions from the EMI–EMII–high μ, 238U/204Pb ratio with reference to the present mantle end-members and the role of the oceanic lithosphere. Earth Planet. Sci. Lett., 240, 605–20.CrossRefGoogle Scholar
Safronov, V. S. (1966). Sizes of largest bodies falling onto the planets during their formation. Sov. Astronomy, 9, 987–91.Google Scholar
Safronov, V. S. (1969). Evolution of the protoplanetary cloud and formation of the earth and planets. NASA Technical publication TTF-667.Google Scholar
Sageman, B. B. and Lyons, T. W. (2003). Geochemistry of fine-grained sediments and sedimentary rocks. In Sediments, Diagenesis and Sedimentary Rocks, Vol. 7, ed. Mackenzie, F. T.. Amsterdam: Elsevier-Pergamon, pp. 116–58.Google Scholar
Sahijpal, S., Goswami, J. N., Davis, A. M., Grossman, L. and Lewis, R. S. (1998). A stellar origin for the short-lived nuclides in the early Solar system. Nature, 391, 559–61.Google Scholar
Salaris, M., degl'Innocenti, S. and Weiss, A. (1997). The age of the oldest globular clusters. Astrophys. J., 479, 665–72.CrossRefGoogle Scholar
Salerno, E., Buhler, F., Bochsler, P.et al. (2001). Direct measurement of 3He/4He in the LISM with the COLLISA experiment. In Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F.. New York: Amer. Inst. Phys., pp. 275–80.Google Scholar
Salters, L., McKenzie, D., Grönvold, K. and Shimizu, N. (2001). Melt generation and movement beneath Theistareykir, NE Iceland. J. Petrol., 42, 321–54.Google Scholar
Salters, V. J. M. and Stracke, A. (2004). Composition of the depleted mantle. Geochem. Geophys. Geosyst., 5, 1–27, doi:10.1029/2003GC000597.CrossRefGoogle Scholar
Samuel, H. and Farnetani, C. G. (2003). Thermochemical convection and helium concentrations in mantle plumes. Earth Planet. Sci. Lett., 207, 39–56.CrossRefGoogle Scholar
Sano, Y. and Williams, S. N. (1996). Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys. Res. Lett., 23, 2749–52.CrossRefGoogle Scholar
Schatz, H., Aprahamian, A., Barnard, V.et al. (2001). End point of the rp-process on accreting neutron stars. Phys. Rev., 86, 3471–4.Google ScholarPubMed
Schatz, H., Toenjes, R., Pfeiffer, B.et al. (2002). Thorium and uranium chronometers applied to CS 31082–001. Astrophys. J., 579, 626–38.CrossRefGoogle Scholar
Schmidt, B. C. and Keppler, H. (2002). Experimental evidence for high noble gas solubilities in silicate melts under mantle pressures. Earth Planet. Sci. Lett., 195, 277–90.CrossRefGoogle Scholar
Schmidt, M. (1959). The rate of star formation. Astrophys. J., 129, 243–58.CrossRefGoogle Scholar
Schmidt, M. W. and Poli, S. (2003). Generation of mobile components during subduction of oceanic crust. In The Crust, Vol. 3, ed. Rudnick, R. L.. Amsterdam: Elsevier-Pergamon, pp. 567–91.Google Scholar
Schmidt, M. W., Vielzeuf, D. and Auzanneaub, E. (2004). Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet. Sci. Lett., 228, 65–84.CrossRefGoogle Scholar
Schmitt, W., Palme, H. and Wänke, H. (1989). Experimental determination of metal–silicate partition coefficients for P, Co, Ni, Cu, Ga, Ge, Mo and W and some implications for the early evolution of the Earth. Geochim. Cosmochim. Acta, 53, 173–85.CrossRefGoogle Scholar
Schneider, R. (2006). Constraining the epoch of very massive star formation. New Astron. Rev., 50, 64–9.CrossRefGoogle Scholar
Schodel, R., Ott, T., Genzel, R.et al. (2002). A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature, 419, 694–6.CrossRefGoogle Scholar
Schoenberg, R., Kamber, B. S., Collerson, K. D. and Moorbath, S. (2002). Tungsten isotope evidence from ∼3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature, 418, 403–5.CrossRefGoogle Scholar
Schramm, D. N. and Turner, M. S. (1998). Big-bang nucleosynthesis enters the precision era. Rev. Mod. Phys., 70, 303–18.CrossRefGoogle Scholar
Scott, E. R. D. (1972). Chemical fractionation in iron meteorites and its interpretation. Geochim. Cosmochim. Acta, 36, 1205–36.CrossRefGoogle Scholar
Scott, E. R. D. and Krot, A. N. (2005). Thermal processing of silicate dust in the solar nebula: clues from primitive chondrite matrices. Astrophys. J., 623, 571–8.CrossRefGoogle Scholar
Sears, D. W. G., Lu, J., Benoit, P. H., DeHart, J. M. and Lofgren, G. E. (1992). A compositional classification scheme for meteoritic chondrules. Nature, 357, 207–10.CrossRefGoogle Scholar
Sears, D. W. G., Huang, S. and Benoit, P. H. (1996). Open-system behaviour during chondrule formation. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 221–31.Google Scholar
Sedlmayr, E. and Kruger, D. (1997). Formation of dust particles in cool stellar outflows. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. of Physics, pp. 425–50.Google Scholar
Shang, H., Shu, F. H., Lee, T. and Glassgold, A. E. (2000). Protostellar winds and chondritic meteorites. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 153–76.Google Scholar
Shaw, D. M. (1970). Trace element fractionation during anatexis. Geochim. Cosmochim. Acta, 34, 237–43.CrossRefGoogle Scholar
Shearer, C. K. and Floss, C. (2000). Evolution of the moon's mantle and crust as reflected in trace-elements microbeam studies of lunar magmatism. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 339–59.Google Scholar
Shearer, C. K. and Papike, J. J. (2005). Early crustal building processes on the Moon: models for the petrogenesis of the magnesium suite. Geochim. Cosmochim. Acta, 69, 3445–61.CrossRefGoogle Scholar
Shimizu, N. (1998). The geochemistry of olivine-hosted melt inclusions in a FAMOUS basalt ALV519-4-1. Phys. Earth Planet. Inter., 107, 183–201.Google Scholar
Shklovsky, I. S. (1977). Stars, their Birth, Life and Death. Moscow, USSR: Nauka, pp. 384.Google Scholar
Shu, F. H., Adams, F. C. and Lizano, S. (1987). Star formation in molecular clouds – observation and theory. Ann. Rev. Astron. Astrophys., 25, 23–72.CrossRefGoogle Scholar
Shu, F. H., Shang, H., Gounelle, M., Glassgold, A. E. and Lee, T. (2001). The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys. J., 548, 1029–50.CrossRefGoogle Scholar
Shukolyukov, A. and Lugmair, G. W. (2006). Manganese–chromium isotope systematics of carbonaceous chondrites. Earth Planet. Sci. Lett., 250, 200–13.CrossRefGoogle Scholar
Siebert, C., Nägler, T. F., Blanckenburg, and F. Kramers, J. D. (2003). Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet. Sci. Lett., 211, 159–71.CrossRefGoogle Scholar
Siebert, C., Kramers, J. D., Meisel, T., Morel, P. and Nägler, T. F. (2005). PGE, Re–Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochim. Cosmochim. Acta, 69, 1787–801.CrossRefGoogle Scholar
Siebert, C., McManus, J., Bice, A., Poulson, R. and Berelson, W. M. (2006). Molybdenum isotope signatures in continental margin marine sediments. Earth Planet. Sci. Lett., 241, 723–33.CrossRefGoogle Scholar
Sigmarsson, O., Chmeleff, J., Morris, J. and Lopez-Escobar, L. (2002). Origin of 226Ra–230Th disequilibria in arc lavas from southern Chile and implications for magma transfer time. Earth Planet. Sci. Lett., 196, 189–96.CrossRefGoogle Scholar
Silk, J. (1980) The Big Bang (The Creation and Evolution of the Universe). San Francisco, CA: Freeman and Co., pp. 391.Google Scholar
Silk, J. and Bouwens, R. (2001). The formation of galaxies. New Astron. Rev., 45, 337–50.CrossRefGoogle Scholar
Simmons, N., Forte, A. and Grand, S. P. (2006). Constraining mantle flow with seismic and geodynamic data: a joint approach. Earth Planet. Sci. Lett., 246, 109–24.CrossRefGoogle Scholar
Simon, S. B., Grossman, L. and Davis, A. M. (1997). Multiple generation of hibonite in spinel–hibonite inclusions from Murchison. Meteorit. Planet. Sci., 32, 259–69.CrossRefGoogle Scholar
Simon, S. B., Grossman, L., Krot, A. N. and Ulyanov, A. A. (2002). Bulk chemical compositions of type B refractory inclusions. In Proc. Lunar Planet. Sci. Conf., Vol. 33, 1620.pdf.Google Scholar
Sims, K. W. W., DePaolo, D. J., Murrell, M. T.et al. (1999). Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: inferences from 238U–230Th–226Ra and 235U–231Pa disequilibria. Geochim. Cosmochim. Acta, 63, 4119–38.CrossRefGoogle Scholar
Sims, K. W. W., Goldstein, S. J., Blichert-Toft, J.et al. (2002). Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta, 66, 3481–504.CrossRef
Sinha, A. K. and Tilton, G. R. (1973). Isotopic composition of common lead. Geochim. Cosmochim. Acta, 37, 1823–49.CrossRefGoogle Scholar
Slater, L., McKenzie, D., Gronvold, K. and Shimizu, N. (2001). Melt generation and movement beneath Theistareykir, NE Iceland. J. Petrol., 42, 321–54.CrossRefGoogle Scholar
Smithies, R. H., Champion, D. C. and Cassidy, K. F. (2003). Formation of Earth's early Archaean continental crust. Precambrian Res., 127, 89–101.CrossRefGoogle Scholar
Smithies, R. H., Champion, D. C., Kranendonk, M. J., Howard, H. M. and Hickman, A. H. (2005). Modern-style subduction processes in the Mesoarchaean: geochemical evidence from the 3.12 Gyr Whundo intra-oceanic arc. Earth Planet. Sci. Lett., 231, 231–7.CrossRefGoogle Scholar
Smoliar, M. I. (1993). A survey of Rb–Sr systematics of eucrites. Meteoritics, 28, 105–13.CrossRefGoogle Scholar
Snyder, G. A., Taylor, L. A. and Halliday, A. N. (1995). Processes involved in the formation of magnesium-suite plutonic rocks from the highlands of the Earth's moon. J. Geophys. Res., 100, 9365–88.CrossRefGoogle Scholar
Snyder, G. A., Borg, L. E., Nyquist, L. E. and Taylor, L. A. (2000). Chronology and isotopic constraints on lunar evolution. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 361–95.Google Scholar
Sobolev, A. V. (1996). Melt inclusions in minerals as a source of principal petrological information. Petrology, 4, 209–20.Google Scholar
Sobolev, A. V. and Chaussidon, M. (1996). H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet. Sci. Lett., 137, 45–55.CrossRefGoogle Scholar
Sobolev, A. V. and Shimizu, N. (1993). Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature, 363, 151–4.CrossRefGoogle Scholar
Sollerman, J. (2002). Optical and infrared observations of radioactive elements in supernovae. New Astron. Rev., 46, 493–8.CrossRefGoogle Scholar
Solomatov, V. S. (2000). Fluid dynamics of a terrestrial magma ocean. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 323–38.Google Scholar
Solomatov, V. S. and Stevenson, D. J. (1993a). Suspension in convective layers and style of differentiation of a terrestrial magma ocean. J. Geophys. Res., 98 (E3), 5375–90.CrossRefGoogle Scholar
Solomatov, V. S. and Stevenson, D. J. (1993b). Kinetics of crystal growth in a terrestrial magma ocean. J. Geophys. Res., 98 (E3), 5407–18.CrossRefGoogle Scholar
Spergel, D. N., Verde, L., Peiris, H. V.et al. (2003). First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J., 148, 175–94.CrossRefGoogle Scholar
Spicuzza, M. J., Day, J. M. D., Taylor, L. A. and Valley, J. W. (2007). Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet. Sci. Lett., 253, 254–65.CrossRefGoogle Scholar
Spiegelman, M. and Elliott, T. (1993). Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet. Sci. Lett., 118, 1–20.CrossRefGoogle Scholar
Srinivasan, G. and Bischoff, A. (2001). Ca–K and Al–Mg studies of calcium–aluminium-rich inclusionss from CH and CR chondrites. Meteorit. Planet. Sci., 36, A196.Google Scholar
Srinivasan, G., Sahijpal, S., Ulyanov, A. A. and Goswami, J. N. (1996). Ion microprobe studies of Efremovka calcium–aluminium-rich inclusionss: II. Potassium isotope composition and 41Ca in the early Solar System. Geochim. Cosmochim. Acta, 60, 1823–35.CrossRefGoogle Scholar
Stachel, T., Aulbach, S., Brey, G. P . et al. (2004). The trace element composition of silicate inclusions in diamonds: a review. Lithos, 77, 1–19.CrossRefGoogle Scholar
Staudigel, H. (2003). Hydrothermal alteration processes in the oceanic crust. In The Crust, Vol. 3, ed. Rudnick, R. L.. Amsterdam: Elsevier-Pergamon, pp. 511–35.Google Scholar
Steinberger, B. and O'Connell, R. J. (1998). Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Inter., 132, 412–34.CrossRefGoogle Scholar
Stern, S. A. (1999). The Lunar atmosphere: history, status, current problems, and context. Rev. Geophys., 37, 453–91.CrossRefGoogle Scholar
Stevenson, D. J. (1987). Origin of the Moon – the collision hypothesis. Ann. Rev. Earth Planet. Sci., 15, 271–315.CrossRefGoogle Scholar
Stevenson, D. J. (1990). Fluid dynamic of core formation. In Origin of the Earth, ed. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 231–49.Google Scholar
Stoffler, D. and Ryder, G. (2001). Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Sci. Rev., 96, 9–54.CrossRefGoogle Scholar
Stolper, E. (1977). Experimental petrology of eucrite meteorites. Geochim. Cosmochim. Acta, 41, 587–611.CrossRefGoogle Scholar
Straub, S. M., Layne, G. D., Schmidt, A. and Langmuir, C. H. (2004). Volcanic glasses at the Izu arc volcanic front: new perspectives on fluid and sediment melt recycling in subduction zones. Geochem. Geophys. Geosyst., 5, Q01007, doi:10.1029/2002GC000408.CrossRefGoogle Scholar
Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S. and Skrutskie, M. F. (1989). Circumstellar material associated with solar-type pre-main sequence starts: a possible constraint on the time scale for planet building. Astrophys. J., 97, 1451–70.Google Scholar
Strom, S. E. (1985). Protostars and planets: overview from an astronomical perspective. In Protostars and Planets II, eds. Black, D. C. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 17–32.Google Scholar
Su, Y. J. (2002). Mid-ocean Ridge Basalt Trace Element Systematics: Constraints from Database Management, ICPMS Analyses, Global Data Compilation, and Petrologic Modeling. Columbia, USA: Columbia University, Graduate School of Arts and Sciences, pp. 457.Google Scholar
Sun, S.-S. and McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins, Vol. 42, eds. Saunders, A. D. and Norry, M. J.. Oxford: Geol. Soc. Spec. Publ., pp. 313–45.Google Scholar
Swindle, T. D. (1998). Implications of iodine–xenon studies for the timing and location of secondary alteration. Meteorit. Planet. Sci., 33, 1147–55.CrossRefGoogle Scholar
Swindle, T. D. and Jones, J. H. (1997). The xenon isotopic composition of the primordial Martian atmosphere: contributions from solar and fission components. J. Geophys. Res., 102 (E1), 1671–8.CrossRefGoogle Scholar
Swindle, T. D. and Podosek, F. A. (1988). Iodine–xenon dating. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 1127–46.Google Scholar
Swindle, T. D., Caffee, M. W., Hohenberg, C. M. and Lindstrom, M. M. (1983). I–Xe studies of individual Allende chondrules. Geochim. Cosmochim. Acta, 47, 2157–77.CrossRefGoogle Scholar
Swindle, T. D., Caffee, M. W. and Hohenberg, C. M. (1988). Iodine–xenon studies of Allende inclusions: eggs and the pink angel. Geochim. Cosmochim. Acta, 52, 2215–27.CrossRefGoogle Scholar
Swindle, T. D., Caffee, M. W., Hohenberg, C. M., Lindstrom, M. M. and Taylor, G. J. (1991). Iodine–xenon studies of petrographically and chemically characterized Chainpur chondrules. Geochim. Cosmochim. Acta, 55, 861–80.CrossRefGoogle Scholar
Swindle, T. D., Davis, A. M., Hohenberg, C. M., MacPherson, G. J. and Nyquist, L. E. (1996). Formation times of chondrules and Ca–Al-rich inclusions: constraints from short-lived radionuclides. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 77–86.Google Scholar
Tachibana, S. and Huss, G. R. (2003). The initial abundances of 60Fe in the Solar system. Astrophys. J., 588, L41–4.CrossRefGoogle Scholar
Tackley, P. J. (2000). Mantle convection and plate tectonics: toward an integrated physical and chemical theory. Science, 288, 2002–6.CrossRefGoogle ScholarPubMed
Takahashi, E. and Kushiro, I. (1983). Melting of a dry peridotite at high pressures and basalt magma genesis. Amer. Mineral., 68, 859–79.Google Scholar
Takahashi, K. and Yokoi, K. (1987). Beta-decay rates of highly ionized heavy atoms in stellar interiors. Atomic Data and Nuclear Data Tables, 36, 375–409.CrossRefGoogle Scholar
Takaoka, N. (1972). An interpretation of general anomalies of xenon and the isotopic composition of primitive xenon. Mass Spectrometry, 20, 287–302.Google Scholar
Taylor, G. J., Scott, E. R. D. and Keil, K. (1983). Cosmic setting for chondrule formation. In Chondrules and their Origins, ed. King, E. A.. Houston, TX: Lunar Planet. Inst., pp. 262–78.Google Scholar
Taylor, G. J., Keil, K., McCoy, T. J., Haack, H. and Scott, E. R. D. (1993). Asteroid differentiation: pyroclastic volcanism to magma oceans. Meteoritics, 28, 34–52.CrossRefGoogle Scholar
Taylor, S. R. (2001). Solar System Evolution: a New Perspective. An Inquiry into the Chemical Composition, Origin and Evolution of the Solar System. Cambridge, UK: Cambridge University Press, pp. 460.CrossRefGoogle Scholar
Taylor, S. R. and McLennan, S. M. (1985). The Continental Crust: its Composition and Evolution. Oxford, UK: Blackwell, pp. 312.Google Scholar
Taylor, S. R. and McLennan, S. M. (1988). The significance of the rare earths in geochemistry and cosmochemistry. In Handbook on the Physics and Chemistry of Rare Earths, Vol. 11, eds. Geschneidner, K. A. and Eyring, L.. Amsterdam: Elsevier, pp. 485–578.Google Scholar
Taylor, S. R. and McLennan, S. M. (1995). The geochemical evolution of the continental crust. Rev. Geophys., 33, 241–65.CrossRefGoogle Scholar
Taylor, S. R., Taylor, G. J. and Taylor, L. A. (2006). The moon: a Taylor perspective. Geochim. Cosmochim. Acta, 70, 5904–18.CrossRefGoogle Scholar
Tera, F., Brown, L., Morris, J., Sacks, I. S., Klein, J. and Middleton, R. (1986). Sediment incorporation in island-arc magmas: inference from 10Be. Geochim. Cosmochim. Acta, 50, 535–50.CrossRefGoogle Scholar
Thiemens, M. H. (1988). Heterogeneity in the nebula: evidence from stable isotopes. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 899–923.Google Scholar
Thiemens, M. H. (1996). Mass-independent isotopic effects in chondrites: the role of chemical processes. In Chondrules and the Protoplanetary Disk, eds. Hewins, R., Jones, R. and Scott, E.. Cambridge, UK: Cambridge University Press, pp. 107–18.Google Scholar
Thielemann, F.-K., Hauser, P., Kolbe, E.et al. (2002). Heavy elements and age determinations. Space Sci. Rev., 100, 277–96.CrossRefGoogle Scholar
Tilton, G. R. (1973). Isotopic lead ages of chondritic meteorites. Earth Planet. Sci. Lett., 19, 321–9.CrossRefGoogle Scholar
Tilton, G. R. (1983). Evolution of the depleted mantle: the lead perspective. Geochim. Cosmochim. Acta, 47, 1191–7.CrossRefGoogle Scholar
Tilton, G. R. (1988). Age of the solar system. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 259–75.Google Scholar
Timmes, F. X., Woosley, S. E. and Weaver, T. A. (1995). Galactic chemical evolution: hydrogen through zinc. Astrophys. J. Suppl., 98, 617–58.CrossRefGoogle Scholar
Tolstikhin, I. and Hofmann, A. W. (2005). Early crust on top of the Earth's core. Phys. Earth Planet. Inter., 148, 109–30.CrossRefGoogle Scholar
Tolstikhin, I. N. and Marty, B. (1998). The evolution of terrestrial volatiles: a view from helium, neon, argon and nitrogen isotope modelling. Chem. Geol., 147, 27–52.CrossRefGoogle Scholar
Tolstikhin, I. N. and Nions, O' R. K. (1994). The earth's missing xenon: a combination of early degassing and of rare gas loss from the atmosphere. Chem. Geol., 115, 1–6.CrossRefGoogle Scholar
Tolstikhin, I. N. and Nions, O' R. K. (1996). Some comments on isotopic structure of terrestrial xenon. Chem. Geol., 129, 185–99.CrossRefGoogle Scholar
Tolstikhin, I. N., Kamensky, I. L., Marty, B.et al. (2002). Rare gas isotopes and parent trace elements in ultrabasic–alkaline–carbonatite complexes, Kola Peninsula: identification of lower mantle plume component. Geochim. Cosmochim. Acta, 66, 881–901.CrossRefGoogle Scholar
Tolstikhin, I. N., Kramers, J. D. and Hofmann, A. W. (2006). A chemical Earth model with whole mantle convection: the importance of a core–mantle boundary layer (D′′) and its early formation. Chem. Geol., 226, 79–99.CrossRefGoogle Scholar
Tonks, W. B. and Melosh, H. J. (1990). The physics of crystal settling and suspension in a turbulent magma ocean. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 151–74.Google Scholar
Toyoda, K., Nakamura, Y. and Masuda, A. (1990). Rare earth elements of Pacific pelagic sediments. Geochim. Cosmochim. Acta, 54, 1093–103.CrossRefGoogle Scholar
Travaglio, C., Burkert, A. and Galli, D. (2001a). Inhomogeneous chemical evolution of the galactic halo. Nucl. Phys., A688, 396c-8.Google Scholar
Travaglio, C., Galli, D. and Burkert, A. (2001b). Inhomogeneous chemical evolution of the galactic halo: abundance of r-process elements. Astrophys. J., 547, 217–30.CrossRefGoogle Scholar
Travaglio, C., Gallino, R., Busso, M. and Gratton, R. (2001c). Lead: asymptotic giant branch production and galactic chemical evolution. Astrophys. J., 549, 346–52.CrossRefGoogle Scholar
Treiman, A. H. (1997). The parent magmas of the cumulate eucrites: a mass balance approach. Meteorit. Planet. Sci., 32, 217–30.CrossRefGoogle Scholar
Tricca, A., Wasserburg, G. J., Porcelli, D. and Baskaran, M. (2001). The transport of U- and Th-series nuclides in a sandy unconfined aquifer. Geochim. Cosmochim. Acta, 65, 1187–210.CrossRefGoogle Scholar
Trieloff, M. and Kunz, J. (2005). Isotope systematics of noble gases in the Earth's mantle: possible sources of primordial isotopes and implications for mantle structure. Phys. Earth Planet. Inter., 148, 13–38.CrossRefGoogle Scholar
Trubitsyn, V. P. (2000). Principles of the tectonics of floating continents. Izvestiya Physics of the Solid Earth, 36, 708–41.Google Scholar
Truran, J. W., Cowan, J. J. and Fields, B. D. (2001). Halo star abundances and r-process synthesis. Nucl. Phys., A688, 330c-9.Google Scholar
Turcotte, D. and Schubert, G. (1982). Geodynamics. New York: Wiley and Sons, pp. 450.Google Scholar
Turner, G., Harrison, T. M., Holland, G., Mojzsis, S. J. and Gilmour, J. (2004a). Extinct 244Pu in ancient zircons. Science, 306, 89–91.CrossRefGoogle Scholar
Turner, S., Blundy, J., Wood, B. and Hole, M. (2000). Large 230Th-excesses in basalts produced by partial melting of spinel lherzolite. Chem. Geol., 162, 127–36.CrossRefGoogle Scholar
Turner, S., Bourdon, B. and Gill, J. (2003). Insights into magma genesis at convergent margins from U-series isotopes. In Rev. Mineral. Geochem.: Uranium Series Geochemistry, Vol. 52, ed. Henderson, G. M., Lundstrom, C. and Turner, S.. Washington DC: Amer. Mineral. Soc., pp. 255–315.Google Scholar
Turner, S., Black, S. and Berlo, K. (2004b). 210Pb–226Ra and 228Ra–232Th systematics in young arc lavas: implications for magma degassing and ascent rates. Earth Planet. Sci. Lett., 227, 1–16.CrossRefGoogle Scholar
Twarog, B. A. (1980). The chemical evolution of the solar neighborhood. 1. A bias-free reduction technique and data sample. Astrophys. J. Supplement Ser., 44, 1–29.CrossRefGoogle Scholar
Ulmer, P. (2001). Partial melting in the mantle wedge – the role of H2O in the genesis of mantle-derived “arc-related” magmas. Phys. Earth Planet. Inter., 127, 215–32.CrossRefGoogle Scholar
Urey, H. C. (1947). The thermodynamic properties of isotopic substances. J. Chem. Soc. Lond., 562–81.Google ScholarPubMed
Andel, T. (1992). Seafloor spreading and plate tectonics. In Understanding the Earth, eds. Brown, G., Hawkesworth, C. and Wilson, C.. Cambridge, UK: Cambridge University Press, pp. 167–85.Google Scholar
Keken, P. E., Ballentine, C. J. and Porcelli, D. (2001). A dynamical investigation of the heat and helium imbalance. Earth Planet. Sci. Lett., 188, 421–34.CrossRefGoogle Scholar
Keken, P. E., Hauri, E. H. and Ballentine, C. J. (2002). Mantle mixing: the generation, preservation, and destruction of chemical heterogeneity. Ann. Rev. Earth Planet. Sci., 30, 493–525.CrossRefGoogle Scholar
Keken, P. E., Ballentine, C. J. and Hauri, E. H. (2003). Convective mixing in the earth's mantle. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Amsterdam: Elsevier-Pergamon, pp. 471–91.Google Scholar
Vannay, J.-C. and Sharp, Z. D. (1999). Bernhard Grasemann Himalayan inverted metamorphism constrained by oxygen isotope thermometry. Contrib. Mineral. Petrol., 137, 90–101.CrossRefGoogle Scholar
Veizer, J. and Jansen, S. L. (1979). Basement and sedimentary recycling and continental evolution. J. Geol., 87, 341–70.CrossRefGoogle Scholar
Veizer, J. and Jansen, S. L. (1985). Basement and sedimentary recycling – 2: time dimension to global tectonics. J. Geol., 93, 625–43.CrossRefGoogle Scholar
Veizer, J. and Mackenzie, F. T. (2003). Evolution of sedimentary rocks. In Sediments, Diagenesis and Sedimentary Rocks, Vol. 7, ed. Mackenzie, F. T.. Amsterdam: Elsevier-Pergamon, pp. 370–409.Google Scholar
Verchovsky, A. B., Sephton, M. A., Wright, I. P. and Pillinger, C. T. (2002). Separation of planetary noble gas carrier from bulk carbon in enstatite chondrites during stepped combustion. Earth Planet. Sci. Lett., 199, 243–55.CrossRefGoogle Scholar
Vervoort, J. D. and Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta, 63, 533–56.CrossRefGoogle Scholar
Vervoort, J. D. and Patchett, P. J. (1996). Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochim. Cosmochim. Acta, 60, 3717–33.CrossRefGoogle Scholar
Vervoort, J. D., Patchett, P. J., Gehrels, G. E. and Nutman, A. P. (1996). Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature, 379, 624–7.CrossRefGoogle Scholar
Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. and Albarède, F. (1999). Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett., 168, 79–99.CrossRefGoogle Scholar
Vervoort, J. D., Patchett, P. J., Albarède, F., Blichert-Toft, J., Rudnick, R. and Downes, H. (2000). Hf–Nd isotopic evolution of the lower crust. Earth Planet. Sci. Lett., 181, 115–29.CrossRefGoogle Scholar
Vetrin, V. R., Kamensky, I. L., Bayanova, T. B.et al. (1999). Melanocratic enclaves and petrogenesis of alkaline granites of the Ponoy massif (Kola Peninsula). Geochimiya, 11, 1178–90.Google Scholar
Vielzeuf, D., Clemens, J. D., Pin, C. and Moinet, E. (1990). Granites, granulites, and crustal differentiation. In Granulites and Crustal Evolution, eds. Vielzeuf, D. and Vidal, P.. Dordrecht: Kluwer, pp. 59–85.CrossRefGoogle Scholar
Villa, I. M. and Renne, P. R. (1998). Decay constants in geochronology. Episodes, 20, 1–2.Google Scholar
Vink, J. (2005). Gamma-ray observations of explosive nucleosynthesis products. Adv. Space Res., 35, 976–86.CrossRefGoogle Scholar
Visona, D. and Lombardo, B. (2002). Two-mica and tourmaline leucogranites from the Everest–Makalu region (Nepal–Tibet). Himalayan leucogranite genesis by isobaric heating? Lithos, 62, 125–50.CrossRefGoogle Scholar
Vityazev, A. V., Pechernikova, G. V. and Saphronov, V. S. (1990). Terrestrial Planets: Origin and Early Evolution. Moscow: Nauka, pp. 296.Google Scholar
Blanckenburg, F., Nions, O' R. K., Belshaw, N. S., Gibb, A. and Hein, J. R. (1996). Global distribution of beryllium isotopes in deep oceanic water as derived from Fe–Mn crusts. Earth Planet. Sci. Lett., 141, 213–26.CrossRefGoogle Scholar
Vuong, M. H., Montmerle, T., Grosso, N., Feigelson, E. D., Verstraete, L. and Ozawa, H. (2003). Determination of the gas-to-dust ratio in nearby dense clouds using X-ray absorption measurements. Astron. Astrophys., 408, 581–99.CrossRefGoogle Scholar
Walker, D., Longhi, J., Stopler, E. N., Grove, T. L. and Hays, J. F. (1975). Origin of titaniferous lunar basalts. Geochim. Cosmochim. Acta, 39, 1219–35.CrossRefGoogle Scholar
Wallerstein, G., Iben, I., Parker, P.et al. (1997). Synthesis of the elements in stars: forty years of progress. Rev. Mod. Phys., 69, 995–1084.CrossRefGoogle Scholar
Wang, L., Howell, D. A., Hoflich, P. and Wheeler, J. C. (2001). Bipolar supernova explosions. Astrophys. J., 550, 1030–5.CrossRefGoogle Scholar
Wänke, H., Dreibus, G. and Jagoutz, E. (1984). Mantle chemistry and accretion history of the Earth. In Archaean Geochemistry, ed. Kroner, A., Hanson, G. N. and Goodwin, A. M.. Berlin: Springer-Verlag, pp. 1–24.Google Scholar
Warren, P. H. (2003). The Moon. In Meteorites, Comets, and Planets, Vol. 1, eds. Davis, A. M.. Amsterdam: Elsevier-Pergamon, pp. 559–99.Google Scholar
Warren, P. H. (2005). “New” lunar meteorites: implications for composition of the global lunar surface, lunar crust, and the bulk Moon. Meteorit. Planet. Sci., 40, 477–506.CrossRefGoogle Scholar
Warren, P. H. and Kallemeyn, G. W. (1993). The ferroan-anorthositic suite, the extent of primordial lunar melting, and the bulk composition of the moon. J. Geophys. Res., 98 (E3), 5445–55.CrossRefGoogle Scholar
Wasserburg, G. J., Tera, F., Papanastassiou, D. A. and Huneke, J. C. (1977). Isotopic and chemical investigations on Angra dos Reis. Earth Planet. Sci. Lett., 35, 294–316.CrossRefGoogle Scholar
Wasserburg, G. J., Busso, M., Gallino, R. and Raiteri, C. M. (1994). Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula. Astrophys. J., 424, 412–28.CrossRefGoogle Scholar
Wasserburg, G. J., Boothroyd, A. I. and Sackmann, I. J. (1995a). Deep circulation in red giant stars: a solution to the carbon and oxygen isotope puzzles? Astrophys. J., 447 (1), L37–L40.CrossRefGoogle Scholar
Wasserburg, G. J., Gallino, R., Busso, M., Goswami, J. N. and Raiteri, C. M. (1995b). Injection of freshly synthesized 41Ca in the early solar nebula by an Asymptotic Giant Branch Star. Astrophys. J., 440, L101–4.CrossRefGoogle Scholar
Wasson, J. T. (1985). Meteorites: Their Record of Early Solar-System History. New York: Freeman and Co, pp. 274.Google Scholar
Wasson, J. T. (1996). Chondrule formation: energetic and length scales. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 45–54.Google Scholar
Wasson, J. T. (1999). Trapped melt in IIIAB irons; solid/liquid elemental partitioning during the fractionation of the IIIAB magma. Geochim. Cosmochim. Acta, 63, 2875–89.CrossRefGoogle Scholar
Wasson, J. T. and Kallemeyn, G. W. (1988). Compositions of chondrites. Phil. Trans. Roy. Soc. London, A325, 535–44.CrossRefGoogle Scholar
Weaver, B. L. and Tarney, J. (1984). Major and trace element composition of the continental lithosphere. Phys. Chem. Earth, 15, 39–68.CrossRefGoogle Scholar
Weber, M., Davis, J. P., Thomas, C., Kruger, F., Scherbaum, F., Schlittenhardt, J. and Kornig, M. (1996). The structure of the lowermost mantle as determined from using seismic arrays. In Seismic Modelling of Earth Structure, eds. Boschi, E., Ekstrom, G. and Morelli, A., pp. 399–442.Google Scholar
Wedepohl, K. H. (1995). The composition of the continental crust. Geochim. Cosmochim. Acta, 59, 1217–32.CrossRefGoogle Scholar
Wegener, A. (1915). Die Entstehung der Kontinente und Ozeane.
Weidenschilling, S. J. (2000). Formation of planetesimals and accretion of the terrestrial planets. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 295–310.Google Scholar
Weisberg, M. K. and Prinz, M. (1996). Agglomeratic chondrules, chondrule precursors, and incomplete melting. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 119–28.Google Scholar
Wen, L. X., Silver, P., James, D. and Kuehnel, R. (2001). Seismic evidence for a thermo-chemical boundary at the base of the Earth's mantle. Earth Planet. Sci. Lett., 189, 141–53.CrossRefGoogle Scholar
Wessel, P. and Lyons, S. (1997). Distribution of large Pacific seamounts from Geosat/ERS-1: implications for the history of intraplate volcanism. J. Geophys. Res. – Solid Earth, 102, 22459–75.CrossRefGoogle Scholar
Wetherill, G. W. (1990). Formation of the earth. Ann. Rev. Earth Planet. Sci., 18, 205–56.CrossRefGoogle Scholar
Wetherill, G. W. and Inaba, S. (2000). Planetary accumulation with continuous supply of planetesimals. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 311–20.Google Scholar
Wetherill, G. W. and Stewart, G. R. (1993). Formation of planetary embryos: effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus, 106, 190–209.CrossRefGoogle ScholarPubMed
Whalen, J. B., Currie, K. L. and Chappell, B. W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 95, 407–19.CrossRefGoogle Scholar
Wiechert, U., Halliday, A. N., Lee, D.-C., Snyder, G. A., Taylor, L. A. and Rumble, D. (2001). Oxygen isotopes and the moon-forming giant impact. Science, 294, 345–8.CrossRefGoogle ScholarPubMed
Wieler, R. and Baur, H. (1994). Krypton and xenon from the solar wind and solar energetic particles in two lunar ilmenites of different antiquity. Meteoritics, 29, 570–80.CrossRefGoogle Scholar
Wieler, R., Anders, E., Baur, H., Lewis, R. S. and Signer, P. (1991). Noble gases in “phase Q”: closed-system etching of an Allende residue. Geochim. Cosmochim. Acta, 55, 1709–22.CrossRefGoogle Scholar
Wieler, R., Humbert, F. and Marty, B. (1999). Evidence for a predominantly non-solar origin of nitrogen in the lunar regolith revealed by single grain analyses. Earth Planet. Sci. Lett., 167, 47–60.CrossRefGoogle Scholar
Wiens, R. C., Huss, G. R. and Burnett, D. S. (1999). The solar oxygen-isotopic composition: predictions and implications for solar nebula processes. Meteorit. Planet. Sci., 34, 99–107.CrossRefGoogle Scholar
Wilde, S. A., Valley, J. W., Peck, W. H. and Graham, C. M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175–8.CrossRefGoogle ScholarPubMed
Wille, M., Kramers, J. D., Nägler, T. F.et al. (2007). Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta, 71, 2417–35.CrossRefGoogle Scholar
Williams, Q. and Hemley, R. J. (2001). Hydrogen in the deep Earth. Ann. Rev. Earth Planet. Sci., 29, 365–418.CrossRefGoogle Scholar
Williams, Q. and Knittle, E. (1997). Constraints on core chemistry from the pressure dependence of the bulk modulus. Phys. Earth Planet. Inter., 100, 49–59.CrossRefGoogle Scholar
Wilson, T. L., Serabyn, E. and Henkel, C. (1986). The high-velocity CO outflow in Orion. Astron. Astrophys., 167, L17–L20.Google Scholar
Wimmer-Schweingruber, R. F., Bochsler, P. and Kern, O. (1998). First determination of the silicon isotopic composition of the solar wind: WIND/MASS results. J. Geophys. Res., 103 (A9), 20621–30.CrossRefGoogle Scholar
Wimmer-Schweingruber, R. F., Bochsler, P. and Wurz, P. (1999a). Isotopes in the solar wind: new results from ACE, SOHO and WIND. In Solar Wind, Vol. 9, eds. Habbal, S. R., Esser, R., Hollweg, J. V. and Isenberg, P. A.. New York: Amer. Inst. Phys., pp. 147–152.Google Scholar
Wimmer-Schweingruber, R. F., Boschsler, P., Gloeckler, G.et al. (1999b). On the bulk isotopic composition of magnesium and silicon during the May 1998 CME: ACE/SWIMS. Geophys. Res. Lett., 26, 165–8.CrossRefGoogle Scholar
Winther, K. T. (1996). An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem. Geol., 127, 43–59.CrossRefGoogle Scholar
Wisshak, K., Guber, K., Voss, F., Kappeler, F. and Reffo, G. (1993). Neutron-capture in Sm-148, Sm-150 – a sensitive probe of the s-process neutron density. Phys. Rev., 48, 1401–19.Google Scholar
Wolf, R. and Anders, E. (1980). Moon and Earth: compositional differences inferred from siderophiles, volatiles and alkalis in basalts. Geochim. Cosmochim. Acta, 44, 2111–24.CrossRefGoogle Scholar
Wood, B. E., Muller, H.-R., Zank, G. P. and Linsky, J. (2002). Measured mass-loss rates of solar-like stars as a function of age and activity. Astrophys. J., 574, 412–25.CrossRefGoogle Scholar
Wood, B. J. and Halliday, A. N. (2005). Cooling of the Earth and core formation after the giant impact. Nature, 437, 1345–8.CrossRefGoogle ScholarPubMed
Wood, J. A. (1967). Olivine and pyroxene compositions in Type II carbonaceous chondrites. Geochim. Cosmochim. Acta, 31, 2095–108.CrossRefGoogle Scholar
Wood, J. A. (1981). The interstellar dust as a precursor of Ca, Al-rich inclusions in carbonaceous chondrites. Earth Planet. Sci. Lett., 56, 32–44.CrossRefGoogle Scholar
Wood, J. A. (1985). Meteoritic constraints on processes in the solar nebula. In Protostars and Planets II, eds. Black, D. C. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 687–702.Google Scholar
Wood, J. A. (1988). Chondritic meteorites and the solar nebula. Ann. Rev. Earth Planet. Sci., 16, 53–72.CrossRefGoogle Scholar
Wood, J. A. (1996). Unresolved issues in the formation of chondrules and chondrites. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 55–69.Google Scholar
Wood, J. A. (2000). Pressure and temperature profiles in the solar nebula. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 87–96.Google Scholar
Wooden, D. H. (1997). Observational evidence for mixing and dust condensation on core-collapse supernovae. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. Phys, pp. 317–76.Google Scholar
Woolf, V. M., Tomikin, J. and Lambert, D. L. (1995). The r-process element europium in galactic disc F and G dwarf stars. Astrophys. J., 453, 660–72.CrossRefGoogle Scholar
Woosley, S. E. (1997). Neutron-rich nucleosynthesis in carbon deflagration supernovae. Astrophys. J., 476, 801–10.CrossRefGoogle Scholar
Woosley, S. E. (2001). Models for type Ia supernovae. Nucl. Phys., A688, 9c–16c.Google Scholar
Woosley, S. and Janka, T. (2005). The physics of core-collapse supernovae. Nature (Physics), 1, 147–54.Google Scholar
Woosley, S. E. and Weaver, T. A. (1995). The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl., 101, 181–235.CrossRefGoogle Scholar
Woosley, S. E., Hartmann, D. H., Hofmann, R. D. and Haxton, W. C. (1990). The neutrino process. Astrophys. J., 356, 272–301.CrossRefGoogle Scholar
Woosley, S. E., Heger, A. and Weaver, T. A. (2002). The evolution and explosion of massive stars. Rev. Mod. Phys., 74, 1015–72.CrossRefGoogle Scholar
Workman, R. K. and Hart, S. R. (2005). Major and trace element composition of the depleted mid-ocean ridge basalt mantle (depleted MORB-source mantle; in Section 27.2 the abbreviation is widened to “depleted mixed mantle”). Earth Planet. Sci. Lett., 231, 53–72.CrossRefGoogle Scholar
Workman, R. K., Hart, S. R., Jackson, M. D.et al. (2004). Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: evidence from the Samoan Volcanic Chain. Geochem. Geophys. Geosyst., 5, Q04008, doi:10.1029/2003GC000623.CrossRefGoogle Scholar
Yin, Q.-Z., Lee, C.-T. and Ott, U. (2006). Signatures of the s-process in presolar silicon carbide grains: barium through hafnium. Astrophys. J., 647, 676–84.CrossRefGoogle Scholar
Yoder, H. S. Jr. and Tilley, C. E. (1962). Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrol., 3, 342–532.CrossRefGoogle Scholar
Yoneda, S. and Grossman, L. (1995). Condensation of CaO–MgO–Al2O3–SiO2 liquids from cosmic gases. Geochim. Cosmochim. Acta, 59, 3413–44.CrossRefGoogle Scholar
York, D. (1967). The best isochron. Earth Planet. Sci. Lett., 2, 479–82.CrossRefGoogle Scholar
Young, E. D. and Russell, S. S. (1998). Oxygen reservoirs in the early solar nebula inferred from an Allende calcium–aluminium-rich inclusions. Science, 282, 452–5.CrossRefGoogle Scholar
Young, E. D., Simon, J. I., Galy, A., Russell, S. S., Tonui, E. and Lovera, O. (2005). Supra-canonical 26Al / 27Al and the residence time of calcium–aluminium-rich inclusionss in the solar protoplanetary disk. Science, 308, 223–7.CrossRefGoogle Scholar
Yurimoto, H. and Kuramoto, K. (2004). Molecular cloud origin for the oxygen isotope heterogeneity in the Solar system. Science, 305, 1763–6.CrossRefGoogle ScholarPubMed
Yurimoto, H., Ito, M. and Nagasawa, H. (1998). Oxygen isotope exchange between refractory inclusion in Allende and solar nebula gas. Science, 282, 1874–7.CrossRefGoogle ScholarPubMed
Zack, T., Moraes, R. and Kronz, A. (2004). Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol., 148, 471–88.CrossRefGoogle Scholar
Zahnle, K. and Kasting, J. F. (1986). Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus, 68, 462–80.CrossRefGoogle Scholar
Zaikowski, A. (1980). I–Xe dating of Allende inclusions: antiquity and fine structure. Earth Planet. Sci. Lett., 47, 211–22.CrossRefGoogle Scholar
Zeng, L., Saleeby, J. B. and Asimow, P. (2005). Nd isotope disequilibrium during crustal anatexis: a record from the Goat Ranch migmatite complex, southern Sierra Nevada batholite, California. Geology, 33, 53–6.CrossRefGoogle Scholar
Zhang, Y., Huang, S., Schneider, D.et al. (1996). Pyroxene structures, cathodoluminescence and the thermal history of the enstatite chondrites. Meteoritics, 31, 87–96.CrossRefGoogle Scholar
Zhao, D. (2004). Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Inter., 146, 3–34.CrossRefGoogle Scholar
Zharkov, V. N. (1983). Internal Structure of Earth and Planets. Moscow: Nauka, pp. 415.Google Scholar
Zindler, A. and Hart, S. (1986). Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14, 493–571.CrossRefGoogle Scholar
Zinner, E. (1998). Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites. Ann. Rev. Earth Planet. Sci., 26, 147–88.CrossRefGoogle Scholar
Zinner, E. K. and Goepel, C. (1992). Evidence for 26Al in feldspars from the H4 chondrite Ste. Marguerite. Meteoritics, 27, 311–12.Google Scholar
Zinner, E., Nittler, L. R., Alexander, C. M. O. and Gallino, R. (2006). The study of radioisotopes in presolar dust grains. New Astron. Rev., 50, 574–7.CrossRefGoogle Scholar
Zolensky, M. E., Weisberg, M. K., Buchanan, P. C. and Mittlefehldt, D. W. (1996). Mineralogy of carbonaceous chondrite clasts in howardite, eucrite and diogenite achondrites achondrites and the Moon. Meteorit. Planet. Sci., 31, 518–37.CrossRefGoogle Scholar
Zozulya, D. R., Bayanova, T. B. and Eby, G. N. (2005). Geology and age of the late Archean Keivy alkaline province, Northeastern Baltic Shield. J. Geol., 113, 601–8.CrossRefGoogle Scholar
Abe, Y. (1993). Physical state of the very early earth. Lithos, 30, 223–35.CrossRefGoogle Scholar
Abia, C., Busso, M., Gallino, R., Dominguez, I., Straniero, O. and Isern, J. (2001). The 85Kr s-process branching and the mass of carbon stars. Astrophys. J., 559, 1117–34.CrossRefGoogle Scholar
Adams, F. C. and Laughlin, G. (2000). Protostellar disk formation and early evolution. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer Acad. Pub., pp. 23–38.Google Scholar
Agnor, C. B., Canup, R. M. and Levison, H. F. (1999). On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus, 142, 219–37.CrossRefGoogle Scholar
Ahrens, T. J. (1990). Earth accretion. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford: Oxford University Press, pp. 211–27.Google Scholar
Ahrens, T. J. (1993). Impact erosion of terrestrial planetary atmospheres. Ann. Rev. Earth Planet. Sci., 21, 525–55.CrossRefGoogle Scholar
Akulov, Y. A. and Mamyrin, B. A. (2004). Difference between the triton beta decay constants in atomic and molecular tritium measured by the helium isotope method. Phys. Lett. B, 600, 41–7.CrossRefGoogle Scholar
Albarède, F. (1998a). Time-dependent models of U–Th–He and K–Ar evolution and the layering of mantle convection. Chem. Geol., 145, 413–29.CrossRefGoogle Scholar
Albarède, F. (1998b). The growth of continental crust. Tectonophysics, 296, 1–14.CrossRefGoogle Scholar
Aleon, J., Robert, F., Duprat, J. and Derenne, S. (2005). Extreme oxygen isotopic ratios in the early solar system. Nature, 437, 385–8.CrossRefGoogle ScholarPubMed
Alexander, C. M. O. (1994). Trace-element distributions within ordinary chondrite chondrules – implications for chondrule formation conditions and precursors. Geochim. Cosmochim. Acta, 58, 3451–67.CrossRefGoogle Scholar
Alexander, C. M. O. (1996). Recycling and volatile loss in chondrule formation. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and , E. R. D.Scott. Cambridge: Cambridge University Press, pp. 233–41.Google Scholar
Alexander, C. M. O. (2004). Chemical equilibrium and kinetic constraints for chondrule and calcium–aluminium-rich inclusions formation conditions. Geochim. Cosmochim. Acta, 68, 3943–69.CrossRefGoogle Scholar
Alexander, C. M. O., Arden, J. W., Ash, R. D. and Pillinger, C. T. (1990a). Presolar components in the ordinary chondrites. Earth Planet. Sci. Lett., 99, 220–9.CrossRefGoogle Scholar
Alexander, C. M. O., Swan, P. and Walker, R. M. (1990b). In situ measurement of interstellar silicon carbide in two CM chondrite meteorites. Nature, 348, 715–7.CrossRefGoogle Scholar
Alfe, D., Gillan, M. J. and Price, G. D. (2000). Constraints on the composition of the Earth's core from ab initio calculations. Nature, 405, 172–5.CrossRefGoogle ScholarPubMed
Alibert, C., Norman, M. D. and McCulloch, M. T. (1994). An ancient Sm–Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochim. Cosmochim. Acta, 58, 2921–6.CrossRefGoogle Scholar
Alibes, A., Labay, J. and Canal, R. (2001). Galactic chemical abundance evolution in the solar neighborhood up to the iron peak. Astron. Astrophys., 370, 1103–21.CrossRefGoogle Scholar
Allan, N. L., Du, Z., Lavrentiev, M. Y., Blundy, J. D., Purton, J. A. and Westrenen, W. (2003). Atomistic simulation of mineral–melt trace-element partitioning. Phys. Earth Planet. Inter., 139, 93–111.CrossRefGoogle Scholar
Allègre, C. J. (1982). Chemical geodynamics. Tectonophysics, 81, 109–32.CrossRefGoogle Scholar
Allègre, C. J. (1997). Limitation on the mass exchange between the upper and lower mantle: the evolving convection regime of the Earth. Earth Planet. Sci. Lett., 150, 1–6.CrossRefGoogle Scholar
Allègre, C. J. and Lewin, E. (1995). Isotopic systems and stirring times of the Earth's mantle. Earth Planet. Sci. Lett., 136, 629–46.CrossRefGoogle Scholar
Allègre, C. J. and Rousseau, D. (1984). The growth of continents through geological time studied by Nd isotope analysis of shales. Earth Planet. Sci. Lett., 67, 19–34.CrossRefGoogle Scholar
Allègre, C. J., Manhes, G. and Goepel, C. (1995a). The age of the Earth. Geochim. Cosmochim. Acta, 59, 1445–56.CrossRefGoogle Scholar
Allègre, C. J., Poirier, J. P., Humler, E. and Hofmann, A. W. (1995b). The chemical composition of the Earth. Earth Planet. Sci. Lett., 134, 515–26.CrossRefGoogle Scholar
Allègre, C., Manhes, G. and Lewin, E. (2001). Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet. Sci. Lett., 185, 49–69.CrossRefGoogle Scholar
Aller, L. H. (1971). Atoms, Stars, and Nebulae. Cambridge, MA: Harvard University Press, p. 352.Google Scholar
Amari, S., Gao, X., Nittler, L. R., Zinner, E., Jose, J., Hernanz, M. and Lewis, R. S. (2001a). Presolar grains from novae. Astrophys. J., 551, 1065–72.CrossRefGoogle Scholar
Amari, S., Nittler, L. R., Zinner, E., Lodders, K. and Lewis, R. S. (2001b). Presolar SiC grains of type A and B: their isotopic compositions and stellar origins. Astrophys. J., 559, 463–83.CrossRefGoogle Scholar
Amelin, Y. and Rotenberg, E. (2004). Sm–Nd systematics of chondrites. Earth Planet. Sci. Lett., 223, 267–82.CrossRefGoogle Scholar
Amelin, Y., Lee, D.-C., Halliday, A. N. and Pidgeon, R. T. (1999). Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 399, 252–5.CrossRefGoogle Scholar
Amelin, Y., Lee, D.-C. and Halliday, A. N. (2000). Early-middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochim. Cosmochim. Acta, 64, 4205–25.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D. and Ulyanov, A. A. (2002). Lead isotope ages of chondrules and calcium–aluminum-rich inclusions. Science, 297, 1678–83.CrossRefGoogle Scholar
Anders, E. and Grevesse, N. (1989). Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214.CrossRefGoogle Scholar
Anderson, D. L. (1993). He-3 from the mantle – primordial signal or cosmic dust. Science, 261, 170–6.CrossRefGoogle ScholarPubMed
Anderson, O. L. and Isaak, D. G. (2002). Another look at the core density deficit of Earth's outer core. Phys. Earth Planet. Inter., 131, 19–27.CrossRefGoogle Scholar
Andersson, U. B., Neymark, L. A. and Billstrom, K. (2002). Petrogenesis of Mesoproterozoic (Subjotnian) rapakivi complexes of central Sweden: implications from U–Pb zircon ages, Nd, Sr and Pb isotopes. Trans. Roy. Soc. Edinburgh: Earth Sci., 92, 201–28.CrossRefGoogle Scholar
Andreasen, R. and Sharma, M. (2006). Heterogeneous distribution of p-process Sm and Nd isotopes in the solar nebula. Geochim. Cosmochim. Acta (Suppl. 6), A18.CrossRefGoogle Scholar
Aoki, W., Ryan, S. G., Norris, J. E.et al. (2001). Neutron capture elements in s-process rich, very metal-poor stars. Astrophys. J., 561, 346–63.CrossRefGoogle Scholar
Arculus, R. J., Holmes, R. D., Powell, R. and Righter, K. (1990). Metal–silicate equilibrium and core formation. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford: Oxford University Press, pp. 251–71.Google Scholar
Arlandini, C., Kappeler, F., Wisshak, K.et al. (1999). Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J., 525, 886–900.CrossRefGoogle Scholar
Arndt, N. T. and Goldstein, S. L. (1989). An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics, 161, 201–12.CrossRefGoogle Scholar
Arnold, G. L., Anbar, A. D., Barling, J. and Lyons, T. W. (2004). Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science, 304, 87–90.CrossRefGoogle ScholarPubMed
Arnould, M., Paulus, G. and Meynet, G. (1997). Short-lived radionuclide production by non-exploding Wolf–Rayet stars. Astron. Astrophys., 321, 452–64.Google Scholar
Ashwal, L. D. (1993). Anorthosites. New York: Springer-Verlag, pp. 422.CrossRefGoogle Scholar
Asmerom, Y. and Jacobsen, S. B. (1993). The Pb isotopic evolution of the Earth: inferences from river water suspended loads. Earth Planet. Sci. Lett., 115, 245–56.CrossRefGoogle Scholar
Ayres, M. and Harris, N. (1997). REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chem. Geol., 139, 249–69.CrossRefGoogle Scholar
Azbel, I. Y. and Tolstikhin, I. N. (1988). Radiogenic Isotopes and the Evolution of the Earth's Mantle, Crust and Atmosphere. Apatity, Russia: Kola Sci. Center Publ., pp. 140.Google Scholar
Azbel, I. Y. and Tolstikhin, I. N. (1990). Geodynamics, magmatism, and degassing of the Earth. Geochim. Cosmochim. Acta, 54, 139–54.CrossRefGoogle Scholar
Azbel, I. Y. and Tolstikhin, I. N. (1993). Accretion and early degassing of the Earth: constraints from Pu–U–I–Xe isotopic systematic. Meteoritics, 28, 609–21.CrossRefGoogle Scholar
Azbel, I. Y., Tolstikhin, I. N., Kramers, J. D., Pechernikova, G. V. and Vitiazev, A. V. (1993). Core growth and siderophile element depletion of the mantle during homogeneous Earth accretion. Geochim. Cosmochim. Acta, 57, 2889–98.CrossRefGoogle Scholar
Baker, J., Bizzarro, M., Wittig, N., Connelly, J. and Haack, H. (2005). Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature, 436, 1127–31.CrossRefGoogle ScholarPubMed
Balashov, Y. A. (2004). Geochemical peculiarities and genesis of alkaline granites of Keivy region (Kola Peninsula). In Proc. Conf. Isotope Geochim., Vol. 17. Moscow: Vernadsky Inst. Geochemistry Analyt. Chem., pp. 22–3.Google Scholar
Ballentine, C. J. and Barfod, D. N. (2000). The origin of air-like noble gases in mid-ocean ridge basalt and ocean-island basalt. Earth Planet. Sci. Lett., 180, 39–48.CrossRefGoogle Scholar
Barbarin, B. (1999). A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46, 605–26.CrossRefGoogle Scholar
Barling, J. and Anbar, A. D. (2004). Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet. Sci. Lett., 217, 315–29.CrossRefGoogle Scholar
Barth, M. G., McDonough, W. F. and Rudnick, R. L. (2000). Tracking the budget of Nb and Ta in the continental crust. Chem. Geol., 165, 197–213.CrossRefGoogle Scholar
Basford, J. R., Dragon, J. C., Pepin, R. O., Coscio, M. R. J. and Murthy, V. R. (1973). Krypton and xenon in lunar fines. In Proc. Lunar Planet. Sci. Conf., Vol. 2, pp. 1915–55.Google Scholar
Batiza, R. (1982). Abundances, distribution and sizes of volcanoes in the Pacific Ocean and implications for the origin of non-hotspot volcanoes. Earth Planet. Sci. Lett., 60, 195–206.CrossRefGoogle Scholar
Beard, B. L., Taylor, L. A., Scherer, E. E., Jonson, C. M. and Snyder, G. A. (1998). The source region and melting mineralogy of high-titanium and low-titanium lunar basalts deduced from Lu–Hf isotope data. Geochim. Cosmochim. Acta, 62, 525–44.CrossRefGoogle Scholar
Becker, H., Jochum, K. P. and Carlson, R. W. (2000). Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chem. Geol., 163, 65–99.CrossRefGoogle Scholar
Becker, H., Horan, M. F., Walker, R. J., Gao, S., Lorand, J.-P. and Rudnick, R. L. (2006). Highly siderophile element composition of the Earth's primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta, 70, 4528–50.CrossRefGoogle Scholar
Beckett, J. R. and Stolper, E. (1994). The stability of hibonite, melilite and other aluminous phases in silicate melts: implications for the origin of hibonite-bearing inclusions from carbonaceous chondrites. Meteoritics, 29, 41–65.CrossRefGoogle Scholar
Beckwith, S., Sargent, A. I., Chini, R. S. and Gusten, R. (1990). A survey for circumstellar disks around young stellar object. Astron. J., 99, 924–45.CrossRefGoogle Scholar
Beech, M. and Mitalas, R. (1994). Formation and evolution of massive stars. Astrophys. J. Suppl., 95, 517–34.CrossRefGoogle Scholar
Beers, T. C. and Christlieb, N. (2005). The discovery and analysis of very metal-poor stars in the Galaxy. Ann. Rev. Astron. Astrophys., 43, 531–80.CrossRefGoogle Scholar
Bejina, F., Jaoul, O. and Liebermann, R. C. (2003). Diffusion in minerals at high pressure: a review. Phys. Earth Planet. Inter., 139, 3–20.CrossRefGoogle Scholar
Bell, D. R. and Rossman, G. R. (1992). Water in the Earth's mantle: the role of nominally anhydrous minerals. Science, 255, 1391–7.CrossRefGoogle ScholarPubMed
Othman, Ben D., White, W. M. and Patchett, J. (1989). The geochemistry of marine sediments, island arc magma genesis, and crust–mantle recycling. Earth Planet. Sci. Lett., 94, 1–21.CrossRefGoogle Scholar
Benkert, J.-P., Baur, H., Signer, P. and Wieler, R. (1993). He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. J. Geophys. Res., 98(E7), 13147–62.CrossRefGoogle Scholar
Bennett, V. C. (2003). Compositional evolution of the mantle. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Amsterdam: Elsevier-Pergamon, pp. 493–519.Google Scholar
Benz, W. (2000). Low velocity collisions and the growth of planetesimals. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 279–94.CrossRefGoogle Scholar
Benz, W. and Asphaug, E. (1999). Catastrophic disruptions revisited. Icarus, 142, 5–20.CrossRefGoogle Scholar
Benz, W. and Cameron, A. G. W. (1990). Terrestrial effects of the giant impact. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 61–7.Google Scholar
Benz, W., Slattery, W. L. and Cameron, A. G. W. (1986). The origin of the Moon and the single-impact hypothesis. 1. Icarus, 66, 515–35.CrossRefGoogle Scholar
Benz, W., Slattery, W. L. and Cameron, A. G. W. (1987). The origin of the Moon and the single-impact hypothesis. 2. Icarus, 71, 30–45.CrossRefGoogle Scholar
Benz, W., Cameron, A. G. W. and Melosh, H. J. (1989). The origin of the Moon and the single-impact hypothesis. 3. Icarus, 81, 113–31.CrossRefGoogle Scholar
Benz, W., Asphaug, E. and Ryan, E. V. (1994). Numerical simulations of catastrophic disruption – recent results. Planet. Space Sci., 42, 1053–66.CrossRefGoogle Scholar
Berger, M. and Rollinson, H. (1997). Isotopic and geochemical evidence for crust–mantle interaction during late Archaean crustal growth. Geochim. Cosmochim. Acta, 61, 4809–29.CrossRefGoogle Scholar
Bernard-Griffiths, J., Peucat, J. J. and Menot, R. P. (1991). Isotopic (Rb–Sr, U–Pb and Sm–Nd) and trace element geochemistry of eclogites from Pan-African belt: a case study of REE fractionation during high-grade metamorphism. Lithos, 27, 43–57.CrossRefGoogle Scholar
Bernatowicz, T. J., Podosek, F. A., Swindle, T. D. and Honda, M. (1988). I–Xe systematic in LL chondrites. Geochim. Cosmochim. Acta, 52, 1113–21.CrossRefGoogle Scholar
Betehtin, A. G. (1951). The Course of Mineralogy. Moscow: State Publ. Geol. Literature, pp. 543.Google Scholar
Binzel, R. P., Gaffey, M. J., Thomas, P. C., Zellner, B. H., Storrs, A. D. and Wells, E. N. (1997). Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus, 128, 95–103.CrossRefGoogle Scholar
Birch, F. (1952). Elasticity and constitution of the earth's interior. J. Geophys. Res., 57, 227–86.CrossRefGoogle Scholar
Birck, J. L. and Allègre, C. J. (1978). Chronology and chemical history of the parent body of basaltic achondrites studied by the 87Rb–87Sr method. Earth Planet. Sci. Lett., 39, 37–51.CrossRefGoogle Scholar
Bizimis, M., Sen, G. and Salters, V. J. M. (2003). Hf–Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii. Earth Planet. Sci. Lett., 217, 43–58.CrossRefGoogle Scholar
Bizzarro, M., Baker, J. A. and Haack, H. (2004). Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature, 431, 275–8.CrossRefGoogle Scholar
Black, D. C. and Matthews, M. S., eds. (1985). Protostars and Planets II. Tucson, AZ: University of Arizona Press, pp. 1313.Google Scholar
Blichert-Toft, J. and Albarède, F. (1997). The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet. Sci. Lett., 148, 243–58.CrossRefGoogle Scholar
Blichert-Toft, J. and Arndt, N. T. (1999). Hf isotope compositions of komatiites. Earth Planet. Sci. Lett., 171, 439–51.CrossRefGoogle Scholar
Bloemen, H., Wijnands, R., Bennet, K.et al. (1994). COMPTEL observations of the Orion complex: evidence for cosmic-ray induced gamma-ray lines. Astron. Astrophys., 281, L5–L8.Google Scholar
Bochsler, P. (1987). Solar wind ion composition. Physica Scripta, 18, 55–60.CrossRefGoogle Scholar
Bodinier, J.-L. and Godard, M. (2003). Orogenic, ophiolitic, and abyssal peridotites. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Amsterdam: Elsevier-Pergamon, pp. 103–70.Google Scholar
Boehler, R. (1996). Melting temperature of the Earth's mantle and core: Earth's thermal structure. Ann. Rev. Earth Planet. Sci., 24, 15–40.CrossRefGoogle Scholar
Boesenberg, J. S. and Delaney, J. S. (1997). A model composition of the basaltic achondrite planetoid. Geochim. Cosmochim. Acta, 61, 3205–25.CrossRefGoogle Scholar
Bogard, D. D., Clayton, R. N., Marti, K., Owen, T. and Turner, G. (2001). Martian volatiles: isotopic composition, origin, and evolution. Space Sci. Rev., 96, 425–58.CrossRefGoogle Scholar
Bolhar, R., Kamber, B. S., Moorbath, S., Fedo, C. M. and Whitehouse, M. J. (2004). Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett., 222, 43–60.CrossRefGoogle Scholar
Bolhar, R., Kamber, B. S., Moorbath, S., Whitehouse, M. and Collerson, K. D. (2005). Chemical characterization of earth's most ancient clastic metasediments from the Isua Greenstone Belt, southern West Greenland. Geochim. Cosmochim. Acta, 69, 1555–73.CrossRefGoogle Scholar
Borg, L., Norman, M., Nyquist, L.et al. (1999). Isotopic studies of ferroan anorthosite 62236: a young lunar crustal rock from a light rare-earth-element-depleted source. Geochim. Cosmochim. Acta, 63, 2679–91.CrossRefGoogle Scholar
Borisov, A. and Palme, H. (1997). Experimental determination of the solubility of platinum in silicate melts. Geochim. Cosmochim. Acta, 61, 4349–57.CrossRefGoogle Scholar
Borisov, A., Palme, H. and Spettel, B. (1994). Solubility of palladium in silicate melts – implications for core formation in the Earth. Geochim. Cosmochim. Acta, 58, 705–16.CrossRefGoogle Scholar
Boss, A. P. (1996). A concise guide to chondrule formation models. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 257–63.Google Scholar
Boss, A. P. and Graham, J. A. (1993). Clumpy disk accretion and chondrule formation. Icarus, 106, 168–78.CrossRefGoogle Scholar
Boss, A. P. and Vanhala, H. A. T. (2000). Triggering protostellar collapse, injection, and disk formation. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 13–22.Google Scholar
Bourdon, B., Langmuir, C. H. and Zindler, A. (1996a). Ridge-hotspot interaction along the Mid-Atlantic Ridge between 37°30′ and 40°30′N: the U–Th disequilibrium evidence. Earth Planet. Sci. Lett., 142, 175–89.CrossRefGoogle Scholar
Bourdon, B., Zindler, A., Elliott, T. and Langmuir, C. H. (1996b). Constraints on mantle melting at mid-ocean ridges from global 238U-230Th disequilibrium data. Nature, 384, 231–5.CrossRefGoogle Scholar
Bourdon, B., Turner, S. and Dosseto, A. (2003). Dehydration and partial melting in subduction zones: constraints from U-series disequilibria. J. Geophys. Res., 108 (B6), 2291–310.CrossRefGoogle Scholar
Bourles, D. L., Brown, E. T., Raisbeck, G. M., Yiou, F. and Gieskes, J. M. (1992). Beryllium isotope geochemistry of hydrothermally altered sediments. Earth Planet. Sci. Lett., 109, 47–56.CrossRefGoogle Scholar
Boyet, M. and Carlson, R. W. (2005). 142Nd evidence for early (> 4.53 billion year) global differentiation of the silicate Earth. Science, 309, 576–81.CrossRefGoogle Scholar
Boyet, M. and Carlson, R. W. (2006). A new geochemical model for the Earth's mantle inferred from 146Sm–42Nd systematics. Earth Planet. Sci. Lett., 250, 254–68.CrossRefGoogle Scholar
Boyet, M., Blichert-Toft, J., Rosing, M., Storey, M., Teoluk, P. and Albarede, F. (2003). 142Nd evidence for early Earth differentiation. Earth Planet. Sci. Lett., 214, 427–42.CrossRefGoogle Scholar
Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry, ed. Henderson, P.. Amsterdam: Elsevier, pp. 63–114.Google Scholar
Boynton, W. V. (1985). Meteoritic evidence concerning conditions in the solar nebula. In Protostars and Planets II, eds. Black, D. C. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 772–87.Google Scholar
Branch, D. (1998). Type Ia Supernovae and the Hubble constant. Ann. Rev. Astron. Astrophys., 36, 17–55.CrossRefGoogle Scholar
Brandon, A. D., Walker, R. J., Puchtel, I. S., Becker, H., Humayun, M. and Revillon, S. (2003). 186Os–187Os systematics of Gorgona Island komatiites: implications for very early growth of the inner core. Earth Planet. Sci. Lett., 206, 411–26.CrossRefGoogle Scholar
Brandon, A. D., Walker, R. J. and Puchtel, I. S. (2006). Platinum–osmium isotope evolution of the Earth's mantle: constraints from chondrites and Os-rich alloys. Geochim. Cosmochim. Acta, 70, 2093–103.CrossRefGoogle Scholar
Brazzle, R. H., Pravdivtseva, O. V., Meshik, A. P. and Hohenberg, C. M. (1999). Verification and interpretation of the I–Xe chronometer. Geochim. Cosmochim. Acta, 63, 739–60.CrossRefGoogle Scholar
Brearley, A. J. (2003). Nebular versus parent-body processing. In Meteorites, Comets, and Planets, Vol. 1, ed. Davis, A. M.. Amsterdam: Elsevier-Pergamon, pp. 247–68.Google Scholar
Bridges, J. C., Franchi, I. A., Hutchison, R., Sexton, A. S. and Pillinger, C. T. (1998). Correlated mineralogy, chemical compositions, oxygen isotopic compositions and size of chondrules. Earth Planet. Sci. Lett., 155, 183–96.CrossRefGoogle Scholar
Bridges, J. C., Franchi, I. A., Sexton, A. S. and Pillinger, C. T. (1999). Mineralogical controls on the oxygen isotopic compositions of unequilibrated ordinary chondritess. Geochim. Cosmochim. Acta, 63, 945–51.CrossRefGoogle Scholar
Broecker, W. S. (1985). How to Build a Habitable Planet. Tucson, AZ: Eldigio Press, pp. 291.Google Scholar
Bromm, V. and Larson, R. B. (2004). The first stars. Ann. Rev. Astron. Astrophys., 42, 79–118.CrossRefGoogle Scholar
Brown, E. T., Measures, C. I., Edmond, J. M., Bourles, D. L., Raisbeck, G. M. and Yiou, F. (1992b). Continental input of beryllium to the oceans. Earth Planet. Sci. Lett., 114, 101–11.CrossRefGoogle Scholar
Brown, G., Hawkesworth, C. and Wilson, C. (1992a). Understanding the Earth. Cambridge, UK: Cambridge University Press, pp. 563.Google Scholar
Brown, G. C. and Mussett, A. E. (1981). The Inaccessible Earth. London, UK: Allen and Unwin, pp. 261.Google Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A. and Hoyle, F. (1957). Synthesis of the elements in stars. Rev. Modern Phys., 29, 547–650.CrossRefGoogle Scholar
Burles, S., Nollett, K. M. and Turner, M. S. (2001). Big Bang nucleosynthesis predictions for precision cosmology. Astrophys. J., 552, L1–5.CrossRefGoogle Scholar
Burris, D. L., Pilachowski, C. A., Armandroff, T. E., Sneden, C., Cowan, J. J. and Roe, H. (2000). Neutron-capture elements in the early galaxy: insights from a large sample of metal-poor giants. Astrophys. J., 544, 302–19.CrossRefGoogle Scholar
Burrows, A. (2000). Supernova explosions in the Universe. Nature, 403, 727–33.CrossRefGoogle ScholarPubMed
Busemann, H. and Eugster, O. (2002). The trapped noble gas component in achondrites. Meteorit. Planet. Sci., 37, 1865–91.CrossRefGoogle Scholar
Busemann, H., Baur, H. and Wieler, R. (2000). Primordial noble gas in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci., 35, 949–73.CrossRefGoogle Scholar
Busemann, H., Eugster, O., Baur, H. and Wieler, R. (2003). The ingredients of the “subsolar” noble gas component. In Proc. Lunar Planet. Sci. Conf., Vol. 34, p. 1674.Google Scholar
Busso, M., Gallino, R. and Wasserburg, G. J. (1999). Nucleosynthesis in asymptotic giant branch stars: relevance for Galactic enrichment and solar system formation. Ann. Rev. Astron. Astrophys., 37, 239–309.CrossRefGoogle Scholar
Busso, M., Gallino, R., Lambert, D. L., Travaglio, C. and Smith, V. V. (2001). Nucleosynthesis and mixing on the asymptotic giant branch. III. Predicted and observed s-process abundances. Astrophys. J., 557, 802–21.CrossRefGoogle Scholar
Butler, W. A., Jeffery, P. M., Reynolds, J. H. and Wasserburg, G. J. (1963). Isotopic variations in terrestrial gases. Geophys. Res., 68, 3283–91.CrossRefGoogle Scholar
Caffee, M. W., Hudson, G. B., Velsko, C., Huss, G. R., Alexander, E. C. Jr. and Chivas, A. R. (1999). Primordial noble gases from Earth's mantle: identification of a primitive volatile component. Science, 285, 2115–18.CrossRefGoogle ScholarPubMed
Calvert, A. J., Sawyer, E. W., Davis, W. J. and Ludden, J. N. (1995). Archean subduction inferred from seismic images of a mantle suture in the Superior province. Nature, 375, 670–4.CrossRefGoogle Scholar
Cameron, A. G. W. (1976). Final stage of solar evolution. In Frontiers of Astrophysics, ed. Avrett, E. H.. Cambridge, MA: Harvard University Press, pp. 131–59.Google Scholar
Cameron, A. G. W. (1983). Origin of the atmospheres of terrestrial planets. Icarus, 56, 195–201.CrossRefGoogle Scholar
Cameron, A. G. W. (1995). The first 10-million years in the Solar nebula. Meteoritics, 30, 133–61.CrossRefGoogle Scholar
Cameron, A. G. W. (2000). Higher-resolution simulations of the giant impact. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 133–44.Google Scholar
Cameron, A. G. W. (2001a). Extinct radioactivities, core-collapse supernovae, jets, and the r-process. Nucl. Phys., A688, 289C–96C.Google Scholar
Cameron, A. G. W. (2001b). From interstellar gas to the Earth–Moon system. Meteorit. Planet. Sci., 36, 9–22.CrossRefGoogle Scholar
Cameron, A. G. W. (2001c). Some properties of r-process: accretion disks and jets. Astrophys. J., 562, 456–69.CrossRefGoogle Scholar
Cameron, A. G. W. and Benz, W. (1991). The origin of the Moon and the single impact hypothesis – IV. Icarus, 92, 204–16.CrossRefGoogle Scholar
Cameron, A. G. W., Hoflich, P., Myers, P. C. and Clayton, D. D. (1995). Massive supernovae, Orion gamma-rays, and the formation of the Solar system. Astrophys. J., 447, L53–7.CrossRefGoogle Scholar
Cameron, A. G. W., Vanhala, H. and Hoflich, P. (1997). Some aspects of triggered star formation. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. Physics, pp. 665–93.Google Scholar
Canup, R. M. (2004). Simulations of a late lunar-forming impact. Icarus, 168, 433–56.CrossRefGoogle Scholar
Canup, R. M. and Asphaug, E. (2001). Origin of the Moon in a giant impact near the end of the Earth's formation. Nature, 412, 708–13.CrossRefGoogle Scholar
Canup, R. M. and Righter, K., eds. (2000). Origin of the Earth and Moon. Tucson, AZ: University of Arizona Press, pp. 555.Google Scholar
Carlson, R. W. and Hauri, E. H. (2001). Extending the Pd-107–Ag-107 chronometer to low Pd/Ag meteorites with multicollector plasma-ionization mass spectrometry. Geochim. Cosmochim. Acta, 65, 1839–48.CrossRefGoogle Scholar
Carlson, R. W. and Lugmair, G. W. (1988). The age of ferroan anorthosite 60025: oldest crust on a young Moon. Geochim. Cosmochim. Acta, 90, 119–30.Google Scholar
Carlson, R. W. and Lugmair, G. W. (2000). Timescales of planetesimal formation and differentiation based on extinct and extant radioisotopes. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 25–44.Google Scholar
Carlson, R. W., Pearson, D. G. and James, D. E. (2005). Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys., 43, RG1001, doi:10.1029/2004 RG000156.CrossRefGoogle Scholar
Caro, G., Bourdon, B., Birck, J.-L. and Moorbath, S. (2003). 146Sm–142Nd evidence for early differentiation of the earth mantle. Nature, 423, 428–31.CrossRefGoogle Scholar
Caro, G., Bourdon, B., Birck, J.-L. and Moorbath, S. (2006). High-precision 142Nd / 144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth's mantle. Geochim. Cosmochim. Acta, 70, 164–91.CrossRefGoogle Scholar
Cartigny, P., Harris, J. W. and Javoy, M. (2001). Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ13C–N concentrations in diamonds. Earth Planet. Sci. Lett., 185, 85–98.CrossRefGoogle Scholar
Cassen, P. (1996). Models for the fractionation of moderately volatile elements in the solar nebula. Meteorit. Planet. Sci., 31, 793–806.CrossRefGoogle Scholar
Catling, D. C. and Claire, M. W. (2005). How Earth's atmosphere evolved to an oxic state: a status report. Earth Planet. Sci. Lett., 237, 1–20.CrossRefGoogle Scholar
Catling, D. C., Zahnle, K. J. and McKay, C. P. (2001). Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science, 293, 839–43.CrossRefGoogle ScholarPubMed
Cayrel, R., Hill, V., Beers, T. C.et al. (2001). Measurement of stellar age from uranium decay. Nature, 409, 691–2.CrossRefGoogle ScholarPubMed
Chabaux, F., Riotte, J. and Dequincey, O. (2003). Weathering and surface waters. Rev. Mineral. Geochem., 52, 533–76.CrossRefGoogle Scholar
Chambers, J. E. (2004). Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett., 223, 241–52.CrossRefGoogle Scholar
Chambers, J. E. and Wetherill, G. W. (1998). Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus, 136, 304–27.CrossRefGoogle Scholar
Chambers, J. E. and Wetherill, G. W. (2001). Planets in the asteroids belts. Meteorit. Planet. Sci., 36, 381–99.CrossRefGoogle Scholar
Chase, C. G. and Patchett, P. J. (1988). Stored mafic/ultramafic crust and early Archean mantle depletion. Earth Planet. Sci. Lett., 91, 66–72.CrossRefGoogle Scholar
Chaussidon, M., Robert, F. and McKeegan, K. D. (2006). Li and B isotopic variations in an Allende calcium–aluminium-rich inclusions: evidence for the in situ decay of short-lived 10Be and for the possible presence of the short-lived nuclide 7Be in the early solar system. Geochim. Cosmochim. Acta., 70, 224–45.CrossRefGoogle Scholar
Chauvel, C. and Blichert-Toft, J. (2001). A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet. Sci. Lett., 190, 137–51.CrossRefGoogle Scholar
Chauvel, C., Goldstein, S. L. and Hofmann, A. W. (1995). Hydration and dehydration of oceanic crust controls Pb evolution in the mantle. Chem. Geol., 126, 65–75.CrossRefGoogle Scholar
Chen, G. Q. and Ahrens, T. J. (1997). Erosion of terrestrial planet atmosphere by surface motion after a large impact. Phys. Earth Planet. Inter., 100, 21–6.CrossRefGoogle Scholar
Chen, J. H. and Wasserburg, G. J. (1981). The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates. Earth Planet. Sci. Lett., 52, 1–15.CrossRefGoogle Scholar
Chen, J. H. and Wasserburg, G. J. (1996). Live 107Pd in the early solar system and implications for planetary evolution. In Earth Processes: Reading the Isotopic Code, eds. Basu, A. R. and Hart, S. R.. A.G.U. Monograph no. 95, pp. 1–20.Google Scholar
Chiappini, C. and Matteucci, F. (2001). Galactic chemical evolution. In Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F.. New York: Amer. Inst. Physics, pp. 227–38.Google Scholar
Chiappini, C., Matteucci, F. and Romano, D. (2001). Abundance gradients and the formation of the Milky Way. Astrophys. J., 554, 1044–58.CrossRefGoogle Scholar
Choi, B.-G., Krot, A. N. and Wasson, J. T. (2000). Oxygen isotopes in magnetite and fayalite in CV chondrites Kaba and Mokoia. Meteorit. Planet. Sci., 35, 1239–48.CrossRefGoogle Scholar
Chokshi, A., Tielens, A. G. M. and Hollenbuch, D. (1993). Dust coagulation. Astrophys. J., 407, 806–19.CrossRefGoogle Scholar
Chopin, C. (2003). Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth Planet. Sci. Lett., 212, 1–14.CrossRefGoogle Scholar
Christensen, U. (1995). Effects of phase-transitions on mantle convection. Ann. Rev. Earth Planet. Sci., 23, 65–87.CrossRefGoogle Scholar
Christensen, U. R. and Hofmann, A. W. (1994). Segregation of subducted oceanic-crust in the convecting mantle. J. Geophys. Res. – Solid Earth, 99 (B10), 19, 867–84.CrossRefGoogle Scholar
Christlieb, N., Gustafsson, B., Korn, A. J.et al. (2004). HE 0107–5240, a chemically ancient star. A detailed abundance analysis. Astrophys. J., 603, 708–28.CrossRefGoogle Scholar
Clarke, D. B. (1996). Two centuries after Hutton's “Theory of the Earth”: the status of granite science. Trans. Roy. Soc. Edinburgh: Earth Sci., 87, 353–9.CrossRefGoogle Scholar
Clarke, W. B., Beg, M. A. and Craig, H. (1969). Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett., 6, 213–20.CrossRefGoogle Scholar
Clayton, D. D. (1994). Production of 26Al and other extinct radionuclides by low energy heavy cosmic ray in molecular clouds. Nature, 368, 222–4.CrossRefGoogle Scholar
Clayton, D. D. and Jin, L. (1995). Gamma rays, cosmic rays, and extinct radioactivity in molecular clouds. Astrophys. J., 451, 681–99.CrossRefGoogle Scholar
Clayton, D. D. and Timmes, F. X. (1997). Implications of presolar grains for galactic chemical evolution. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. Physics, pp. 237–64.Google Scholar
Clayton, R. N. (1993). Oxygen isotopes in meteorites. Ann. Rev. Earth Planet. Sci., 21, 115–49.CrossRefGoogle Scholar
Clayton, R. N. (2002). Self-shielding in the Solar nebula. Nature, 415, 860–1.CrossRefGoogle Scholar
Clayton, R. N. (2003). Oxygen isotopes in the Solar system. Space Sci. Rev., 106, 19–32.CrossRefGoogle Scholar
Clayton, R. N., Grossman, L. and Mayeda, T. K. (1973). A component of primitive nuclear composition in carbonaceous meteorites. Science, 182, 485–8.CrossRefGoogle ScholarPubMed
Clayton, R. N., Mayeda, T. K. and Molini-Velsko, C. (1985). Isotopic variations in Solar System material: evaporation and condensation of silicates. In Protostars and Planets II, eds. Black, D. C. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 755–71.Google Scholar
Clayton, R. N., Hinton, R. W. and Davis, A. M. (1988). Isotopic variations in the rock-forming elements in meteorites. Phil. Trans. Roy. Soc. London, A325, 483–501.CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. (1996). Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta, 60, 1999–2017.CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. (1999). Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta, 63, 2089–104.CrossRefGoogle Scholar
Coffin, M. F. and Eldholm, O. (1994). Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys., 32, 1–36.CrossRefGoogle Scholar
Collier, M. R., Hamilton, D. C. and Gloeckler, G. (1998). Oxygen 16 to oxygen 18 abundance ratio in the solar wind observed by Wind/Mass. J. Geophys. Res., 103 (A1), 7–14.CrossRefGoogle Scholar
Coltice, N. and Ricard, Y. (1999). Geochemical observations and one layer mantle convection. Earth Planet. Sci. Lett., 174, 125–37.CrossRefGoogle Scholar
Conder, J. A., Wiens, D. A. and Morris, J. (2002). On the decompression melting structure at volcanic arcs and back-arc spreading centers. Geophys. Res. Lett. 29, 1727–31.CrossRefGoogle Scholar
Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust – contrasting results from surface samples and shales. Chem. Geol., 104, 1–37.CrossRefGoogle Scholar
Condie, K. C. (1994). Greenstones through time. In Archean Crustal Evolution, ed. Condie, K. C.. Amsterdam: Elsevier, pp. 85–120.Google Scholar
Condie, K. C. (1998). Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett., 163, 97–108.CrossRefGoogle Scholar
Condie, K. C. (2000). Episodic continental growth models: afterthoughts and extensions. Tectonophysics, 322, 153–62.CrossRefGoogle Scholar
Condie, K. C. (2005). tonalite, trondhjemite and granodiorite rockss and adakites: are they both slab melts? Lithos, 80, 33–44.CrossRefGoogle Scholar
Connolly, H. C., Jr. and Hewins, R. H. (1995). Chondrules as products of dust collisions with totally molten droplets within a dust-rich nebular environment – an experimental investigation. Geochim. Cosmochim. Acta, 59, 3231–46.CrossRefGoogle Scholar
Connolly, H. C., Jr. and Love, S. G. (1998). The formation of chondrules: petrologic tests of the shock wave model. Science, 280, 62–7.CrossRefGoogle Scholar
Cowan, J. and Sneden, C. (2006). Heavy element synthesis in the oldest stars and the early Universe. Nature, 440, 1151–6.CrossRefGoogle ScholarPubMed
Cowan, J. J., Pfeiffer, B., Kratz, K. L., Thielemann, F. K., Sneden, C., Burles, S., Tytler, D. and Beers, T. C. (1999). r-Process abundances and chronometers in metal-poor stars. Astrophys. J., 521, 194–205.CrossRefGoogle Scholar
Crabb, J., Lewis, R. S. and Anders, E. (1982). Extinct 129I in C3 chondrites. Geochim. Cosmochim. Acta, 46, 2511–25.CrossRefGoogle Scholar
Crisp, J. A. (1984). Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res., 20, 177–211.CrossRefGoogle Scholar
Cuzzi, J. N., Dobrovolskis, A. R. and Hogan, R. C. (1996). Turbulence, chondrules and planetesimals. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 35–43.Google Scholar
Cuzzi, J. N., Davis, S. S. and Dobrovolskis, A. R. (2003). Blowing in the wind. II. Creation and redistribution of refractory inclusions in turbulent protoplanetary nebula. Icarus, 166, 385–402.CrossRefGoogle Scholar
Dalpe, C. and Baker, D. R. (2000). Experimental investigation of large-ion-lithophile-element-, high-field-strength-element-, and rare-earth-element-partitioning between calcic amphibole and basaltic melt: the effects of pressure and oxygen fugacity. Contrib. Mineral. Petrol., 140, 223–50.Google Scholar
Davies, G. F. (1990). Heat and mass transport in the early Earth. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 175–94.Google Scholar
Davies, J. H. and Blanckenburg, F. (1995). Slab break off – a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett., 129, 85–102.CrossRefGoogle Scholar
Davis, A. C., Bickle, M. J. and Teagle, D. A. H. (2003). Imbalance in the oceanic strontium budget. Earth Planet. Sci. Lett., 211, 173–87.CrossRefGoogle Scholar
Day, J. M. D., Floss, C., Taylor, L. A., Anand, M. and Patchen, A. D. (2006). Evolved mare basalt magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogenesis of Antarctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007. Geochim. Cosmochim. Acta, 70, 5957–89.CrossRefGoogle Scholar
Deloule, E. and Robert, F. (1995). Interstellar water in meteorites? Geochim. Cosmochim. Acta, 59, 4695–706.CrossRefGoogle ScholarPubMed
Deloule, E., Robert, F. and Doukhan, J. C. (1998). Interstellar hydroxyl in meteoritic chondrules: implications for the origin of water in the inner solar system. Geochim. Cosmochim. Acta, 62, 3367–78.CrossRefGoogle Scholar
DePaolo, D. J., Linn, A. M. and Schubert, G. (1991). The continental crustal age distribution – methods of determining mantle separation ages from Sm–Nd isotopic data and application to the Southwestern United States. J. Geophys. Res., 96 (B2), 2071–88.CrossRefGoogle Scholar
Deruelle, B., Dreibus, G. and Jambon, A. (1992). Iodine abundances in oceanic basalts: implications for Earth dynamics. Earth Planet. Sci. Lett., 108, 217–27.CrossRefGoogle Scholar
Wit, M. J. (1998). On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambrian Res., 91, 181–226.CrossRefGoogle Scholar
Dikov, Y. P., Ivanov, A. V., Wlotzka, F., Galimov, E. M. and Wänke, G. (2002). The nature of volatiles in the lunar regolith. Solar System Res., 36, 1–11.CrossRefGoogle Scholar
Dobson, D. P. (2000). 57Fe and Co tracer diffusion in liquid Fe–FeS at 2 and 5 GPa. Phys. Earth Planet. Inter., 120, 137–44.CrossRefGoogle Scholar
Downes, H. (1993). The nature of the lower continental crust of Europe: petrological and geochemical evidence from xenoliths. Phys. Earth Planet. Inter., 79, 195–218.CrossRefGoogle Scholar
Draine, B. T. (2003). Interstellar dust grains. Ann. Rev. Astron. Astrophys., 41, 241–89.CrossRefGoogle Scholar
Drake, M. J. (1986). Is lunar bulk material similar to earth's mantle? In Origin of the Moon, eds. Hartmann, W. K., Phillips, R. J. and Taylor, G. J.. Houston, TX: Lunar Planet. Inst., pp. 105–24.Google Scholar
Drake, M. J. (2001). The eucrite/Vesta story. Meteorit. Planet. Sci., 36, 501–13.CrossRefGoogle Scholar
Dreibus, G., Bruckner, J. and Wänke, H. (1997). On the core mass of the asteroid Vesta. Meteorit. Planet. Sci., 32, A-36.Google Scholar
Drouart, A., Dubrulle, B., Gautier, D. and Robert, F. (1999). Structure and transport in the solar nebula from constraints on deuterium enrichment and giant planets formation. Icarus, 140, 129–55.CrossRefGoogle Scholar
Drozd, R. J. and Podosek, F. A. (1976). Primordial 129Xe in meteorites. Earth Planet. Sci. Lett., 31, 15–30.CrossRefGoogle Scholar
Ducea, M. and Saleeby, J. B. (1998). The age and origin of a thick mafic-ultramafic keel from beneath the Sierra Nevada batholith. Contrib. Mineral. Petrol., 133, 169–85.CrossRefGoogle Scholar
Ebel, D. S. and Grossman, L. (2000). Condensation in dust-enriched systems. Geochim. Cosmochim. Acta, 64, 339–66.CrossRefGoogle Scholar
Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E. and Tomkin, J. (1993). The chemical evolution of the galactic disk. 1. Analysis and results. Astron. Astrophys., 275, 101–52.Google Scholar
Eiler, J. M., Farley, K. A. and Stolper, E. M. (1998). Correlated helium and lead isotope variations in Hawaiian lavas. Geochim. Cosmochim. Acta, 62, 1977–84.CrossRefGoogle Scholar
Eiler, J. M., Crawford, A., Elliott, T., Farley, K. A., Valley, J. W. and Stolper, E. M. (2000). Oxygen isotope geochemistry of oceanic-arc lavas. J. Petrol., 41, 229–56.CrossRefGoogle Scholar
Eisele, J., Sharma, M., Galer, S. J. G., Blichert-Toft, J., Devey, C. W. and Hofmann, A. W. (2002). The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett., 196, 197–212.CrossRefGoogle Scholar
Elderfield, H. and Pagett, R. (1986). Rare earth elements in ichthyolites: variations with redox conditions and depositional environment. Sci. Total Envir., 49, 175–97.CrossRefGoogle Scholar
Elkins-Tanton, L. T., Hager, B. H. and Grove, T. L. (2004). Magmatic effects of the lunar late heavy bombardment. Earth Planet. Sci. Lett., 222, 17–27.CrossRefGoogle Scholar
Elliott, B. A. (2001). Crystallization conditions of the Wiborg rapakivi batholith, SE Finland: an evaluation of amphibole and biotite mineral chemistry. Mineral. Petrol., 72, 305–24.CrossRefGoogle Scholar
Elliott, T., Plank, T., Zindler, A., White, W. and Bourdon, B. (1997). Element transport from slab to volcanic front at the Mariana Arc. J. Geophys. Res., 102, 14991–15 019.CrossRefGoogle Scholar
Elliott, T., Zindler, A. and Bourdon, B. (1999). Exploring the kappa conundrum: the role of recycling in the lead isotope evolution of the mantle. Earth Planet. Sci. Lett., 169, 129–45.CrossRefGoogle Scholar
Elmegreen, B. G. (1981). Grain formation behind shocks and the origin of isotopically anomalous meteorite inclusions. Astrophys. J., 251, 820–33.CrossRefGoogle Scholar
Elmegreen, B. G. (1985). Molecular clouds and star formation: an overview. In Protostars and Planets II, eds. Black, D. C. and Matthews, M. S.. Tucson, AZ: University of Arizona, Press, pp. 33–58.Google Scholar
Endress, M. and Bischoff, A. (1996). Carbonates in CI chondrites: clues to parent body evolution. Geochim. Cosmochim. Acta, 60, 489–507.CrossRefGoogle ScholarPubMed
Ernst, W. G. (2001). Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices – implications for arcs and continental growth. Phys. Earth Planet. Inter., 127, 253–75.CrossRefGoogle Scholar
Essene, E. J. (1989). The current status of thermobarometry in metamorphic rocks. In Evolution of Metamorphic Belts, Vol. 43, eds. Daily, J. S., Cliff, R. A. and Yardley, B. W. D.. Geol. Soc. Spec. Pub., pp. 1–44.Google Scholar
Evans, N. J. II (1999). Physical conditions in regions of star formation. Ann. Rev. Astron. Astrophys., 37, 311–62.CrossRefGoogle Scholar
Fagan, T. J., McKeegan, K. D., Krot, A. N. and Keil, K. (2001). Calcium–aluminum-rich inclusions in enstatite chondrites (II): oxygen isotopes. Meteorit. Planet. Sci., 36, 223–30.CrossRefGoogle Scholar
Fahey, A. J., Zinner, E. K., Crozaz, G. and Kornacki, A. S. (1987). Micro distributions of Mg isotopes and REE abundances in a Type A calcium–aluminum-rich inclusion from Efremovka. Geochim. Cosmochim. Acta, 51, 3215–29.CrossRefGoogle Scholar
Farouqi, K., Freiburghaus, C., Kratz, K.-L., Pfeiffer, B., Rauscher, T. and Thielemann, F.-K. (2005). Astrophysical conditions for an r-process in the high-entropy wind scenario of type II supernovae. Nuclear Physics, A758, 631c-4.Google Scholar
Farquhar, J. and Wing, B. A. (2003). Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett., 213, 1–13.CrossRefGoogle Scholar
Farquhar, J., Chacko, T. and Frost, B. R. (1993). Strategies for high-temperature oxygen isotope thermometry: a worked example from the Laramie Anorthosite Complex, Wyoming, USA. Earth Planet. Sci. Lett., 117, 407–22.CrossRefGoogle Scholar
Farquhar, J., Chacko, T. and Ellis, D. J. (1996). Preservation of oxygen isotope compositions in granulites from Northwestern Canada and Enderby Land, Antarctica: implications for high-temperature isotopic thermometry. Contrib. Mineral. Petrol., 125, 213–24.CrossRefGoogle Scholar
Farquhar, J., Savarino, J., Airieau, S. and Thiemens, M. H. (2001). Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J. Geophys. Res., 106 (E12), 32, 829–39.CrossRefGoogle Scholar
Feigelson, E. D. and Montmerle, T. (1999). High-energy processes in young stellar objects. Ann. Rev. Astron. Astrophys., 37, 363–408.CrossRefGoogle Scholar
Fitton, J. G. and Dunlop, H. M. (1985). The Cameroon line, West Africa, and its bearing on the origin of oceanic and continental alkali basalts. Earth Planet. Sci. Lett., 72, 23–38.CrossRefGoogle Scholar
Flam, F. (1991). Seeing stars in a handful of dust. Science, 253, 380–1.Google Scholar
Floss, C., James, O. B., McGee, J. J. and Crozaz, G. (1998). Lunar ferroan anorthosite petrogenesis: clues from trace element distributions in FAN subgroups. Geochim. Cosmochim. Acta, 62, 1255–83.CrossRefGoogle Scholar
Foley, S., Tiepolo, M. and Vannucci, R. (2002). Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 412, 837–40.CrossRefGoogle Scholar
Forsyth, D. and Uyeda, S. (1975). On the relative importance of the driving forces of plate motion. Geophys. J. Roy. Astron. Soc., 43, 163–200.CrossRefGoogle Scholar
Fortenfant, S. S., Rubie, D. C., Reid, J., Dalpé, C., Capmas, F. and Gessmann, C. K. (2003). Partitioning of Re and Os between liquid metal and magnesiowüstite at high pressure. Phys. Earth Planet. Inter., 139, 77–91.CrossRefGoogle Scholar
Francois, P., Spite, M. and Spite, F. (1993). On the galactic age problem – determination of the [Th/Eu] ratio in halo stars. Astron. Astrophys., 274, 821–4.Google Scholar
Frebel, A., Aoki, W., Christlieb, N.et al. (2005). Nucleosynthetic signatures of the first stars. Nature, 434, 871–3.CrossRefGoogle ScholarPubMed
Freedman, W. L. and Turner, M. S. (2003). Measuring and understanding the universe. Rev. Mod. Phys., 75, 1433–48.CrossRefGoogle Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K.et al. (2001). Final results from the Hubble space telescope key project to measure the Hubble constant. Astrophys. J., 553, 47–72.CrossRefGoogle Scholar
Frick, U. and Chang, S. (1978). Elimination of chromite and novel sulfides as important carrier phases of noble gases in carbonaceous chondrites. Meteoritics, 13, 465–70.Google Scholar
Friedmann, A. (1922). On the curvature of space. Zeitschrift fur Physik, 10, 377–86.Google Scholar
Gaillardet, J., Viers, J. and Dupré, B. (2003). Trace elements in river waters. In Surface and Ground Water, Weathering, and Soils, Vol. 5, ed. Drever, J. I.. Amsterdam: Elsevier-Pergamon, pp. 225–72.Google Scholar
Galer, S. J. G. and Goldstein, S. L. (1996). Influence of accretion on the lead in the Earth. In Earth Processes: Reading the Isotopic Code, eds. Basu, A. and Hart, S.. A.G.U. Monograph no. 95, pp. 75–98.Google Scholar
Galer, S. J. G. and O'Nions, R. K. (1985). Residence time of thorium, uranium and lead in the mantle and implications for mantle convection. Nature, 316, 778–82.CrossRefGoogle Scholar
Gallino, R., Busso, M. and Lugaro, M. (1997). Neutron capture nucleosynthesis in asymptotic giant branch phase in stellar evolution stars. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. J. and Zinner, E.. New York: Amer. Inst. Physics Vol. 402, pp. 115–53.Google Scholar
Gary, M., McAfee, R. Jr. and Wolf, C. L. (1973). Glossary of Geology. New York: Amer. Geol. Inst. Publ., pp. 805.Google Scholar
Gast, P. W. (1968). Upper mantle chemistry and the evolution of the earth's crust. In The History of the Earth's Crust, ed. Phinney, R. A.. Princeton, NJ: Princeton University Press, pp. 15–27.Google Scholar
Gast, P. W., Tilton, G. R. and Hedge, C. (1964). Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145, 1181–5.CrossRefGoogle ScholarPubMed
Geiss, J. and Gloeckler, G. (1998). Abundances of deuterium and helium-3 in the protosolar cloud. In Primordial Nuclei and their Galactic Evolution, eds. Prantzos, N., Tosi, M. and Steiger, R.. Dordrecht: Kluwer Acad. Publ., pp. 239–50.Google Scholar
Geiss, J. and Reeves, H. (1972). Cosmic and solar system abundances of deuterium and helium-3. Astron. Astrophys., 18, 126–32.Google Scholar
Genda, H. and Abe, Y. (2003). Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus, 164, 149–62.CrossRefGoogle Scholar
Gerling, E. K. and Levsky, L. K. (1956). On the origin of inert gases in stony meteorites. Geochimiya, 7, 59–64.Google Scholar
Gessmann, C. K., Wood, B. J., Rubie, D. C. and Kilburn, M. R. (2001). Solubility of silicon in liquid metal at high pressure: implications for the composition of the Earth's core. Earth Planet. Sci. Lett., 184, 367–76.CrossRefGoogle Scholar
Ghosh, A. and McSween, H. Y. J. (1998). A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187–206.CrossRefGoogle Scholar
Gibert, B., Schilling, F. R., Tommasi, A. and Mainprice, D. (2003). Thermal diffusivity of olivine single-crystals and polycrystalline aggregates at ambient conditions – a comparison. Geophys. Res. Lett., 30, 2172–7.CrossRefGoogle Scholar
Gill, J. A. (1981). Orogenic Andesites and Plate Tectonics. New York: Springer-Verlag, pp. 390.CrossRefGoogle Scholar
Gilroy, K. K., Sneden, C., Pilachowski, C. A. and Cowan, J. J. (1988). Abundances of n-capture elements in Population II stars. Astrophys. J., 327, 298–320.CrossRefGoogle Scholar
Gilmour, J. D., Whitby, J. A., Turner, G., Bridges, J. C. and Hutchison, R. (2000). The iodine–xenon system in clasts and chondrules from ordinary chondrites: implications for early solar system chronology. Meteorit. Planet. Sci., 35, 445–55.CrossRefGoogle Scholar
Gloeckler, G. and Geiss, J. (2001). Composition of the local interstellar cloud from observations and interstellar pickup ions. In Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F.. New York: Amer. Inst. Phys., pp. 281–90.Google Scholar
Godard, M., Jousselin, D. and Bodinier, J.-L. (2000). Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth Planet. Sci. Lett., 180, 133–48.CrossRefGoogle Scholar
Goldstein, S. L. and Hemming, S. R. (2003). Long-lived isotopic tracers in oceanography, paleo-oceanography, and ice-sheet dynamics. In The Oceans and Marine Geochemistry, Vol. 6, ed. Elderfield, H.. Amsterdam: Elsevier-Pergamon, pp. 453–90.Google Scholar
Goldstein, S. J. and Jacobsen, S. B. (1987). The Nd and Sr isotopic systematics of river-water dissolved material: implications for the sources of Nd and Sr in seawater. Chem. Geol., 66, 245–72.Google Scholar
Goldstein, S. J. and Jacobsen, S. B. (1988). Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett., 87, 249–65.CrossRefGoogle Scholar
Göpel, C., Manhes, G. and Allègre, C. J. (1994). U–Pb systematics of phosphates from equilibrated ordinary chondrites. Earth Planet. Sci. Lett., 121, 153–71.CrossRefGoogle Scholar
Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E. and Lee, T. (2001). Extinct radioactivities and protosolar cosmic rays: self-shielding and light elements. Astrophys. J., 548, 1051–70.CrossRefGoogle Scholar
Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E. and Lee, T. (2006). The irradiation origin of beryllium radioisotopes and other short-lived radionuclides. Astrophys. J., 640, 1163–70.CrossRefGoogle Scholar
Grady, M. M. and Wright, L. P. (2003). Elemental and isotopic abundances of carbon and nitrogen in meteorites. Space Sci. Rev., 106, 231–48.CrossRefGoogle Scholar
Graham, A. L., Bewan, A. W. R. and Hutchison, R. (1985). Catalogue of Meteorites. Tucson, AZ: University of Arizona Press, pp. 199.Google Scholar
Graham, D. W. (2002). Noble gas isotope geochemistry of mid-ocean ridges and ocean island basalts: characterization of mantle source reservoirs. In Noble Gases in Geochemistry and Cosmochemistry, Vol. 47, eds. Porcelli, D., Ballentine, C. J. and Wieler, R.. Washington DC: Mineral. Soc. Amer., pp. 247–318.Google Scholar
Grand, S. P. (1994). Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99 (B6), 11 591–621.CrossRefGoogle Scholar
Graner, F. and Dubrulle, B. (1994). Titius–Bode laws in the solar system: I. Scale invariance explains everything. Astron. Astrophys., 282, 262–8.Google Scholar
Gratton, R. G. and Sneden, C. (1994). Abundances of neutron-capture elements in metal-poor stars. Astron. Astrophys., 287, 927–46.Google Scholar
Gray, C. M., Papanastassiou, D. A. and Wasserburg, G. J. (1973). The identification of early condensates from the solar nebula. Icarus, 20, 213–39.CrossRefGoogle Scholar
Green, D. H. and Ringwood, A. E. (1963). Mineral assemblages in a model mantle composition. J. Geophys. Res., 68, 937–45.CrossRefGoogle Scholar
Green, D. H. and Ringwood, A. E. (1967). The genesis of basaltic magmas. Contrib. Mineral. Petrol., 15, 103–90.CrossRefGoogle Scholar
Grevesse, N. and Sauval, A. J. (1998). Standard solar composition. Space Sci. Rev., 85, 161–74.CrossRefGoogle Scholar
Grossman, J. N., Rubin, A. E., Nagahara, N. and King, E. A. (1988). Properties of chondrules. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 619–59.Google Scholar
Grossman, L. (1972). Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 36, 597–619.CrossRefGoogle Scholar
Grossman, L. (1975). Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta, 39, 433–54.CrossRefGoogle Scholar
Grossman, L., Ganapathy, R. and Davis, A. M. (1977). Trace elements in the Allende meteorite – III. Coarse-grained inclusions revisited. Geochim. Cosmochim. Acta 41, 1647–64.CrossRefGoogle Scholar
Grossman, L., Ebel, D. S., Simon, S. B., Davis, A. M., Richter, F. M. and Parsad, N. M. (2000). Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: the separate roles of condensation and evaporation. Geochim. Cosmochim. Acta, 64, 2879–94.CrossRefGoogle Scholar
Grossman, L., Ebel, D. S. and Simon, S. B. (2002). Formation of refractory inclusions by evaporation of condensate precursors. Geochim. Cosmochim. Acta, 66, 145–61.CrossRefGoogle Scholar
Grove, T. L. (2000). Origin of magmas. In Encyclopedia of Volcanoes. San Diego, CA: Academic Press, pp. 133–47.Google Scholar
Haack, H., Rasmussen, K. L. and Warren, P. H. (1990). Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids. J. Geophys. Res., 95, 5111–24.CrossRefGoogle Scholar
Haapala, I. and Ramo, O. T. (1999). Rapakivi granites and related rocks: an introduction. Precambrian Res., 95, 1–7.CrossRefGoogle Scholar
Haapala, I., Ramo, O. T. and Frindt, S. (2005). Comparison of Proterozoic and Phanerozoic rift-related basaltic–granitic magmatism. Lithos, 80, 1–32.CrossRefGoogle Scholar
Haederle, M. and Atherton, M. P. (2002). Shape and intrusion style of the Coastal Batholith, Peru. Tectonophysics, 345, 17–28.CrossRefGoogle Scholar
Halliday, A. N. and Porcelli, D. (2001). In search of lost planets – the paleocosmochemistry of the inner solar system. Earth Planet. Sci. Lett., 192, 545–59.CrossRefGoogle Scholar
Halliday, A. N., Lee, D.-C. and Jacobsen, S. B. (2000). Tungsten isotopes, the timing of metal–silicate fractionation and the origin of the Earth and Moon. In Origin of the Earth and Moon, eds. Righter, K. and Canup, R.. Tucson, AZ: University of Arizona Press, pp. 45–62.Google Scholar
Hanowski, N. P. and Brearley, A. J. (2000). Iron-rich aureoles in the CM carbonaceous chondrites Murray, Murchison and Allan Hills 81002: evidence for in situ aqueous alteration. Meteorit. Planet. Sci., 35, 1291–308.CrossRefGoogle Scholar
Hansen, B. M. S. and Liebert, J. (2003). Cool white dwarfs. Ann. Rev. Astron. Astrophys., 41, 465–515.CrossRefGoogle Scholar
Hansen, U. and Yuen, D. A. (1988). Numerical simulation of thermal–chemical instabilities at the core–mantle boundary. Nature, 334, 237–40.CrossRefGoogle Scholar
Harley, S. L. (1989). The origins of granulites: a metamorphic perspective. Geol. Mag., 126, 215–47.CrossRefGoogle Scholar
Harris, M. J., Lambert, D. L. and Goldman, A. (1987). The 12C/13C and 16O/18O ratios in the solar photosphere. Mon. Not. Roy. Astr. Soc., 224, 237–55.CrossRefGoogle Scholar
Harris, W. E., Durrell, P. R., Pierce, M. J. and Secker, J. (1998). Constraints on the Hubble constant from observations of the brightest red-giant stars in a Virgo-cluster galaxy. Nature, 395, 45–7.CrossRefGoogle Scholar
Harrison, T. M., Blichert-Toft, J., Muller, W., Albarède, F., Holden, P. and Mojzsis, S. J. (2005). Heterogeneous hadean hafnium: evidence of continental crust at 4.4 to 4.5 Gyr. Science, 310, 1947–50.CrossRefGoogle Scholar
Hart, S. R. and Zindler, A. (1986). In search of a bulk-earth composition. Chem. Geol., 57, 247–67.CrossRefGoogle Scholar
Hartmann, L. (2000). Observational constraint on transport (and mixing) in pre-main sequence disks. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 55–68.CrossRefGoogle Scholar
Hartmann, L. and Kenyon, S. J. (1985). On the nature of FU Orionis objects. Astrophys. J., 299, 462–78.CrossRefGoogle Scholar
Hartmann, L., Ballesteros-Paredes, J. and Bergin, E. A. (2001). Rapid formation of molecular clouds and stars in the solar neighborhood. Astrophys. J., 562, 852–68.CrossRefGoogle Scholar
Hartmann, W. K., Phillips, R. J. and Taylor, G. J., eds. (1984). Origin of the Moon. Houston: Lunar and Planetary Inst., pp. 781.Google Scholar
Hawkesworth, C. J. and Kemp, A. I. S. (2006). The differentiation and rates of generation of the continental crust. Chem. Geol., 226, 134–43.CrossRefGoogle Scholar
Hay, W. W., Wold, C. N., Soding, E. and Floegel, E. (2001). Evolution of sediment fluxes and ocean salinity. In Geologic Modeling and Simulation: Sedimentary Systems, eds. Merriam, D. F. and Davis, J. C.. Dordrecht: Kluwer/Plenum, pp. 153–67.Google Scholar
Hayashi, C., Nakazava, K. and Mizuno, H. (1979). Earth melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett., 43, 22–48.CrossRefGoogle Scholar
Heber, V. S., Brooker, R. A., Kelley, S. P. and Wood, B. J. (2007). Crystal–melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim. Cosmochim. Acta, 71, 1041–61.CrossRefGoogle Scholar
Herzog, G. F., Anders, E., Alexander, E. C. Jr.. and Lewis, R. S. (1973). Iodine-129 / Xenon-129 age of magnetite from the Orgueil meteorite. Science, 180, 489–91.CrossRefGoogle ScholarPubMed
Hewins, R. H. (1988). Experimental studies of chondrules. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 660–79.Google Scholar
Hewins, R. H. (1996). Chondrules and protoplanetary disk: an overview. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 3–9.Google Scholar
Hewins, R. H. and Newsom, H. E. (1988). Igneous activity in the early solar system. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 73–101.Google Scholar
Hewins, R. H., Jones, R. H. and Scott, E. R. D., eds. (1996). Chondrules and the Protoplanetary Disk. Cambridge, UK: Cambridge University Press, pp. 346.Google Scholar
Hewitt, J., McKenzie, D. P. and Weiss, N. O. (1975). Dissipative heating in convective flows. J. Fluid Mech., 68, 721–38.CrossRefGoogle Scholar
Hillebrandt, W. and Niemeyer, J. C. (2000). Type Ia supernova explosion models. Ann. Rev. Astron. Astrophys., 38, 191–230.CrossRefGoogle Scholar
Hilton, D. R., Fischer, T. P. and Marty, B. (2002). Noble gases and volatiles recycling at subduction zones. In Noble Gases in Geochemistry and Cosmochemistry, Vol. 47, eds. Porcelli, D., Ballentine, C. J. and Wieler, R.. Washington DC: Mineral. Soc. Amer., pp. 319–70.Google Scholar
Hinton, R. W., Davis, A. M., Scatena-Wachel, D. E., Grossman, L. and Draus, R. J. (1988). A chemical and isotopic study of hibonite-rich refractory inclusions in primitive meteorites. Geochim. Cosmochim. Acta, 52, 2573–98.CrossRefGoogle Scholar
Hiroi, T., Pieters, C. M., Zolensky, M. E. and Lipschutz, M. E. (1993). Evidence of thermal metamorphism on the C-asteroid, G-asteroid, B-asteroid, and F-asteroid. Science, 261 (5124), 1016–18.CrossRefGoogle Scholar
Hiyagon, H. (1994). Retention of solar helium and neon in interplanetary dust particles in deep-sea sediment. Science, 263 (5151), 1257–9.CrossRefGoogle ScholarPubMed
Hiyagon, H. and Ozima, M. (1986). Partition of noble gases between olivine and basalt melt. Geochim. Cosmochim. Acta, 50, 2045–57.CrossRefGoogle Scholar
Hoefs, J. (2005). Stable Isotope Geochemistry (3rd edition). Berlin: Springer-Verlag, pp. 197.Google Scholar
Hofmann, A. W. (1988). Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90, 297–314.CrossRefGoogle Scholar
Hofmann, A. W. (2003). Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Amsterdam: Elsevier-Pergamon, pp. 61–101.Google Scholar
Hofmann, A. W. and White, W. M. (1982). Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett., 57, 421–36.CrossRefGoogle Scholar
Hohenberg, C. M., Hudson, B., Kennedy, B. M. and Podosek, F. A. (1981). Noble gas retention chronologies for the St Severin meteorite. Geochim. Cosmochim. Acta, 45, 535–46.CrossRefGoogle Scholar
Holland, H. D. (2002). Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta, 66, 3811–26.CrossRefGoogle Scholar
Holloway, J. R. (1998). Graphite–melt equilibria during mantle melting: constraints on CO2 in mid-ocean ridge basalt magmas and the carbon content in the mantle. Chem. Geol., 147, 89–97.CrossRefGoogle Scholar
Holzheid, A., Sylvester, P., O'Neill, H. S. C., Rubie, D. C. and Palme, H. (2000). Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum. Nature, 406, 396–9.CrossRefGoogle ScholarPubMed
Honda, M., McDougall, I., Patterson, D. B., Doulgeris, A. and Clague, D. A. (1993). Noble-gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii – a solar component in the Earth. Geochim. Cosmochim. Acta, 57, 859–74.CrossRefGoogle Scholar
Honda, S., Aoki, W., Kajino, T.et al. (2004). Spectroscopic studies of extremely metal-poor stars with the Subaru high dispersion spectrograph. II. The r-process elements, including thorium. Astrophys. J., 607, 474–98.CrossRefGoogle Scholar
Hood, L. L. (1998). Thermal processing of chondrule precursors in planetesimal bow shocks. Meteorit. Planet. Sci., 33, 97–107.CrossRefGoogle Scholar
Hood, L. L. and Ceisla, F. (2001). The scale size of chondrule formation regions: constraints imposed by chondrule cooling rates. Meteorit. Planet. Sci., 36, 1571–85.CrossRefGoogle Scholar
Hood, L. L. and Horanyi, M. (1993). The nebular shock-wave model for chondrule formation – one-dimensional calculations. Icarus, 106, 179–89.CrossRefGoogle Scholar
Hood, L. L. and Kring, D. A. (1996). Models for multiple heating mechanisms. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 265–76.Google Scholar
Hood, L. L. and Zuber, M. T. (2000). Recent refinements in geophysical constraints on Lunar origin and evolution. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 397–409.Google Scholar
Hoppe, P. and Ott, U. (1997). Mainstream silicon carbide grains from meteorites. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. Phys., pp. 27–57.Google Scholar
Hsu, W. B., Wasserburg, G. J. and Huss, G. R. (2000). High time resolution by use of the 26Al chronometer in the multistage formation of a calcium–aluminium-rich inclusions. Earth Planet. Sci. Lett., 182, 15–29.CrossRefGoogle Scholar
Hubble, E. P. (1929). A clue to the structure of the Universe. Astron. Soc. Pacific Leaflets, 1, 93.Google Scholar
Humayun, M. and Cassen, P. (2000). Processes determining the volatile abundances of the meteorites and terrestrial planets. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona, Press, pp. 3–23.Google Scholar
Humler, E., Langmuir, C. and Daux, V. (1999). Depth versus age: new perspectives from the chemical compositions of ancient crust. Earth Planet. Sci. Lett., 173, 7–23.CrossRefGoogle Scholar
Hunten, D. M., Pepin, R. O. and Walker, J. C. G. (1987). Mass fractionation in hydrodynamic escape. Icarus, 69, 532–49.CrossRefGoogle Scholar
Hurley, P. M. (1968). Absolute abundance and distribution of Rb, K, and Sr in the Earth. Geochim. Cosmochim. Acta, 32, 273–84.CrossRefGoogle Scholar
Huss, G. R. (1990). Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism. Nature, 347, 159–62.CrossRefGoogle Scholar
Huss, G. R., Lewis, R. S. and Hemkin, S. (1996). The “normal planetary” noble gas component in primitive chondrites: compositions, carrier, and metamorphic history. Geochim. Cosmochim. Acta, 60, 3311–40.CrossRefGoogle Scholar
Huss, G. R., Hutcheon, I. D. and Wasserburg, G. J. (1997). Isotopic systematic of presolar silicon carbide from the Orgueil (CI) chondrite: implication for Solar system formation and stellar nucleosynthesis. Geochim. Cosmochim. Acta, 61, 5117–48.CrossRefGoogle Scholar
Huss, G. R., MacPherson, G. J., Wasserburg, G. J., Russell, S. S. and Srinivasan, G. (2001). Aluminum-26 in calcium–aluminum-rich inclusions and chondrules from unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 36, 975–97.CrossRefGoogle Scholar
Huss, G. R., Meshik, A. P., Smith, J. B. and Hohenberg, C. M. (2004). Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula. Geochim. Cosmochim. Acta, 67, 4823–48.CrossRefGoogle Scholar
Ingersoll, R. V. and Busby, C. J. (1995). Tectonics of sedimentary basins. In Tectonics of Sedimentary Basins, eds. Busby, C. J. and Ingersoll, R. V.. Oxford, UK: Blackwell, pp. 1–51.Google Scholar
Isern, J., Bravo, E., Garcia-Berro, E., Dominguez, I. and Salaris, M. (2001). On the internal composition of white dwarfs. Nucl. Phys., A688, 122c–5.Google Scholar
Israelian, G., Lopez, R. J. G. and Rebolo, R. (1998). Oxygen abundances in unevolved metal-poor stars from near-ultraviolet OH lines. Astrophys. J., 507, 805–17.
Israelian, G., Rebolo, R., Basri, G., Casares, J. and Martin, E. L. (1999). Evidence of a supernova origin for the black hole in the system GRO J1655-40. Nature, 401, 142–4.CrossRefGoogle Scholar
Israelian, G., Rebolo, R., Garcia, L. G.et al. (2001). Oxygen in the very early galaxy. Astrophys. J., 551, 833–51.CrossRefGoogle Scholar
Istomin, V. G., Grechnev, K. V. and Kochnev, V. A. (1983). Venera-13 and Venera-14: mass spectrometry of the atmosphere. Kosmicheskie Issledovaniya, 21, 410–20.
Iwamori, H. (1994). 238U–230Th–226Ra and 235U–231Pa disequilibria produced by mantle melting with porous and channel flows. Earth Planet. Sci. Lett., 125, 1–16.CrossRefGoogle Scholar
Jackson, M. D., Cheadle, M. J. and Atherton, M. P. (2003). Quantitative modeling of granitic melt generation and segregation in the continental crust. J. Geophys. Res., 108 (B7), 2332–53.CrossRefGoogle Scholar
Jacobsen, S. B. (1988). Isotopic constraints on crustal growth and recycling. Earth Planet. Sci. Lett., 90, 315–29.CrossRefGoogle Scholar
Jacobsen, S. B. (2005). The Hf–W isotopic system and the origin of the Earth and Moon. Ann. Rev. Earth Planet. Sci., 33, 18. 1–40.CrossRefGoogle Scholar
Jacobsen, S. B. and Wasserburg, G. J. (1979). The mean age of mantle and crustal reservoirs. J. Geophys. Res., 84, 7411–27.CrossRefGoogle Scholar
Jacobsen, S. B. and Wasserburg, G. J. (1984). Sm–Nd isotopic evolution of chondrites and achondrites, II. Earth Planet. Sci. Lett., 67, 137–50.CrossRefGoogle Scholar
Jagoutz, E., Palme, H., Baddenhausen, H.et al. (1979). The abundance of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. In Proc. Lunar Planet. Sci. Conf., Vol. 10, pp. 2031–50.Google Scholar
Jakosky, B. M., Pepin, R. O., Johnson, R. E. and Fox, J. L. (1994). Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus, 111, 271–88.CrossRefGoogle Scholar
Jana, D. and Walker, D. (1997a). The influence of silicate melt composition on distribution of siderophile elements among metal and silicate liquids. Earth Planet. Sci. Lett., 150, 463–72.CrossRefGoogle Scholar
Jana, D. and Walker, D. (1997b). The influence of sulfur on partitioning of siderophile elements. Geochim. Cosmochim. Acta, 61, 5255–77.CrossRefGoogle Scholar
Javoy, M. (1998). The birth of the Earth's atmosphere: the behaviour and fate of its major elements. Chem. Geol., 147, 11–25.CrossRefGoogle Scholar
Jerram, D. A. and Widdowson, M. (2005). The anatomy of continental flood basalt provinces: geological constraints on the processes and products of flood volcanism. Lithos, 79, 385–405.CrossRefGoogle Scholar
Jewitt, D., Luu, J. and Trujillo, C. (1998). Large Kuiper Belt objects: the Mauna Kea 8K CCD survey. Astron. J., 115, 2125–35.CrossRefGoogle Scholar
Jochum, K. P., Hofmann, A. W., Ito, E., Seufert, H. M. and White, W. M. (1983). K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature, 306, 431–6.CrossRefGoogle Scholar
Jochum, K. P., Hofmann, A. W. and Seufert, H. M. (1993). Tin in mantle-derived rocks: constraints on Earth evolution. Geochim. Cosmochim. Acta, 57, 3585–95.CrossRefGoogle Scholar
John, T., Scherer, E. E., Haase, K. and Schenk, V. (2004). Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu–Hf–Sm–Nd isotope systematics. Earth Planet. Sci. Lett., 227, 441–56CrossRefGoogle Scholar
Johnson, K. T. M. (1998). Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib. Mineral. Petrol., 133, 60–8.CrossRefGoogle Scholar
Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. and Neal, C. R., eds. (2006). New views of the Moon. In Reviews in Mineralogy and Geochemistry, Vol. 60. Washington DC: Mineral. Soc. Amer., pp. 721.Google Scholar
Jones, J. H. (1996). Chondrite models for the composition of the Earth's mantle and core. Phil. Trans. Roy. Soc. London, A354, 1481–94.CrossRefGoogle Scholar
Jones, J. H. and Drake, M. J. (1986). Geochemical constraints on core formation in the Earth. Nature, 322, 221–8.CrossRefGoogle Scholar
Jones, J. H. and Hood, L. L. (1990). Does the Moon have the same chemical composition as the Earth's upper mantle? In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 85–98.Google Scholar
Jones, J. H. and Palme, H. (2000). Geochemical constraints on the origin of the Earth and Moon. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 197–216.Google Scholar
Jull, M. and Kelemen, P. B. (2001). On the conditions for lower crustal convective instability. J. Geophys. Res., 106 (B4), 6423–46.CrossRefGoogle Scholar
Jull, M., Kelemen, P. B. and Sims, K. (2002). Consequences of diffuse and channelled porous melt migration on uranium series disequilibria. Geochim. Cosmochim. Acta, 66, 4133–48.CrossRefGoogle Scholar
Jurewicz, A. J. G., Mittlefehldt, D. W. and Jones, J. H. (1993). Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts. Geochim. Cosmochim. Acta, 57, 2123–39.CrossRefGoogle Scholar
Jurewicz, A. J. G., Mittlefehldt, D. W. and Jones, J. H. (1995). Experimental partial melting of the St Severin (LL) and Lost City (H) chondrites. Geochim. Cosmochim. Acta, 59, 391–408.CrossRefGoogle Scholar
Kallemeyn, G. W. and Wasson, J. T. (1981). The compositional classification of chondrites: I, The carbonaceous chondrite groups. Geochim. Cosmochim. Acta, 45, 1217–30.CrossRefGoogle Scholar
Kallenbach, R. (2001). Isotopic composition measured in situ in different solar wind regimes by CELIAS/MTOF on board SOHO. In Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F.. New York: Amer. Inst. Phys, pp. 113–19.Google Scholar
Kallenbach, R. and Ott, U. (2003). Glossary. Space Sci. Rev., 106, 413–22.CrossRefGoogle Scholar
Kamber, B. S., Ewart, A., Collerson, K. D., Bruce, M. C. and McDonald, G. D. (2002). Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contrib. Mineral. Petrol., 144, 38–56.CrossRefGoogle Scholar
Kamber, B. S., Collerson, K. D., Moorbath, S. and Whitehouse, M. J. (2003). Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust. Contrib. Mineral. Petrol., 145, 25–46.CrossRefGoogle Scholar
Kappeler, F., Beer, H. and Wisshak, K. (1989). s-Process nucleosynthesis – nuclear physics and the classical model. Rep. Progress Phys., 52, 945–1013.CrossRefGoogle Scholar
Karato, S. and Murthy, V. R. (1997). Core formation and chemical equilibrium in the Earth. 1. Physical considerations. Phys. Earth Planet. Inter., 100, 61–79.CrossRefGoogle Scholar
Kasting, J. F., Eggler, D. H. and Raeburn, S. P. (1993). Mantle redox evolution and the oxidation-state of the Archean atmosphere. J. Geol., 101, 245–57.CrossRefGoogle ScholarPubMed
Kato, T., Ringwood, A. E. and Irifune, T. (1988). Constraints on element partition coefficients between MgSiO3 perovskite and liquid determined by direct measurements. Earth Planet. Sci. Lett., 90, 65–8.CrossRefGoogle Scholar
Kaula, W. M. (1999). Constraint on Venus evolution from radiogenic argon. Icarus, 139, 32–39.CrossRefGoogle Scholar
Kay, R. W. and Kay, S. M. (1993). Delamination and delamination magmatism. In Plate Tectonic Signatures in the Continental Lithosphere, eds. Green, A. G., Kroner, A., Gotze, H.-J. and Pavlenkova, N.. Tectonophysics, Vol. 219, pp. 177–89.Google Scholar
Kelemen, P. B., Hanghoj, K. and Greene, A. R. (2003). One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In The Crust, Vol. 3, ed. Rudnick, R. L.. Amsterdam: Elsevier-Pergamon, pp. 593–659.Google Scholar
Kelemen, P. B., Yogodzinski, G. M. and Scholl, D. W. (2004). Along-strike variation in lavas of the Aleutian island arc: implications for the genesis of high Mg# andesite and the continental crust. In Inside the Subduction Factory, Vol. 138, ed. Eiler, J.. Washington DC: AGU Monograph, pp. 223–76.Google Scholar
Kelley, K. A., Plank, T., Farr, L., Ludden, J. and Staudigel, H. (2005). Subduction cycling of U, Th, and Pb. Earth Planet. Sci. Lett., 234, 369–83.CrossRefGoogle Scholar
Kellogg, J. B., Jacobsen, S. B. and O'Connell, R. J. (2002). Modeling the distribution of isotopic ratios in geochemical reservoirs. Earth Planet. Sci. Lett., 204, 183–202.CrossRefGoogle Scholar
Kellogg, L. H. (1997). Growing the Earth's D′′ layer: effect of density variations at the core–mantle boundary. Geophys. Res. Lett., 24, 2749–52.CrossRefGoogle Scholar
Kellogg, L. H., Hager, B. H. and Hilst, R. D. (1999). Compositional stratification in the deep mantle. Science, 283, 1881–4.CrossRefGoogle ScholarPubMed
Kemp, A. I. S. and Hawkesworth, C. J. (2003). Granitic perspectives on the generation and secular evolution of the continental crust. In The Crust, Vol. 3, ed. Rudnick, R. L.. Amsterdam: Elsevier-Pergamon, pp. 350–410.Google Scholar
Kendall, J.-M., Stuart, G. W., Ebinger, C. J., Bastow, I. D. and Keir, D. (2005). Magma-assisted rifting in Ethiopia. Nature, 433, 147–9.CrossRefGoogle ScholarPubMed
Kerridge, J. F. (1993). What can meteorites tell us about nebular conditions and processes during planetesimal accretion? Icarus, 106, 135–50.CrossRefGoogle ScholarPubMed
Kerridge, J. F. and Matthews, M. S., eds. (1988). Meteorites and the Early Solar System. Tucson, AZ: University of Arizona Press, 1286. pp.Google Scholar
Kessel, R., Schmidt, M. W., Ulmer, P. and Pettke, T. (2005). Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437, 724–7.CrossRefGoogle ScholarPubMed
Kilburn, M. R. and Wood, B. J. (1997). Metal–silicate partitioning and the incompatibility of S and Si during core formation. Earth Planet. Sci. Lett., 152, 139–48.CrossRefGoogle Scholar
Kim, J. S. and Marti, K. (1992). Solar-type xenon: isotopic abundances in Pesyanoe. In Proc. Lunar Planet. Sci. Conf., Vol. 22, pp. 145–51.Google Scholar
Kirschbaum, C. (1987). Carrier phases for iodine in the Allende meteorite and their associated 129Xe/127I ratios: a laser microprobe study. Geochim. Cosmochim. Acta, 52, 679–99.CrossRefGoogle Scholar
Kirsten, T. (1983). Geochemical double beta decay experiments. In Science Underground, Vol. 96, eds. Nieto, M. M., Haxton, W. C., Hofman, C. M., Kolb, E. W., Sandberg, V. D. and Toevs, J. W.. New York: Amer. Inst. Phys, pp. 396–410.Google Scholar
Klein, E. M. (2003). Geochemistry of the igneous oceanic crust. In The Crust, Vol. 3, ed. Rudnick, R. L.. Amsterdam: Elsevier-Pergamon, pp. 433–63.Google Scholar
Klein, E. M. and Langmuir, C. H. (1987). Global correlations of oceanic basalt chemistry with axial depth and crustal thickness. J. Geophys. Res., 92, 8089–115.CrossRefGoogle Scholar
Kleine, T., Munker, C., Mezger, K. and Palme, H. (2002). Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418, 952–5.CrossRefGoogle ScholarPubMed
Kleinhanns, I. C., Kramers, J. D. and Kamber, B. S. (2003). Importance of water for Archaean granitoid petrology: a comparative study of tonalite, trondhjemite and granodiorite rocks and potassic granitoids from Barberton Mountain Land, South Africa. Contrib. Mineral. Petrol., 145, 377–89.CrossRefGoogle Scholar
Knesel, K. M. and Davidson, J. P. (2002). Insights into collisional magmatism from isotopic fingerprints of melting reactions. Science, 296, 2206–8.CrossRefGoogle ScholarPubMed
Knittle, E. and Jeanloz, R. (1991). Earth's core–mantle boundary: results of experiments at high pressures and temperatures. Science, 251, 1438–43.CrossRefGoogle ScholarPubMed
Kohut, E. J., Stern, R. J., Kent, A. J. R., Nielsen, R. L., Bloomer, S. H. and Leybourne, M. (2006). Evidence for adiabatic decompression melting in the Southern Mariana Arc from high-Mg lavas and melt inclusions. Contrib. Mineral. Petrol., 152, 201–21.CrossRefGoogle Scholar
Kong, P. and Ebihara, M. (1997). The origin and nebular history of the metal phase of ordinary chondrites. Geochim. Cosmochim. Acta, 61 (11), 2317–29.CrossRefGoogle Scholar
Kong, P. and Palme, H. (1999). Compositional and genetic relationship between chondrules, chondrule rims, metal, and matrix in the Renazzo chondrite. Geochim. Cosmochim. Acta, 63, 3673–82.CrossRefGoogle Scholar
Kong, P., Ebihara, M. and Palme, H. (1999). Distribution of siderophile elements in CR chondrites: evidence for evaporation and recondensation during chondrule formation. Geochim. Cosmochim. Acta, 63, 2637–52.CrossRefGoogle Scholar
Kortenkamp, S. J., Kokubo, E. and Weidenschilling, S. J. (2000). Formation of planetary embryos. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 85–100.Google Scholar
Kostitsyn, Y. A. (2000). Origin of peraluminous rare-metal granites: a review of Rb–Sr and Sm–Nd isotopic data. In Ore-Bearing Granites of Russia and Adjacent Countries, eds. Kremenetsky, A., Lehmann, B. and Seltmann, R.. Moscow: IMGRE, pp. 143–55.Google Scholar
Kostitsyn, Y. A. (2004). Terrestrial Sm–Nd and Lu–Hf isotopic systematics: do they correspond to chondrites? Petrologiya, 12, 451–66.Google Scholar
Kramers, J. D. (1998). Reconciling siderophile element data in the Earth and Moon, W isotopes and the upper lunar age limit in a simple model of homogeneous accretion. Chem. Geol., 145, 461–78.CrossRefGoogle Scholar
Kramers, J. D. (2003). Volatile element abundance patterns and the early liquid water ocean on Earth. Precambrian Res., 126, 379–94.CrossRefGoogle Scholar
Kramers, J. D. (2007). Hierarchical Earth accretion and the Hadean Eon (Invited bicentennial review). J. Geol. Soc., 164, 2–17.CrossRefGoogle Scholar
Kramers, J. R. and Tolstikhin, I. N. (1997). Two terrestrial lead isotope paradoxes, forward transport modeling, core formation and the history of the continental crust. Chem. Geol., 139, 75–110.CrossRefGoogle Scholar
Kramers, J. D., Kreissig, K. and Jones, M. Q. W. (2001). Crustal heat production and style of metamorphism: a comparison between two Archean high grade provinces in the Limpopo Belt, Southern Africa. Precambrian Res., 112, 149–63.CrossRefGoogle Scholar
Kratz, K.-L. (2001). Measurements of r-process nuclei. Nucl. Phys., A688, 308c-17.Google Scholar
Kratz, K.-L., Bitouzet, J.-P., Thielemann, F.-K., Moeller, P. and Pfeiffer, B. (1993). Isotopic r-process abundances and nuclear structure far from stability – implications for the r-process mechanism. Astrophys. J., 403, 216–38.CrossRefGoogle Scholar
Kreissig, K., Nagler, T. F., Kramers, J. D., Reenen, D. D. and Smit, C. A. (2000). An isotopic and geochemical study of the northern Kaapvaal Craton and the Southern Marginal Zone of the Limpopo Belt: are they juxtaposed terranes? Lithos, 50, 1–25.CrossRefGoogle Scholar
Krot, A. N., Hutcheon, I. D., Yurimoto, H., Cuzzi, J. N., McKeegan, K. D., Scott, E. R. D., Libourel, G., Chaussidon, M., Aleon, J. and Petaev, M. I. (2005). Evolution of oxygen isotopic composition in the inner solar nebula. Astrophys. J., 622, 1333–42.CrossRefGoogle Scholar
Krot, A. N., McKeegan, K. D., Huss, G. R., Liffman, K., Sahijpal, S., Hutcheon, I. D., Srinivasan, G., Bischoff, A. and Keil, K. (2006). Aluminum–magnesium and oxygen isotope study of relict Ca–Al-rich inclusions in chondrules. Astrophys. J., 639, 1227–37.CrossRefGoogle Scholar
Kuehner, S. M., Laughlin, J. R., Grossman, L., Johnson, M. L. and Burnett, D. S. (1989). Determination of trace element mineral/liquid partition coefficients in melilite and diopside by ion and electron microprobe techniques. Geochim. Cosmochim. Acta, 53, 3115–30.CrossRefGoogle Scholar
Kung, C. C. and Clayton, R. N. (1978). Nitrogen abundances and isotopic compositions in stony meteorites. Earth Planet. Sci. Lett., 38, 421–35.CrossRefGoogle Scholar
Kunz, J., Staudacher, T. and Allègre, C. J. (1998). Plutonium-fission xenon found in Earth's mantle. Science, 280, 877–80.CrossRefGoogle ScholarPubMed
Kuramoto, K. (1997). Accretion, core formation, H and C evolution of the Earth and Mars. Phys. Earth Planet. Inter., 100, 3–20.CrossRefGoogle Scholar
Kurz, M. D., Jenkins, W. J. and Hart, S. R. (1982a). Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature, 297, 43–7.CrossRefGoogle Scholar
Kurz, M. D., Jenkins, W. J., Schilling, J. G. and Hart, S. R. (1982b). Helium isotopic variations in the mantle beneath the central North Atlantic Ocean. Earth Planet. Sci. Lett., 58, 1–14.CrossRefGoogle Scholar
Lackey, J. S., Valley, J. W. and Saleeby, J. B. (2005). Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: evidence from high-δ18O zircon. Earth Planet. Sci. Lett., 235, 315–30.CrossRefGoogle Scholar
Lagabrielle, Y., Goslin, J., Martin, H., Thirot, J.-L. and Auzende, J.-M. (1997). Multiple active spreading centers in the hot North Fiji Basin (Southwest Pacific): a possible model for Archaean seafloor dynamics? Earth Planet. Sci. Lett., 149, 1–13.CrossRefGoogle Scholar
Laming, J. M. (2001). The electron temperature and 44Ti decay rate in Cassiopeia A. In Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F.. New York: Amer. Inst. Phys, pp. 411–16.Google Scholar
Larsen, T. B., Yuen, D. A. and Storey, M. (1999). Ultrafast mantle plumes and implications for flood basalt volcanism in the Northern Atlantic Region. Tectonophysics, 311, 31–43.CrossRefGoogle Scholar
Larson, R. B. (1981). Turbulence and star formation in molecular clouds. Mon. Not. Roy. Astr. Soc., 194, 809–26.CrossRefGoogle Scholar
LaTourrette, T. and Wasserburg, G. J. (1998). Mg diffusion in anorthite: implications for the formation of early solar system planetesimals. Earth Planet. Sci. Lett., 158, 91–108.CrossRefGoogle Scholar
Lecluse, C. and Robert, F. (1994). Hydrogen isotope-exchange reaction-rates – origin of water in the inner Solar-System. Geochim. Cosmochim. Acta, 58, 2927–39.CrossRefGoogle Scholar
Lecuyer, C., Gillet, P. and Robert, F. (1998). The hydrogen isotope composition of seawater and the global water cycle. Chem. Geol., 145, 249–61.CrossRefGoogle Scholar
Lecuyer, C., Simon, L. and Guyot, F. (2000). Comparison of carbon, nitrogen and water budgets on Venus and the Earth. Earth Planet. Sci. Lett., 181, 33–40.CrossRefGoogle Scholar
Lee, H. Y. and Ganguly, J. (1988). Equilibrium composition of coexisting garnet and orthopyroxene: experimental determinations in the system FeO–MgO–Al2O3–SiO2, and applications. J. Petrol., 29, 93–113.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A. and Wasserburg, G. J. (1976). Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys. Res. Lett., 3, 109–12.CrossRefGoogle Scholar
Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S. M. F., Upreti, B. N. and Vidal, P. (1987). Crustal generation of the Himalayan leucogranites. Tectonophys., 134, 39–57.CrossRefGoogle Scholar
Lehmann, B. E., Lehmann, M., Neftel, A., Gut, A. and Tarakanov, S. V. (1999). Radon-220 calibration of near-surface turbulent gas transport. Geophys. Res. Lett., 26, 607–10.CrossRefGoogle Scholar
Pichon, X. (1968). Sea-floor spreading and continental drift. J. Geophys. Res., 73, 3660–97.CrossRefGoogle Scholar
Lewis, J. S. (2004). Physics and Chemistry of the Solar System. London, UK: Academic Press, pp. 655.Google Scholar
Lewis, R. S. and Anders, E. (1975). Condensation time of the solar nebula from extinct 129I in primitive meteorites. Proc. Nat. Acad. Sci. USA, 72, 268–73.CrossRefGoogle Scholar
Lewis, R. S., Srinivasan, B. and Anders, E. (1975). Host phase of a strange xenon component in Allende. Science, 190, 1251–62.CrossRefGoogle Scholar
Leya, I. and Wieler, R. (1999). Nucleogenic production of Ne isotopes in Earth's crust and upper mantle induced by alpha particles from the decay of U and Th. J. Geophys. Res. – Solid Earth, 104, 15, 439–50.CrossRefGoogle Scholar
Leya, I., Halliday, A. N. and Wieler, R. (2003). The predictable collateral consequences of nucleosynthesis by spallation reaction in the early Solar system. Astrophys. J., 594, 605–16.CrossRefGoogle Scholar
Li, J. and Agee, C. B. (2001). Element partitioning constraints on the light element composition of the Earth's core. Geophys. Res. Lett., 28, 81–4.CrossRefGoogle Scholar
Liffman, K. and Toscano, M. (2000). Chondrule fine-grained mantle formation by hypervelocity impact of chondrules with a dusty gas. Icarus, 143, 106–25.CrossRefGoogle Scholar
Lin, J.-F., Heinz, D. L., Campbell, A. J., Devine, J. M. and Shen, G. (2002). Iron–silicon alloy in Earth's core? Science, 295, 313–15.CrossRefGoogle ScholarPubMed
Lin, J.-F., Campbell, A. J., Heinz, D. L. and Shen, G. (2003). Static compression of iron–silicon alloys: implications for silicon in the Earth's core. J. Geophys. Res. – Solid Earth, 108, 2045.CrossRefGoogle Scholar
Lissauer, J. J. and Safronov, V. S. (1991). The random component of planetary rotation. Icarus, 93, 288–97.CrossRefGoogle Scholar
Liu, L.-G. and Huh, C.-A. (2000). Effect of pressure on the decay rate of 7Be. Earth Planet. Sci. Lett., 180, 163–7.CrossRefGoogle Scholar
Liu, Y., Gao, S., Yuan, H., Zhou, L., Liu, X., Wang, X., Hu, Z. and Wang, L. (2004). U–Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chem. Geol., 211, 87–109.CrossRefGoogle Scholar
Lodders, K. and Fegley, B. Jr. (1992). Trace element condensation in circumstellar envelopes of carbon stars. Meteoritics, 27, 250.Google Scholar
Lowrie, W. (1997). Fundamentals of Geophysics. Cambridge, UK: Cambridge University Press, pp. 368.Google Scholar
Lugmair, G. W. and Galer, S. J. G. (1992). Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochim. Cosmochim. Acta, 56, 1673–94.CrossRefGoogle Scholar
Lugmair, G. W. and Shukolyukov, A. (1998). Early solar system timescales according to 53Mn–53Cr systematics. Geochim. Cosmochim. Acta, 62, 2863–86.CrossRefGoogle Scholar
Lugmair, G. W. and Shukolyukov, A. (2001). Early solar system events and time scales. Meteorit. Planet. Sci., 36, 1017–26.CrossRefGoogle Scholar
Lux, G. (1987). The behavior of noble gases in silicate liquids: solution, diffusion, bubbles and surface effects, with implications to natural samples. Geochim. Cosmochim. Acta, 51, 1549–60.CrossRefGoogle Scholar
Lynden-Bell, D. and Pringle, J. S. (1974). The evolution of viscous discs and the origin of nebular variables. Mon. Not. Roy. Astr. Soc., 168, 603–37.CrossRefGoogle Scholar
Lyons, J. R. and Young, E. D. (2005). CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature, 435, 317–20.CrossRefGoogle ScholarPubMed
MacPherson, G. J. and Davis, A. M. (1993). A petrologic and ion microprobe study of a Vigarano type B refractory inclusion. Evolution by multiple stages of alteration and melting. Geochim. Cosmochim. Acta, 57, 231–43.CrossRefGoogle Scholar
MacPherson, G. J. and Davis, A. M. (1994). Refractory inclusions in the prototypical CM chondrite Mighei. Geochim. Cosmochim. Acta, 58, 5599–625.CrossRefGoogle Scholar
MacPherson, G. J., Bar-Matthews, M., Tanaka, T., Olsen, E. and Grossman, L. (1983). Refractory inclusions in the Murchison meteorite. Geochim. Cosmochim. Acta 47, 823–39.CrossRefGoogle Scholar
MacPherson, G. J., Crozaz, G. and Lundberg, L. L. (1989). The evolution of a complex type B Allende inclusion: an ion microprobe trace element study. Geochim. Cosmochim. Acta, 53, 2413–27.CrossRefGoogle Scholar
MacPherson, G. J., Davis, A. M. and Zinner, E. K. (1995). The distribution of Al-26 in the early Solar-system – a reappraisal. Meteoritics 30 (4), 365–86.CrossRefGoogle Scholar
Mahaffy, P., Donahue, T. M., Atreya, S. K., Owen, T. C. and Niemann, H. B. (1998). Galileo probe measurements of D/H and 3He/4He in Jupiter's atmosphere. In Primordial Nuclei and their Galactic Evolution, eds. Prantzos, N., Tosi, M. and Steiger, R.. Dordrecht: Kluwer, pp. 251–63.Google Scholar
Makalkin, A. B. and Dorofeeva, V. A. (1995). Structure of proto-planetary accretion disk around the Sun on the T-Tauri stage: initial data, equations and modeling. Astron. Vestnik, 29, 99–122.Google Scholar
Malamud, B. D. and Turcotte, D. L. (1999). How many plumes are there? Earth Planet. Sci. Lett., 174, 113–24.CrossRefGoogle Scholar
Mamyrin, B. A. and Tolstikhin, I. N. (1984). Helium Isotopes in Nature. Amsterdam: Elsevier, pp. 273.Google Scholar
Mamyrin, B. A., Tolstikhin, I. N., Anufriev, G. S. and Kamensky, I. L. (1969). Anomalous helium isotopic composition in volcanic gases. Dokl. Acad. Nauk USSR, 184, 1197–9.Google Scholar
Manhes, G., Allègre, C. J. and Provost, A. (1984). U–Th–Pb systematics of the eucrite Juvinas: precise age determination and evidence for exotic lead. Geochim. Cosmochim. Acta, 48, 2247–64.CrossRefGoogle Scholar
Mao, W. L., Shen, G., Prakapenka, V. B., Meng, Y., Campbell, A. J., Heinz, D. L., Shu, J., Hemley, R. J. and Mao, H. (2004). Ferromagnesian postperovskite silicates in the D′′ layer of the Earth. Proc. Nat. Acad. Sci., 101, 15, 867–9.CrossRefGoogle Scholar
Marhas, K. K., Goswami, J. N. and Davis, A. M. (2002). Short-lived nuclides in hibonite grains from Murchison: evidence for solar system evolution. Science, 298, 2182–5.CrossRefGoogle ScholarPubMed
Martin, H. (1994). The Archean grey gneisses and genesis of continental crust. In Archean Crustal Evolution, ed. Condie, K. C.. Amsterdam: Elsevier, pp. 205–59.Google Scholar
Martin, H. (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46, 411–29.CrossRefGoogle Scholar
Martin, H. and Moyen, J.-F. (2002). Secular changes in tonalite–trondhjemite–granodiorite composition as markers of the progressive cooling of Earth. Geology, 30, 319–22.2.0.CO;2>CrossRefGoogle Scholar
Marty, B. and Marti, K. (2002). Signatures of early differentiation of Mars. Earth Planet. Sci. Lett., 196, 251–63.CrossRefGoogle Scholar
Marty, B. and Tolstikhin, I. N. (1998). CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol., 145, 233–48.CrossRefGoogle Scholar
Marty, B. and Zimmermann, L. (1999). Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition. Geochim. Cosmochim. Acta, 63, 3619–33.CrossRefGoogle Scholar
Mason, B. (1962). Meteorites. New York: Wiley and Sons, pp. 274.Google Scholar
Mathew, K. J. and Marti, K. (2002). Martian atmospheric and interior volatiles in the meteorite Nakhla. Earth Planet. Sci. Lett., 199, 7–20.CrossRefGoogle Scholar
Mathew, K. J., Kim, J. S. and Marti, K. (1998). Martian atmospheric and indigenous components of xenon and nitrogen in the Shergotty, Nakhla, and Chassigny group meteorites. Meteorit. Planet. Sci., 33, 655–64.CrossRefGoogle Scholar
Matsui, T. and Abe, Y. (1986). Evolution of an impact-induced atmosphere and magma ocean on the accreting Earth. Nature, 319, 303–5.CrossRefGoogle Scholar
Matsumoto, T., Seta, A., Matsuda, J., Takebe, M., Chen, Y. and Arai, S. (2002). Helium in the Archean komatiites revisited: significantly high 3He/4He ratios revealed by fractional crushing gas extraction. Earth Planet. Sci. Lett., 196, 213–25.CrossRefGoogle Scholar
Matteucci, F. and Recchi, S. (2001). On the typical timescale for the chemical enrichment from type Ia Supernovae in Galaxies. Astrophys. J., 558, 351–8.CrossRefGoogle Scholar
McDade, P., Blundy, J. D. and Wood, B. J. (2003). Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa. Phys. Earth Planet. Inter., 139, 129–47.CrossRefGoogle Scholar
McDonough, W. F. and Sun, S.-S. (1995). The composition of the Earth. Chem. Geol., 120, 223–53.CrossRefGoogle Scholar
McKenzie, D. P. (1968). The influence of the boundary conditions and rotation on convection in the Earth's mantle. Geophys. J. Roy. Astron. Soc., 15, 457–500.CrossRefGoogle Scholar
McKenzie, D. P. (1984). The generation and compaction of partially molten rock. J. Petrol., 25, 713–65.CrossRefGoogle Scholar
McKenzie, D. (1985). 230Th–238U disequilibrium and the melting processes beneath ridge axes. Earth Planet. Sci. Lett., 72, 149–57.CrossRefGoogle Scholar
McKenzie, D. (2000). Constraints on melt generation and transport from U-series activity ratios. Chem. Geol., 162, 81–94.CrossRefGoogle Scholar
McKenzie, D. P. and Bickle, M. J. (1988). The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 29, 625–79.CrossRefGoogle Scholar
McKenzie, D. and Nions, O' R. K. (1991). Partial melt distributions from inversion of rare earth element concentrations. J. Petrol., 32, 1021–91.CrossRefGoogle Scholar
McKenzie, D. and Nions, O' R. K. (1995). The source regions of ocean island basalts. J. Petrol., 36, 133–59.CrossRefGoogle Scholar
McKenzie, D. and Nions, O' R. K. (1998). Melt production beneath oceanic islands. Phys. Earth Planet. Inter., 107, 143–82.CrossRefGoogle Scholar
McKenzie, D., Nimmo, F., Jackson, J. A., Gans, P. B. and Miller, E. L. (2000). Characteristics and consequences of flow in the lower crust. J. Geophys. Res. – Solid Earth), 105 (B5), 11, 029–46.Google Scholar
McKenzie, D., Stracke, A., Blichert-Toft, J., Albarede, F., Gronvold, K. and Nions, O' R. K. (2004). Source enrichment processes responsible for isotopic anomalies in oceanic island basalts. Geochim. Cosmochim. Acta, 68, 2699–724.CrossRefGoogle Scholar
McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst., 2, 2000GC000109.CrossRefGoogle Scholar
McWilliam, A. (1997). Abundance ratios and galactic chemical evolution. Ann. Rev. Astron. Astrophys., 35, 503–56.CrossRefGoogle Scholar
McWilliam, A. (1998). Ba abundances in extremely metal-poor stars. Astron. J., 115, 1640–7.CrossRefGoogle Scholar
McWilliam, A., Preston, G. W., Sneden, C. and Searle, L. (1995). Spectroscopic analysis of 33 of the most metal poor stars. II. Astron. J., 109, 2757–99.CrossRefGoogle Scholar
Meibom, A. and Anderson, D. L. (2003). The statistical upper mantle assemblage. Earth Planet. Sci. Lett., 217, 123–39.CrossRefGoogle Scholar
Meibom, A. and Clark, B. E. (1999). Evidence for the insignificance of ordinary chondritic material in the asteroid belt. Meteorit. Planet. Sci., 34, 7–24.CrossRefGoogle Scholar
Meisel, T., Walker, R. J., Irving, A. J. and Lorand, J.-P. (2001). Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim. Cosmochim. Acta, 65, 1311–23.CrossRefGoogle Scholar
Melosh, H. J. (2003). The history of air. Nature, 424, 22–3.CrossRefGoogle ScholarPubMed
Melosh, H. J. and Tonks, W. B. (1993). Swapping rocks: ejection and exchange of surface material among the terrestrial planets. Meteoritics, 28, 398.Google Scholar
Melosh, H. J., Vickery, A. M. and Tonks, W. B. (1993). Impacts and the early environment and evolution of the terrestrial planets. In Protostars and Planets, III, eds. Levy, E. H. and Lunine, J. I.. Tucson, AZ: University of Arizona Press, pp. 1339–70.Google Scholar
Metzler, K., Bischoff, A. and Stoffler, D. (1992). Accretionary dust mantles in CM chondrites – evidence for solar nebula processes. Geochim. Cosmochim. Acta, 56, 2873–97.CrossRefGoogle Scholar
Meybeck, M. (2003). Global occurrence of major elements in rivers. In Surface and Ground Water, Weathering, and Soils, Vol. 5, ed. Drever, J. I.. Amsterdam: Elsevier-Pergamon, pp. 207–23.Google Scholar
Meyer, B. S. (1997). Supernova nucleosynthesis. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. Phys., pp. 155–78.Google Scholar
Meyer, B. S. and Clayton, D. D. (2000). Short-lived radioactivities and the birth of the Sun. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 133–52.Google Scholar
Millar, T. J., Bennett, A. and Herbst, E. (1989). Deuterium fractionation in dense interstellar clouds. Astrophys. J. Suppl., 340, 906–20.CrossRefGoogle Scholar
Minster, J.-F., Birck, J.-L. and Allègre, C. J. (1982). Absolute age of formation of chondrites by the 87Rb–87Sr method. Nature, 300, 414–19.CrossRefGoogle Scholar
Mitchell, R. C., Baron, E., Branch, D., Lundqvist, P., Blinnikov, S., Hauschildt, P. H. and Pun, C. S. J. (2001). 56Ni mixing in the outer layers of SN 1987A. Astrophys. J., 556, 979–86.CrossRefGoogle Scholar
Mittlefehldt, D. W., McCoy, V. J., Goodrich, C. A. and Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In Reviews in Mineralogy: Planetary Materials, Vol. 36, ed. Papike, J. J.. Washington DC: Mineral. Soc. Amer., pp. 4.1–4.195.Google Scholar
Mochizuki, Y. (2001). 44Ti: its initial abundance in Cas A and its detection possibility in SNe 1987 A with INTEGRAL. Nucl. Phys., A688, 58c–61c.Google Scholar
Moecher, D. P. and Sharp, Z. D. (1999). Comparison of conventional and garnet-aluminosilicate-quartz O isotope thermometry: insights for mineral equilibration in metamorphic rocks. Amer. Mineral., 84, 1287–303.CrossRefGoogle Scholar
Molnar, P. and Stock, J. (1987). Relative motions of hotspots in the Pacific, Atlantic and Indian oceans since late Cretaceous time. Nature, 327, 587–91.CrossRefGoogle Scholar
Morbidelli, A., Chambers, J., Lunine, J. I.et al. (2000). Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci., 35, 1309–20.CrossRefGoogle Scholar
Moreira, M., Doucelance, R., Kurz, M. D., Dupre, B. and Allègre, C. J. (1999). Helium and lead isotope geochemistry of the Azores Archipelago. Earth Planet. Sci. Lett., 169, 189–205.CrossRefGoogle Scholar
Moreira, M., Breddam, K., Curtice, J. and Kurz, M. D. (2001). Solar neon in the Icelandic mantle: new evidence for an undegassed lower mantle. Earth Planet. Sci. Lett., 185, 15–23.CrossRefGoogle Scholar
Morfill, G., Spruit, H. and Levy, E. H. (1993). Physical processes and conditions associated with the formation of protoplanetary disks. In Protostars and Planets, III, eds. Levy, E. H. and Lunine, J.. Tucson, AZ: University of Arizona Press, pp. 939–78.Google Scholar
Morgan, J. W. and Anders, E. (1980). Chemical composition of Earth, Venus and Mercury. Proc. Nat. Acad. Sci. USA, 77, 6973–7.CrossRefGoogle ScholarPubMed
Morgan, J. W., Walker, R. J., Brandon, A. D. and Horan, M. F. (2001). Siderophile elements in Earth's upper mantle and lunar breccias: data synthesis suggests manifestations of the same late influx. Meteorit. Planet. Sci., 36, 1257–75.CrossRefGoogle Scholar
Morgan, W. J. (1968). Rises, trenches, great faults, and crustal blocks. J. Geophys. Res., 73, 1959–83.CrossRefGoogle Scholar
Morlok, A., Bischoff, A., Stephan, T., Floss, C., Zinner, E. and Jessberger, E. K. (2006). Brecciation and chemical heterogeneities of CI chondrites. Geochim. Cosmochim. Acta, 70, 5371–94.CrossRefGoogle Scholar
Morris, J. D. and Ryan, J. G. (2003). Subduction zone processes and implications for changing composition of the upper and lower mantle. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Amsterdam: Elsevier-Pergamon, pp. 451–70.Google Scholar
Morris, J., Gosse, J., Brachfeld, S. and Tera, F. (2002). Cosmogenic 10Be and the solid earth: studies in active tectonics, geomagnetism and subduction zone processes. In Reviews in Mineralogy, Vol. 50, ed. Grew, E.. Washington DC: Mineral. Soc. Amer., pp. 207–70.Google Scholar
Morse, J. W. (2003). Formation and diagenesis of carbonate sediments. In Sediments, Diagenesis and Sedimentary Rocks, Vol. 7, ed. Mackenzie, F. T.. Amsterdam: Elsevier-Pergamon, pp. 67–85.Google Scholar
Mostefaoui, S., Lugmair, G. W., Hoppe, P. and Goresy, A. E. (2004). Evidence for live 60Fe in meteorites. New Astron. Rev., 48, 155–9.CrossRefGoogle Scholar
Mundt, R., Stocke, J., Strom, S. E., Strom, K. M. and Anderson, E. R. (1985). The optical spectrum of L1551 IRS 5. Astrophys. J., 297, L41–5.CrossRefGoogle Scholar
Muramatsu, Y. and Wedepohl, K. H. (1998). The distribution of iodine in the earth's crust. Chem. Geol., 147, 201–16.CrossRefGoogle Scholar
Muramatsu, Y., Fehn, U. and Yoshida, S. (2001). Recycling of iodine in fore-arc areas: evidence from the iodine brines in Chiba, Japan. Earth Planet. Sci. Lett., 192, 583–93.CrossRefGoogle Scholar
Murphy, D. T., Kamber, B. S. and Collerson, K. D. (2002). A refined solution to the first terrestrial Pb-isotope paradox. J. Petrol., 43, 39–53.Google Scholar
Murthy, V. R. and Karato, S. (1997). Core formation and chemical equilibrium in the Earth. 2. Chemical consequences for the mantle and core. Phys. Earth Planet. Inter., 100, 81–95.CrossRefGoogle Scholar
Nagataki, S., Hashimoto, M., Sato, K., Yamada, S. and Mochizuki, Y. S. (1998). The high ratio of Ti-44/Ni-56 in Cassiopeia A and the axisymmetric collapse-driven supernova explosion. Astrophys. J., 492, L45–8.CrossRefGoogle Scholar
Nägler, T. F. and Kramers, J. D. (1998). Nd isotopic evolution of the upper mantle during the Precambrian: models, data and the uncertainty of both. Precambrian Res., 91, 233–52.CrossRefGoogle Scholar
Nägler, T. F., Siebert, J., Luschen, H. and Bottcher, M. E. (2005). Sedimentary Mo isotope record across the Holocene fresh–brackish water transition of the Black Sea. Chem. Geol., 219, 283–95.CrossRefGoogle Scholar
Nakajima, J., Takei, Y. and Hasegawa, A. (2005). Quantitative analysis of the inclined low-velocity zone mantle wedge of northeastern Japan: a systematic change in melt-filled pore shapes with depth and its implications for melt migration. Earth Planet. Sci. Lett., 234, 59–70.CrossRefGoogle Scholar
Nakamura, T., Nagao, K. and Takaoka, N. (1999a). Microdistribution of primordial noble gases in CM chondrites determined by in situ laser microprobe analysis: decipherment of nebular processes. Geochim. Cosmochim. Acta, 63, 241–55.CrossRefGoogle Scholar
Nakamura, T., Nagao, K., Metzler, K. and Takaoka, N. (1999b). Heterogeneous distribution of solar and cosmogenic noble gases in CM chondrites and implications for the formation of CM parent bodies. Geochim. Cosmochim. Acta, 63, 257–73.CrossRefGoogle Scholar
Nataf, H. C. (2000). Seismic imaging of mantle plumes. Ann. Rev. Earth Planet. Sci., 28, 391–417.CrossRefGoogle Scholar
Nemchin, A. A., Pidgeon, R. T. and Whitehouse, M. J. (2006). Re-evaluation of the origin and evolution of >4.2 Gyr zircons from the Jack Hills metasedimentary rocks. Earth Planet. Sci. Lett., 244, 218–33.CrossRefGoogle Scholar
Newman, W. I., Symbalisty, E. M. D., Ahrens, T. J. and Jones, E. M. (1999). Impact erosion of planetary atmospheres: some surprising results. Icarus, 138, 224–40.CrossRefGoogle Scholar
Newsom, H. E. (1990). Accretion and core formation in the Earth: evidence from siderophile elements. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 273–88.Google Scholar
Newsom, H. E. (1995). Composition of the Solar system, planets, meteorites, and major terrestrial reservoirs. In Global Earth Plysics: A Handbook of Physical Constants, Vol. 1, ed. Ahrens, T. J.. AGU Reference Shelf, pp. 159–89.Google Scholar
Newsom, H. E. and Sims, K. W. W. (1991). Core formation during early accretion of the Earth. Science, 252, 926–33.CrossRefGoogle Scholar
Newsom, H. E. and Taylor, S. R. (1989). Geochemical implications of the formation of the Moon by a single giant impact. Nature, 338, 29–34.CrossRefGoogle Scholar
Nicolet, M. (1957). The aeronomic problem of helium. Ann. Geophys., 13, 1–21.Google Scholar
Niida, K. and Green, D. H. (1999). Stability and chemical composition of pargasitic amphibole in mid-ocean ridge basalt pyrolite under upper mantle conditions. Contrib. Mineral Petrol, 135, 18–40.CrossRefGoogle Scholar
Nittler, L. R. (1997). Presolar oxide grains in meteorites. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. Phys., pp. 59–81.Google Scholar
Nittler, L. R., Alexander, C. M. O., Gao, X., Walker, R. M. and Zinner, E. (1994). Interstellar oxide grains from the Tieschitz ordinary chondrite. Nature, 370, 443–6.CrossRefGoogle Scholar
Nolet, G., Karato, S.-I. and Montelli, R. (2006). Plume fluxes from seismic tomography. Earth Planet. Sci. Lett., 248, 685–99.CrossRefGoogle Scholar
Norman, M. D., Borg, L. E., Nyquist, L. E. and Bogard, D. D. (2003). Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteorit. Planet. Sci., 38, 645–61.CrossRefGoogle Scholar
Norman, M. D., Yaxley, G. M., Bennett, V. C. and Brandon, A. D. (2006). Magnesium isotopic composition of olivine from the Earth, Mars, Moon, and pallasite parent body. Geophys. Res. Lett., 33, L15202 doi:10.1029/2006GL026446.CrossRefGoogle Scholar
Nutman, A. P., Bennett, V. C., Friend, C. R. L. and Rosing, M. T. (1997). 3710 and 3790 Myr volcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotope implications. Chem. Geol., 141, 271–87.CrossRefGoogle Scholar
Ohtani, E., Yurimoto, H. and Seto, S. (1997). Element partitioning between metallic liquid, silicate liquid, and lower-mantle minerals: implications for core formation of the Earth. Phys. Earth Planet. Inter., 100, 97–114.CrossRefGoogle Scholar
Okuchi, T. (1997). Hydrogen partitioning into molten iron at high pressure: implications for Earth's core. Science, 278, 1781–4.CrossRefGoogle ScholarPubMed
Olsen, E. J. and Bunch, T. E. (1984). Equilibration temperatures of the ordinary chondrites; a new evaluation. Geochim. Cosmochim. Acta, 48, 1363–5.CrossRefGoogle Scholar
Olsen, E. J., Mayeda, T. K. and Clayton, R. N. (1981). Cristobalite-pyroxene in an L6 chondrite – implication for metamorphism. Earth Planet. Sci. Lett., 56, 82–8.CrossRefGoogle Scholar
O'Neil, J. R. (1986). Theoretical and experimental aspects of isotopic fractionation. In Reviews in Mineralogy, Vol. 16, Stable Isotopes, ed. Ribbe, P.. New York: Mineral. Soc. Amer., pp. 1–40.Google Scholar
O'Neill, H. S. (1991a). The origin of the Moon and the early history of the Earth – a chemical model. Part 1: the Moon. Geochim. Cosmochim. Acta, 55, 1135–57.CrossRefGoogle Scholar
O'Neill, H. S. (1991b). The origin of the Moon and the early history of the Earth – a chemical model. Part 2: the Earth. Geochim. Cosmochim. Acta, 55, 1159–72.CrossRefGoogle Scholar
O'Neill, H. S., Canil, D. and Rubie, D. C. (1998). Oxide-metal equilibria to 2500 degrees C and 25 GPa: implications for core formation and the light component in the Earth's core. J. Geophys. Res. – Solid Earth, 103, 12, 239–60.CrossRefGoogle Scholar
O'Nions, R. K. and McKenzie, D. (1993). Estimates of mantle thorium/uranium ratios from Th, U and Pb isotope abundances in basaltic melts. Phil. Trans. Roy. Soc. London A, 342, 65–77.CrossRefGoogle Scholar
O'Nions, R. K. and Oxburgh, E. R. (1983). Heat and helium in the Earth. Nature, 306, 429–32.CrossRefGoogle Scholar
O'Nions, R. K., Evensen, N. M. and Hamilton, P. J. (1979). Geochemical modelling of mantle differentiation and crustal growth. J. Geophys. Res., 84, 6091–101.CrossRefGoogle Scholar
Ott, U. (1996). Interstellar diamond xenon and timescales of supernova ejecta. Astrophys. J., 463, 344–8.CrossRefGoogle Scholar
Ott, U. (2002). Noble gases in meteorites – trapped components. In Noble Gases in Geochemistry and Cosmochemistry, Vol. 47, eds. Porcelli, D., Ballentine, C. J. and Wieler, R.. Washington DC: Mineral. Soc. Amer., pp. 71–100.Google Scholar
Ott, U. (2003). Isotopes of volatiles in pre-solar grains. Space Sci. Rev., 106, 33–48.CrossRefGoogle Scholar
Ott, U., Kronenbitter, J., Flores, J. and Chang, S. (1984). Colloidally separated samples from Allende residues: noble gases, carbon and an ESCA study. Geochim. Cosmochim. Acta, 48, 267–80.CrossRefGoogle Scholar
Owen, C. and Bar-Nun, A. (2001). Contributions of icy planetesimals to the earth's early atmosphere. Origins of Life and Evolution of the Biosphere, 31, 435–58.CrossRefGoogle ScholarPubMed
Owen, T. and Encrenaz, T. (2003). Element abundances and isotope ratios in the giant planets and Titan. Space Sci. Rev., 106, 121–38.CrossRefGoogle Scholar
Ozima, M. and Podosek, F. A. (2002). Noble Gas Geochemistry. Cambridge, UK: Cambridge University Press, pp. 286.Google Scholar
Ozima, M., Wieler, R., Marty, B. and Podosek, F. A. (1998). Comparative studies of solar, Q-gases and terrestrial noble gases, and implications on the evolution of the solar nebula. Geochim. Cosmochim. Acta, 62, 301–14.CrossRefGoogle Scholar
Ozima, M., Podosek, F. A., Higuchi, T., Yin, Q.-Z. and Yamada, A. (2007). On the mean oxygen isotope composition of the Solar System. Icarus, 186, 562–70.CrossRefGoogle Scholar
Pagel, B. E. J. (1994). Chemical evidence on galaxy formation and evolution. In The Formation and Evolution of Galaxies, eds. Munoz-Tunon, C. and Sanchez, F.. Cambridge, UK: Cambridge University Press, pp. 149–230.Google Scholar
Pagel, B. E. J. (2001). Chemical evolution of galaxies. Publ. Astronom. Soc. Pacific, 113, 137–41.CrossRefGoogle Scholar
Palme, H. (2000). Are there chemical gradients in the inner solar system? In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 237–62.Google Scholar
Palme, H. and Jones, A. P. (2003). Solar system abundances of the elements. In Meteorites, Comets, and Planets, Vol. 1, ed. Davis, A. M.. Amsterdam: Elsevier-Pergamon, pp. 41–61.Google Scholar
Palme, H. and Nickel, K. G. (1985). Ca/Al ratio and composition of the Earth's upper mantle. Geochim. Cosmochim. Acta, 49, 2123–32.CrossRefGoogle Scholar
Palme, H. and O'Neill, H. S. C. (2003). Cosmochemical estimates of mantle composition. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Amsterdam: Elsevier-Pergamon, pp. 1–38.Google Scholar
Palmer, M. R. and Edmond, J. M. (1989). The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett., 92, 11–26.CrossRefGoogle Scholar
Papanastassiou, D. A. and Wasserburg, G. J. (1969). Initial strontium isotopic abundances and the resolution of small time differences in formation of planetary objects. Earth Planet. Sci. Lett., 5, 361–76.CrossRefGoogle Scholar
Parada, M. A., Nyström, J. O. and Levi, B. (1999). Multiple sources for the Coastal Batholith of central Chile (31–34 °S): geochemical and Sr–Nd isotopic evidence and tectonic implications. Lithos, 46, 505–21.CrossRefGoogle Scholar
Patchett, P. J., White, W. M., Feldmann, H., Kielinczuk, S. and Hofmann, A. W. (1984). Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's mantle. Earth Planet. Sci. Lett., 69, 365–78.CrossRefGoogle Scholar
Patchett, P. J., Vervoort, J. D., Soderlund, U. and Salters, V. J. M. (2004). Lu–Hf and Sm–Nd isotopic systematics in chondrites and their constraints on the Lu–Hf properties of the Earth. Earth Planet. Sci. Lett., 222, 29–41.CrossRefGoogle Scholar
Patino, D. A. E. and Harris, N. (1998). Experimental constraints on Himalayan anatexis. J. Petrol., 39, 689–710.CrossRefGoogle Scholar
Pattison, D. R. M. and Newton, R. C. (1989). Reversed experimental calibration of the garnet-clinopyroxene Fe–Mg exchange thermometer. Contrib. Mineral. Petrol., 101, 87–103.CrossRefGoogle Scholar
Pavlov, A. and Kasting, J. F. (2002). Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology, 2, 27–41.CrossRefGoogle ScholarPubMed
Pavlov, A. K. and Pavlov, A. A. (1997–1998). Atmospheric losses under dust bombardment in the ancient atmospheres. Earth, Moon and Planets, 76, 157–83.CrossRefGoogle Scholar
Peacock, J. A. (1999). Cosmological Physics. Cambridge, UK: Cambridge University Press, pp. 682.Google Scholar
Peacock, S. M., Keken, P. E., Holloway, S. D., Hacker, B. R., Abers, G. A. and Fergason, R. L. (2005). Thermal structure of the Costa Rica–Nicaragua subduction zone. Phys. Earth Planet. Inter., 149, 187–200.CrossRefGoogle Scholar
Pearson, D. G., Canil, D. and Shirey, S. B. (2003). Mantle samples included in volcanic rocks: xenoliths and diamonds. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Cambridge, UK: Elsevier-Pergamon, pp. 171–275.Google Scholar
Peck, W. H., Valley, J. W., Wilde, S. A. and Grahams, C. M. (2001). Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochim. Cosmochim. Acta, 65, 4215–29.CrossRefGoogle Scholar
Pedroni, A. and Begemann, F. (1994). On unfractionated solar gases in the H3-6 meteorite Acfer 111. Meteoritics, 29, 632–42.CrossRefGoogle Scholar
Penzias, A. A. and Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 mc/S. Astrophys. J., 142, 419.CrossRefGoogle Scholar
Pepin, R. O. (1991). On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus, 92, 1–79.CrossRefGoogle Scholar
Pepin, R. O. (1992). Origin of noble-gases in the terrestrial planets. Ann. Rev. Earth Planet. Sci., 20, 389–430.CrossRefGoogle Scholar
Pepin, R. O. (1994). Evolution of the Martian atmosphere. Icarus, 111, 289–304.CrossRefGoogle Scholar
Pepin, R. O. and Phinney, D. (1978). Components of xenon in the Solar System. Unpublished preprint, Minneapolis, Minnesota: University of Minnesota, pp. 176.Google Scholar
Pepin, R. O. and Porcelli, D. (2002). Origin of noble gases in the terrestrial planets. In Noble Gases in Geochemistry and Cosmochemistry, Vol. 47, eds. Porcelli, D., Ballentine, C. J. and Wieler, R.. Washington DC: Mineral. Soc. Amer., pp. 191–246.Google Scholar
Pepin, R. O. and Porcelli, D. (2006). Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth. Earth Planet. Sci. Lett., 250, 470–85.CrossRefGoogle Scholar
Petaev, M. I. and Wood, J. A. (1998). The condensation with partial isolation (CWPI) model of condensation in the solar nebula. Meteorit. Planet. Sci., 33, 1123–37.CrossRefGoogle Scholar
Pettini, M. and Bowen, D. V. (2001). A new measurement of the primordial abundance of deuterium: toward convergence with the baryon density from the cosmic microwave background? Astrophys. J., 560, 41–8.CrossRefGoogle Scholar
Pfeiffer, B., Ott, U. and Kratz, K.-L. (2001). Stellar and nuclear-physics constraints on two r-process components in the early Galaxy. Nucl. Phys., A688, 575c-7.Google Scholar
Phinney, D., Tennyson, J. and Frick, U. (1978). Xenon in CO2 well gas revisited. J. Geophys. Res., 83 (B5), 2313–19.CrossRefGoogle Scholar
Pinto, P. A., Eastman, R. G. and Rogers, T. (2001). A test for the nature of the Type Ia Supernova explosion mechanism. Astrophys. J., 551, 231–43.CrossRefGoogle Scholar
Plank, T. and Langmuir, C. H. (1993). Tracing trace elements from sediment input to volcanic output at subduction zones. Nature, 362, 739–42.CrossRefGoogle Scholar
Plank, T. and Langmuir, C. H. (1998). The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., 145, 325–94.CrossRefGoogle Scholar
Podosek, F. A. (1970). Dating of meteorites by high-temperature release of iodine-correlated 129Xe. Geochim. Cosmochim. Acta, 34, 341–65.CrossRefGoogle Scholar
Podosek, F. A. and Cassen, P. (1994). Theoretical, observational, and isotopic estimates on the lifetime of the solar nebula. Meteoritics, 29, 6–25.CrossRefGoogle Scholar
Poirier, J. P. (1994). Light elements in the earth's outer core – a critical review. Phys. Earth Planet. Inter., 85, 319–37.CrossRefGoogle Scholar
Pollack, H. N., Hurter, S. J. and Johnston, R. (1993). Heat loss from the earth's interior: analysis of the global data set. Rev. Geophys., 31, 267–80.CrossRefGoogle Scholar
Polyak, B. G. and Tolstikhin, I. N. (1985). Isotope composition of Earth's helium and the problem of the motive forces of tectogenesis. Chem. Geol., 52, 9–33.Google Scholar
Polyak, B. G., Prasolov, E. M., Buachidze, G. I., Kononov, V. I., Mamyrin, B. A., Surovtseva, L. I., Khabarin, L. V. and Yudenich, V. S. (1979). He and Ar isotopic compositions in the fluids of Alp–Appenine region and their connection with volcanism. Dokl. Acad. Nauk USSR, 247, 1220–6.Google Scholar
Porcelli, D. and Ballentine, C. J. (2002). Models for distribution of terrestrial noble gases and evolution of the atmosphere. In Noble Gases in Geochemistry and Cosmochemistry, Vol. 47, eds. Porcelli, D., Ballentine, C. J. and Wieler, R.. Washington DC: Mineral. Soc. Amer., pp. 411–80.Google Scholar
Porcelli, D. and Halliday, A. N. (2001). The core as a possible source of mantle helium. Earth Planet. Sci. Lett., 192, 45–56.CrossRefGoogle Scholar
Premo, W. R., Tatsumoto, M., Misawa, K., Nakamura, N. and Kita, N. I. (1999). Pb-isotopic systematics of lunar highland rocks (> 3.9 Ga): constraints on early lunar evolution. Int. Geol. Rev., 41, 95–128.CrossRefGoogle Scholar
Pritchard, M. E. and Stevenson, D. J. (2000). Thermal aspects of a lunar origin by giant impact. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 179–96.Google Scholar
Pudovkin, M. I., Tolstikhin, I. N. and Golovchanskaya, I. V. (1981). Recent achievements in helium isotope dissipation research. Geochim. J., 15, 51–61.CrossRefGoogle Scholar
Puster, P. and Jordan, T. H. (1997). How stratified is mantle convection? J. Geophys. Res. – Solid Earth, 102, 7625–46.CrossRefGoogle Scholar
Pyle, J. M. and Spear, F. S. (2000). An empirical garnet (YAG) – xenotime thermometer. Contrib. Mineral. Petrol., 138, 51–8.CrossRefGoogle Scholar
Qian, Y.-Z. (2002). Neutrino-induced fission and r-process nucleosynthesis. Astrophys. J., 569, L103–6.CrossRefGoogle Scholar
Qian, Y.-Z. and Wasserburg, G. J. (2003). Stellar sources for heavy r-process nuclei. Astrophys. J., 588, 1099–109.CrossRefGoogle Scholar
Qian, Y. Z., Vogel, P. and Wasserburg, G. J. (1999). Neutrino fluence after r-process freezeout and abundances of Te isotopes in presolar diamonds. Astrophys. J., 513, 956–60.CrossRefGoogle Scholar
Quitté, G., Birck, J. L. and Allègre, C. J. (2000). 182Hf–182W systematics in eucrites: the puzzle of iron segregation in the early solar system. Earth Planet. Sci. Lett., 184, 83–94.CrossRefGoogle Scholar
Ragnarsson, S.-I. (1995). Planetary distances: a new simplified model. Astron. Astrophys., 301, 609–12.Google Scholar
Raheim, A. and Green, D. H. (1974). Experimental determination of temperature and pressure-dependence of Fe–Mg partition coefficient for coexisting garnet and clinopyroxene. Contrib. Mineral. Petrol., 48, 179–203.CrossRefGoogle Scholar
Rankenburg, K., Brandon, A. D. and Neal, C. R. (2006). Neodymium isotope evidence for a chondritic composition of the Moon. Science, 312, 1369–72.CrossRefGoogle Scholar
Rea, D. K. and Ruff, L. J. (1996). Composition and mass flux of sediment entering the world's subduction zones: implications for global sediment budgets, great earthquakes, and volcanism. Earth Planet. Sci. Lett., 140, 1–12.CrossRefGoogle Scholar
Reagan, M. K., Morris, J. D., Herrstrom, E. A. and Murrell, M. T. (1994). Uranium series and beryllium isotope evidence for an extended history of subduction modification of the mantle below Nicaragua. Geochim. Cosmochim. Acta, 58, 4199–212.CrossRefGoogle Scholar
Reddy, B. E., Tomkin, J., Lambert, D. L. and Allende, P. C. (2003). The chemical compositions of Galactic disc F and G dwarfs. Mon. Not. Roy. Astron. Soc., 340, 304–40.CrossRefGoogle Scholar
Reeves, H. (1998). Concluding remarks. In Primordial Nuclei and their Galactic Evolution, eds. Prantzos, N., Tosi, M. and Steiger, R.. Dordrecht: Kluwer, pp. 319–24.Google Scholar
Reifarth, R., Arlandini, C., Heil, M., Kappler, F., Sedyshev, P., Mengoni., A., Herman, M., Rauscher, T., Gallino, R. and Travaglio, C. (2003). Stellar neutron capture on Promethium: implications for the s-process neutron density. Astrophys. J., 582, 1251–62.CrossRefGoogle Scholar
Richter, S., Ott, U. and Begemann, F. (1998). Tellurium in pre-solar diamonds as an indicator for rapid separation of supernova ejecta. Nature, 391, 261–3.CrossRefGoogle Scholar
Righter, K. (2002). Does the Moon have a metallic core? Constraints from giant impact modeling and siderophile elements. Icarus, 158, 1–13.CrossRefGoogle Scholar
Righter, K. and Drake, M. J. (1996). Core formation in Earth's Moon, Mars and Vesta. Icarus, 124, 513–29.CrossRefGoogle Scholar
Righter, K. and Drake, M. J. (1997). A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci., 32, 929–44.CrossRefGoogle Scholar
Righter, K. and Drake, M. J. (1999). Effect of water on metal–silicate partitioning of siderophile elements: a high pressure and temperature terrestrial magma ocean and core formation. Earth Planet. Sci. Lett., 171, 383–99.CrossRefGoogle Scholar
Righter, K. and Drake, M. J. (2000). Metal–silicate equilibrium in the early Earth – new constraints from the volatile moderately siderophile elements Ga, Cu, P, and Sn. Geochim. Cosmochim. Acta, 64, 3581–97.CrossRefGoogle Scholar
Righter, K., Drake, M. J. and Yaxley, G. (1997). Prediction of siderophile element metal–silicate partition coefficients to 20 GPa and 2800 °C: the effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt compositions. Phys. Earth Planet. Inter., 100, 115–34.CrossRefGoogle Scholar
Ringwood, A. E. (1975). Composition and Petrology of the Earth's Mantle. New York: McGraw-Hill, pp. 618.Google Scholar
Ringwood, A. E. (1979). Origin of the Earth and Moon. New York: Springer-Verlag, pp. 295.CrossRefGoogle Scholar
Ringwood, A. E. (1984). The earth's core: its composition, formation and bearing upon the origin of the earth. Proc. Roy. Soc. Lond., A395, 1–46.CrossRefGoogle Scholar
Ringwood, A. E. (1990). Earliest history of the Earth–Moon system. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 101–34.Google Scholar
Robert, F. (2001). The origin of water on Earth. Science, 293, 1056–8.CrossRefGoogle ScholarPubMed
Robert, F. (2003). The D/H ratio in chondrites. Space Sci. Rev., 106, 87–101.CrossRefGoogle Scholar
Robert, F., Gautier, D. and Dubrulle, B. (2000). The solar system D/H ratio: observations and theories. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 201–24.Google Scholar
Rocholl, A. and Jochum, K. P. (1993). Th, U and other trace-elements in carbonaceous chondrites: implications for the terrestrial and solar-system Th/U ratios. Earth Planet. Sci. Lett., 117, 265–78.CrossRefGoogle Scholar
Ronov, A. B. (1982). The Earth's sedimentary shell (quantitative patterns of its structure, compositions, and evolution). Int. Geol. Rev., 24, 1313–88.CrossRefGoogle Scholar
Ronov, A. B. and Yaroshevsky, A. A. (1976). A new model of chemical composition of the Earth crust. Geochimiya, 12, 1763–96.Google Scholar
Rood, R. T., Bania, T. M., Balser, D. S. and Wilson, T. L. (1998). Helium-3: status and prospects. In Primordial Nuclei and their Galactic Evolution, eds. Prantzos, N., Tosi, M. and Steiger, R.. Dordrecht: Kluwer, pp. 185–98.Google Scholar
Rouxel, O. J., Bekker, A. and Edwards, K. J. (2005). Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307, 1088–91.CrossRefGoogle ScholarPubMed
Rubin, A. E. (1995). Petrologic evidence for collisional heating of chondritic asteroids. Icarus, 113, 156–67.CrossRefGoogle Scholar
Rubin, A. E. (1997). Mineralogy of meteorite groups. Meteorit. Planet. Sci., 32, 231–47.CrossRefGoogle Scholar
Rubin, A. E. (2000). Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Sci. Rev., 50, 3–27.CrossRefGoogle Scholar
Rubin, A. M. and Krot, A. N. (1996). Multiple heating of chondrules. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 173–80.Google Scholar
Rubin, K. H., Zander, I., Smith, M. C. and Bergmanis, E. C. (2005). Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria. Nature, 437, 534–8.CrossRefGoogle ScholarPubMed
Rudnick, R. L. (1992). Restites, Eu anomalies, and the lower continental crust. Geochim. Cosmochim. Acta, 56, 963–70.CrossRefGoogle Scholar
Rudnick, R. and Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., 33, 267–309.CrossRefGoogle Scholar
Rudnick, R. L. and Gao, S. (2003). Composition of the continental crust. In The Crust, Vol. 3, ed. Rudnick, R. L.. Amsterdam: Elsevier-Pergamon, pp. 1–64.Google Scholar
Rudnick, R. and Goldstein, S. L. (1990). The Pb isotopic composition of lower crustal xenoliths and the evolution of lower crustal Pb. Earth Planet. Sci. Lett., 98, 192–207.CrossRefGoogle Scholar
Rudnick, R. L. and Presper, T. (1990). Geochemistry of intermediate- to high-pressure granulites. In Granulites and Crustal Evolution, eds. Vielzeuf, D. and Vidal, P.. Dordrecht: Kluwer, pp. 523–50.Google Scholar
Rudnick, R. and Taylor, S. R. (1987). The composition and petrogenesis of lower crust: a xenolith study. J. Geophys. Res., 92, 139814 14005.CrossRefGoogle Scholar
Rudnick, R. L., Barth, M., Horn, I. and McDonough, W. F. (2000). Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science, 287, 278–81.CrossRefGoogle ScholarPubMed
Russell, S. S., Srinivasan, G., Huss, G. R., Wasserburg, G. J. and MacPherson, G. J. (1996). Evidence for widespread 26Al in the solar nebula and constraints for nebula time scales. Science, 273, 757–62.CrossRefGoogle ScholarPubMed
Russell, S. S., Huss, G. R., Fahey, A. J., Greenwood, R. C., Hutchison, R. and Wasserburg, G. J. (1998). An isotopic and petrologic study of calcium–aluminum-rich inclusions from CO3 meteorites. Geochim. Cosmochim. Acta, 62, 689–714.CrossRefGoogle Scholar
Ruzicka, A., Snyder, G. A. and Taylor, L. A. (2001). Comparative geochemistry of basalts from the Moon, Earth, howardite, eucrite and diogenite achondrites asteroid, and Mars: implications for the origin of the Moon. Geochim. Cosmochim. Acta, 65, 979–97.CrossRefGoogle Scholar
Rydgren, A. E. and Cohen, M.(1985). Young stellar objects and their circumstellar dust: an overview. In Protostars and Planets II, eds. Black, D. C. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 371–85.Google Scholar
Saal, A. E., Hart, S. R., Shimizu, N., Hauri, E. H., Layne, G. D. and Eiler, J. M. (2005). Pb isotopic variability in melt inclusions from the EMI–EMII–high μ, 238U/204Pb ratio with reference to the present mantle end-members and the role of the oceanic lithosphere. Earth Planet. Sci. Lett., 240, 605–20.CrossRefGoogle Scholar
Safronov, V. S. (1966). Sizes of largest bodies falling onto the planets during their formation. Sov. Astronomy, 9, 987–91.Google Scholar
Safronov, V. S. (1969). Evolution of the protoplanetary cloud and formation of the earth and planets. NASA Technical publication TTF-667.Google Scholar
Sageman, B. B. and Lyons, T. W. (2003). Geochemistry of fine-grained sediments and sedimentary rocks. In Sediments, Diagenesis and Sedimentary Rocks, Vol. 7, ed. Mackenzie, F. T.. Amsterdam: Elsevier-Pergamon, pp. 116–58.Google Scholar
Sahijpal, S., Goswami, J. N., Davis, A. M., Grossman, L. and Lewis, R. S. (1998). A stellar origin for the short-lived nuclides in the early Solar system. Nature, 391, 559–61.Google Scholar
Salaris, M., degl'Innocenti, S. and Weiss, A. (1997). The age of the oldest globular clusters. Astrophys. J., 479, 665–72.CrossRefGoogle Scholar
Salerno, E., Buhler, F., Bochsler, P.et al. (2001). Direct measurement of 3He/4He in the LISM with the COLLISA experiment. In Solar and Galactic Composition, ed. Wimmer-Schweingruber, R. F.. New York: Amer. Inst. Phys., pp. 275–80.Google Scholar
Salters, L., McKenzie, D., Grönvold, K. and Shimizu, N. (2001). Melt generation and movement beneath Theistareykir, NE Iceland. J. Petrol., 42, 321–54.Google Scholar
Salters, V. J. M. and Stracke, A. (2004). Composition of the depleted mantle. Geochem. Geophys. Geosyst., 5, 1–27, doi:10.1029/2003GC000597.CrossRefGoogle Scholar
Samuel, H. and Farnetani, C. G. (2003). Thermochemical convection and helium concentrations in mantle plumes. Earth Planet. Sci. Lett., 207, 39–56.CrossRefGoogle Scholar
Sano, Y. and Williams, S. N. (1996). Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys. Res. Lett., 23, 2749–52.CrossRefGoogle Scholar
Schatz, H., Aprahamian, A., Barnard, V.et al. (2001). End point of the rp-process on accreting neutron stars. Phys. Rev., 86, 3471–4.Google ScholarPubMed
Schatz, H., Toenjes, R., Pfeiffer, B.et al. (2002). Thorium and uranium chronometers applied to CS 31082–001. Astrophys. J., 579, 626–38.CrossRefGoogle Scholar
Schmidt, B. C. and Keppler, H. (2002). Experimental evidence for high noble gas solubilities in silicate melts under mantle pressures. Earth Planet. Sci. Lett., 195, 277–90.CrossRefGoogle Scholar
Schmidt, M. (1959). The rate of star formation. Astrophys. J., 129, 243–58.CrossRefGoogle Scholar
Schmidt, M. W. and Poli, S. (2003). Generation of mobile components during subduction of oceanic crust. In The Crust, Vol. 3, ed. Rudnick, R. L.. Amsterdam: Elsevier-Pergamon, pp. 567–91.Google Scholar
Schmidt, M. W., Vielzeuf, D. and Auzanneaub, E. (2004). Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet. Sci. Lett., 228, 65–84.CrossRefGoogle Scholar
Schmitt, W., Palme, H. and Wänke, H. (1989). Experimental determination of metal–silicate partition coefficients for P, Co, Ni, Cu, Ga, Ge, Mo and W and some implications for the early evolution of the Earth. Geochim. Cosmochim. Acta, 53, 173–85.CrossRefGoogle Scholar
Schneider, R. (2006). Constraining the epoch of very massive star formation. New Astron. Rev., 50, 64–9.CrossRefGoogle Scholar
Schodel, R., Ott, T., Genzel, R.et al. (2002). A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature, 419, 694–6.CrossRefGoogle Scholar
Schoenberg, R., Kamber, B. S., Collerson, K. D. and Moorbath, S. (2002). Tungsten isotope evidence from ∼3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature, 418, 403–5.CrossRefGoogle Scholar
Schramm, D. N. and Turner, M. S. (1998). Big-bang nucleosynthesis enters the precision era. Rev. Mod. Phys., 70, 303–18.CrossRefGoogle Scholar
Scott, E. R. D. (1972). Chemical fractionation in iron meteorites and its interpretation. Geochim. Cosmochim. Acta, 36, 1205–36.CrossRefGoogle Scholar
Scott, E. R. D. and Krot, A. N. (2005). Thermal processing of silicate dust in the solar nebula: clues from primitive chondrite matrices. Astrophys. J., 623, 571–8.CrossRefGoogle Scholar
Sears, D. W. G., Lu, J., Benoit, P. H., DeHart, J. M. and Lofgren, G. E. (1992). A compositional classification scheme for meteoritic chondrules. Nature, 357, 207–10.CrossRefGoogle Scholar
Sears, D. W. G., Huang, S. and Benoit, P. H. (1996). Open-system behaviour during chondrule formation. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 221–31.Google Scholar
Sedlmayr, E. and Kruger, D. (1997). Formation of dust particles in cool stellar outflows. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. of Physics, pp. 425–50.Google Scholar
Shang, H., Shu, F. H., Lee, T. and Glassgold, A. E. (2000). Protostellar winds and chondritic meteorites. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 153–76.Google Scholar
Shaw, D. M. (1970). Trace element fractionation during anatexis. Geochim. Cosmochim. Acta, 34, 237–43.CrossRefGoogle Scholar
Shearer, C. K. and Floss, C. (2000). Evolution of the moon's mantle and crust as reflected in trace-elements microbeam studies of lunar magmatism. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 339–59.Google Scholar
Shearer, C. K. and Papike, J. J. (2005). Early crustal building processes on the Moon: models for the petrogenesis of the magnesium suite. Geochim. Cosmochim. Acta, 69, 3445–61.CrossRefGoogle Scholar
Shimizu, N. (1998). The geochemistry of olivine-hosted melt inclusions in a FAMOUS basalt ALV519-4-1. Phys. Earth Planet. Inter., 107, 183–201.Google Scholar
Shklovsky, I. S. (1977). Stars, their Birth, Life and Death. Moscow, USSR: Nauka, pp. 384.Google Scholar
Shu, F. H., Adams, F. C. and Lizano, S. (1987). Star formation in molecular clouds – observation and theory. Ann. Rev. Astron. Astrophys., 25, 23–72.CrossRefGoogle Scholar
Shu, F. H., Shang, H., Gounelle, M., Glassgold, A. E. and Lee, T. (2001). The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys. J., 548, 1029–50.CrossRefGoogle Scholar
Shukolyukov, A. and Lugmair, G. W. (2006). Manganese–chromium isotope systematics of carbonaceous chondrites. Earth Planet. Sci. Lett., 250, 200–13.CrossRefGoogle Scholar
Siebert, C., Nägler, T. F., Blanckenburg, and F. Kramers, J. D. (2003). Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet. Sci. Lett., 211, 159–71.CrossRefGoogle Scholar
Siebert, C., Kramers, J. D., Meisel, T., Morel, P. and Nägler, T. F. (2005). PGE, Re–Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochim. Cosmochim. Acta, 69, 1787–801.CrossRefGoogle Scholar
Siebert, C., McManus, J., Bice, A., Poulson, R. and Berelson, W. M. (2006). Molybdenum isotope signatures in continental margin marine sediments. Earth Planet. Sci. Lett., 241, 723–33.CrossRefGoogle Scholar
Sigmarsson, O., Chmeleff, J., Morris, J. and Lopez-Escobar, L. (2002). Origin of 226Ra–230Th disequilibria in arc lavas from southern Chile and implications for magma transfer time. Earth Planet. Sci. Lett., 196, 189–96.CrossRefGoogle Scholar
Silk, J. (1980) The Big Bang (The Creation and Evolution of the Universe). San Francisco, CA: Freeman and Co., pp. 391.Google Scholar
Silk, J. and Bouwens, R. (2001). The formation of galaxies. New Astron. Rev., 45, 337–50.CrossRefGoogle Scholar
Simmons, N., Forte, A. and Grand, S. P. (2006). Constraining mantle flow with seismic and geodynamic data: a joint approach. Earth Planet. Sci. Lett., 246, 109–24.CrossRefGoogle Scholar
Simon, S. B., Grossman, L. and Davis, A. M. (1997). Multiple generation of hibonite in spinel–hibonite inclusions from Murchison. Meteorit. Planet. Sci., 32, 259–69.CrossRefGoogle Scholar
Simon, S. B., Grossman, L., Krot, A. N. and Ulyanov, A. A. (2002). Bulk chemical compositions of type B refractory inclusions. In Proc. Lunar Planet. Sci. Conf., Vol. 33, 1620.pdf.Google Scholar
Sims, K. W. W., DePaolo, D. J., Murrell, M. T.et al. (1999). Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: inferences from 238U–230Th–226Ra and 235U–231Pa disequilibria. Geochim. Cosmochim. Acta, 63, 4119–38.CrossRefGoogle Scholar
Sims, K. W. W., Goldstein, S. J., Blichert-Toft, J.et al. (2002). Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta, 66, 3481–504.CrossRef
Sinha, A. K. and Tilton, G. R. (1973). Isotopic composition of common lead. Geochim. Cosmochim. Acta, 37, 1823–49.CrossRefGoogle Scholar
Slater, L., McKenzie, D., Gronvold, K. and Shimizu, N. (2001). Melt generation and movement beneath Theistareykir, NE Iceland. J. Petrol., 42, 321–54.CrossRefGoogle Scholar
Smithies, R. H., Champion, D. C. and Cassidy, K. F. (2003). Formation of Earth's early Archaean continental crust. Precambrian Res., 127, 89–101.CrossRefGoogle Scholar
Smithies, R. H., Champion, D. C., Kranendonk, M. J., Howard, H. M. and Hickman, A. H. (2005). Modern-style subduction processes in the Mesoarchaean: geochemical evidence from the 3.12 Gyr Whundo intra-oceanic arc. Earth Planet. Sci. Lett., 231, 231–7.CrossRefGoogle Scholar
Smoliar, M. I. (1993). A survey of Rb–Sr systematics of eucrites. Meteoritics, 28, 105–13.CrossRefGoogle Scholar
Snyder, G. A., Taylor, L. A. and Halliday, A. N. (1995). Processes involved in the formation of magnesium-suite plutonic rocks from the highlands of the Earth's moon. J. Geophys. Res., 100, 9365–88.CrossRefGoogle Scholar
Snyder, G. A., Borg, L. E., Nyquist, L. E. and Taylor, L. A. (2000). Chronology and isotopic constraints on lunar evolution. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 361–95.Google Scholar
Sobolev, A. V. (1996). Melt inclusions in minerals as a source of principal petrological information. Petrology, 4, 209–20.Google Scholar
Sobolev, A. V. and Chaussidon, M. (1996). H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet. Sci. Lett., 137, 45–55.CrossRefGoogle Scholar
Sobolev, A. V. and Shimizu, N. (1993). Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature, 363, 151–4.CrossRefGoogle Scholar
Sollerman, J. (2002). Optical and infrared observations of radioactive elements in supernovae. New Astron. Rev., 46, 493–8.CrossRefGoogle Scholar
Solomatov, V. S. (2000). Fluid dynamics of a terrestrial magma ocean. In Origin of the Earth and Moon, eds. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 323–38.Google Scholar
Solomatov, V. S. and Stevenson, D. J. (1993a). Suspension in convective layers and style of differentiation of a terrestrial magma ocean. J. Geophys. Res., 98 (E3), 5375–90.CrossRefGoogle Scholar
Solomatov, V. S. and Stevenson, D. J. (1993b). Kinetics of crystal growth in a terrestrial magma ocean. J. Geophys. Res., 98 (E3), 5407–18.CrossRefGoogle Scholar
Spergel, D. N., Verde, L., Peiris, H. V.et al. (2003). First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J., 148, 175–94.CrossRefGoogle Scholar
Spicuzza, M. J., Day, J. M. D., Taylor, L. A. and Valley, J. W. (2007). Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet. Sci. Lett., 253, 254–65.CrossRefGoogle Scholar
Spiegelman, M. and Elliott, T. (1993). Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet. Sci. Lett., 118, 1–20.CrossRefGoogle Scholar
Srinivasan, G. and Bischoff, A. (2001). Ca–K and Al–Mg studies of calcium–aluminium-rich inclusionss from CH and CR chondrites. Meteorit. Planet. Sci., 36, A196.Google Scholar
Srinivasan, G., Sahijpal, S., Ulyanov, A. A. and Goswami, J. N. (1996). Ion microprobe studies of Efremovka calcium–aluminium-rich inclusionss: II. Potassium isotope composition and 41Ca in the early Solar System. Geochim. Cosmochim. Acta, 60, 1823–35.CrossRefGoogle Scholar
Stachel, T., Aulbach, S., Brey, G. P . et al. (2004). The trace element composition of silicate inclusions in diamonds: a review. Lithos, 77, 1–19.CrossRefGoogle Scholar
Staudigel, H. (2003). Hydrothermal alteration processes in the oceanic crust. In The Crust, Vol. 3, ed. Rudnick, R. L.. Amsterdam: Elsevier-Pergamon, pp. 511–35.Google Scholar
Steinberger, B. and O'Connell, R. J. (1998). Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Inter., 132, 412–34.CrossRefGoogle Scholar
Stern, S. A. (1999). The Lunar atmosphere: history, status, current problems, and context. Rev. Geophys., 37, 453–91.CrossRefGoogle Scholar
Stevenson, D. J. (1987). Origin of the Moon – the collision hypothesis. Ann. Rev. Earth Planet. Sci., 15, 271–315.CrossRefGoogle Scholar
Stevenson, D. J. (1990). Fluid dynamic of core formation. In Origin of the Earth, ed. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 231–49.Google Scholar
Stoffler, D. and Ryder, G. (2001). Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Sci. Rev., 96, 9–54.CrossRefGoogle Scholar
Stolper, E. (1977). Experimental petrology of eucrite meteorites. Geochim. Cosmochim. Acta, 41, 587–611.CrossRefGoogle Scholar
Straub, S. M., Layne, G. D., Schmidt, A. and Langmuir, C. H. (2004). Volcanic glasses at the Izu arc volcanic front: new perspectives on fluid and sediment melt recycling in subduction zones. Geochem. Geophys. Geosyst., 5, Q01007, doi:10.1029/2002GC000408.CrossRefGoogle Scholar
Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S. and Skrutskie, M. F. (1989). Circumstellar material associated with solar-type pre-main sequence starts: a possible constraint on the time scale for planet building. Astrophys. J., 97, 1451–70.Google Scholar
Strom, S. E. (1985). Protostars and planets: overview from an astronomical perspective. In Protostars and Planets II, eds. Black, D. C. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 17–32.Google Scholar
Su, Y. J. (2002). Mid-ocean Ridge Basalt Trace Element Systematics: Constraints from Database Management, ICPMS Analyses, Global Data Compilation, and Petrologic Modeling. Columbia, USA: Columbia University, Graduate School of Arts and Sciences, pp. 457.Google Scholar
Sun, S.-S. and McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins, Vol. 42, eds. Saunders, A. D. and Norry, M. J.. Oxford: Geol. Soc. Spec. Publ., pp. 313–45.Google Scholar
Swindle, T. D. (1998). Implications of iodine–xenon studies for the timing and location of secondary alteration. Meteorit. Planet. Sci., 33, 1147–55.CrossRefGoogle Scholar
Swindle, T. D. and Jones, J. H. (1997). The xenon isotopic composition of the primordial Martian atmosphere: contributions from solar and fission components. J. Geophys. Res., 102 (E1), 1671–8.CrossRefGoogle Scholar
Swindle, T. D. and Podosek, F. A. (1988). Iodine–xenon dating. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 1127–46.Google Scholar
Swindle, T. D., Caffee, M. W., Hohenberg, C. M. and Lindstrom, M. M. (1983). I–Xe studies of individual Allende chondrules. Geochim. Cosmochim. Acta, 47, 2157–77.CrossRefGoogle Scholar
Swindle, T. D., Caffee, M. W. and Hohenberg, C. M. (1988). Iodine–xenon studies of Allende inclusions: eggs and the pink angel. Geochim. Cosmochim. Acta, 52, 2215–27.CrossRefGoogle Scholar
Swindle, T. D., Caffee, M. W., Hohenberg, C. M., Lindstrom, M. M. and Taylor, G. J. (1991). Iodine–xenon studies of petrographically and chemically characterized Chainpur chondrules. Geochim. Cosmochim. Acta, 55, 861–80.CrossRefGoogle Scholar
Swindle, T. D., Davis, A. M., Hohenberg, C. M., MacPherson, G. J. and Nyquist, L. E. (1996). Formation times of chondrules and Ca–Al-rich inclusions: constraints from short-lived radionuclides. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 77–86.Google Scholar
Tachibana, S. and Huss, G. R. (2003). The initial abundances of 60Fe in the Solar system. Astrophys. J., 588, L41–4.CrossRefGoogle Scholar
Tackley, P. J. (2000). Mantle convection and plate tectonics: toward an integrated physical and chemical theory. Science, 288, 2002–6.CrossRefGoogle ScholarPubMed
Takahashi, E. and Kushiro, I. (1983). Melting of a dry peridotite at high pressures and basalt magma genesis. Amer. Mineral., 68, 859–79.Google Scholar
Takahashi, K. and Yokoi, K. (1987). Beta-decay rates of highly ionized heavy atoms in stellar interiors. Atomic Data and Nuclear Data Tables, 36, 375–409.CrossRefGoogle Scholar
Takaoka, N. (1972). An interpretation of general anomalies of xenon and the isotopic composition of primitive xenon. Mass Spectrometry, 20, 287–302.Google Scholar
Taylor, G. J., Scott, E. R. D. and Keil, K. (1983). Cosmic setting for chondrule formation. In Chondrules and their Origins, ed. King, E. A.. Houston, TX: Lunar Planet. Inst., pp. 262–78.Google Scholar
Taylor, G. J., Keil, K., McCoy, T. J., Haack, H. and Scott, E. R. D. (1993). Asteroid differentiation: pyroclastic volcanism to magma oceans. Meteoritics, 28, 34–52.CrossRefGoogle Scholar
Taylor, S. R. (2001). Solar System Evolution: a New Perspective. An Inquiry into the Chemical Composition, Origin and Evolution of the Solar System. Cambridge, UK: Cambridge University Press, pp. 460.CrossRefGoogle Scholar
Taylor, S. R. and McLennan, S. M. (1985). The Continental Crust: its Composition and Evolution. Oxford, UK: Blackwell, pp. 312.Google Scholar
Taylor, S. R. and McLennan, S. M. (1988). The significance of the rare earths in geochemistry and cosmochemistry. In Handbook on the Physics and Chemistry of Rare Earths, Vol. 11, eds. Geschneidner, K. A. and Eyring, L.. Amsterdam: Elsevier, pp. 485–578.Google Scholar
Taylor, S. R. and McLennan, S. M. (1995). The geochemical evolution of the continental crust. Rev. Geophys., 33, 241–65.CrossRefGoogle Scholar
Taylor, S. R., Taylor, G. J. and Taylor, L. A. (2006). The moon: a Taylor perspective. Geochim. Cosmochim. Acta, 70, 5904–18.CrossRefGoogle Scholar
Tera, F., Brown, L., Morris, J., Sacks, I. S., Klein, J. and Middleton, R. (1986). Sediment incorporation in island-arc magmas: inference from 10Be. Geochim. Cosmochim. Acta, 50, 535–50.CrossRefGoogle Scholar
Thiemens, M. H. (1988). Heterogeneity in the nebula: evidence from stable isotopes. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 899–923.Google Scholar
Thiemens, M. H. (1996). Mass-independent isotopic effects in chondrites: the role of chemical processes. In Chondrules and the Protoplanetary Disk, eds. Hewins, R., Jones, R. and Scott, E.. Cambridge, UK: Cambridge University Press, pp. 107–18.Google Scholar
Thielemann, F.-K., Hauser, P., Kolbe, E.et al. (2002). Heavy elements and age determinations. Space Sci. Rev., 100, 277–96.CrossRefGoogle Scholar
Tilton, G. R. (1973). Isotopic lead ages of chondritic meteorites. Earth Planet. Sci. Lett., 19, 321–9.CrossRefGoogle Scholar
Tilton, G. R. (1983). Evolution of the depleted mantle: the lead perspective. Geochim. Cosmochim. Acta, 47, 1191–7.CrossRefGoogle Scholar
Tilton, G. R. (1988). Age of the solar system. In Meteorites and the Early Solar System, eds. Kerridge, J. F. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 259–75.Google Scholar
Timmes, F. X., Woosley, S. E. and Weaver, T. A. (1995). Galactic chemical evolution: hydrogen through zinc. Astrophys. J. Suppl., 98, 617–58.CrossRefGoogle Scholar
Tolstikhin, I. and Hofmann, A. W. (2005). Early crust on top of the Earth's core. Phys. Earth Planet. Inter., 148, 109–30.CrossRefGoogle Scholar
Tolstikhin, I. N. and Marty, B. (1998). The evolution of terrestrial volatiles: a view from helium, neon, argon and nitrogen isotope modelling. Chem. Geol., 147, 27–52.CrossRefGoogle Scholar
Tolstikhin, I. N. and Nions, O' R. K. (1994). The earth's missing xenon: a combination of early degassing and of rare gas loss from the atmosphere. Chem. Geol., 115, 1–6.CrossRefGoogle Scholar
Tolstikhin, I. N. and Nions, O' R. K. (1996). Some comments on isotopic structure of terrestrial xenon. Chem. Geol., 129, 185–99.CrossRefGoogle Scholar
Tolstikhin, I. N., Kamensky, I. L., Marty, B.et al. (2002). Rare gas isotopes and parent trace elements in ultrabasic–alkaline–carbonatite complexes, Kola Peninsula: identification of lower mantle plume component. Geochim. Cosmochim. Acta, 66, 881–901.CrossRefGoogle Scholar
Tolstikhin, I. N., Kramers, J. D. and Hofmann, A. W. (2006). A chemical Earth model with whole mantle convection: the importance of a core–mantle boundary layer (D′′) and its early formation. Chem. Geol., 226, 79–99.CrossRefGoogle Scholar
Tonks, W. B. and Melosh, H. J. (1990). The physics of crystal settling and suspension in a turbulent magma ocean. In Origin of the Earth, eds. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 151–74.Google Scholar
Toyoda, K., Nakamura, Y. and Masuda, A. (1990). Rare earth elements of Pacific pelagic sediments. Geochim. Cosmochim. Acta, 54, 1093–103.CrossRefGoogle Scholar
Travaglio, C., Burkert, A. and Galli, D. (2001a). Inhomogeneous chemical evolution of the galactic halo. Nucl. Phys., A688, 396c-8.Google Scholar
Travaglio, C., Galli, D. and Burkert, A. (2001b). Inhomogeneous chemical evolution of the galactic halo: abundance of r-process elements. Astrophys. J., 547, 217–30.CrossRefGoogle Scholar
Travaglio, C., Gallino, R., Busso, M. and Gratton, R. (2001c). Lead: asymptotic giant branch production and galactic chemical evolution. Astrophys. J., 549, 346–52.CrossRefGoogle Scholar
Treiman, A. H. (1997). The parent magmas of the cumulate eucrites: a mass balance approach. Meteorit. Planet. Sci., 32, 217–30.CrossRefGoogle Scholar
Tricca, A., Wasserburg, G. J., Porcelli, D. and Baskaran, M. (2001). The transport of U- and Th-series nuclides in a sandy unconfined aquifer. Geochim. Cosmochim. Acta, 65, 1187–210.CrossRefGoogle Scholar
Trieloff, M. and Kunz, J. (2005). Isotope systematics of noble gases in the Earth's mantle: possible sources of primordial isotopes and implications for mantle structure. Phys. Earth Planet. Inter., 148, 13–38.CrossRefGoogle Scholar
Trubitsyn, V. P. (2000). Principles of the tectonics of floating continents. Izvestiya Physics of the Solid Earth, 36, 708–41.Google Scholar
Truran, J. W., Cowan, J. J. and Fields, B. D. (2001). Halo star abundances and r-process synthesis. Nucl. Phys., A688, 330c-9.Google Scholar
Turcotte, D. and Schubert, G. (1982). Geodynamics. New York: Wiley and Sons, pp. 450.Google Scholar
Turner, G., Harrison, T. M., Holland, G., Mojzsis, S. J. and Gilmour, J. (2004a). Extinct 244Pu in ancient zircons. Science, 306, 89–91.CrossRefGoogle Scholar
Turner, S., Blundy, J., Wood, B. and Hole, M. (2000). Large 230Th-excesses in basalts produced by partial melting of spinel lherzolite. Chem. Geol., 162, 127–36.CrossRefGoogle Scholar
Turner, S., Bourdon, B. and Gill, J. (2003). Insights into magma genesis at convergent margins from U-series isotopes. In Rev. Mineral. Geochem.: Uranium Series Geochemistry, Vol. 52, ed. Henderson, G. M., Lundstrom, C. and Turner, S.. Washington DC: Amer. Mineral. Soc., pp. 255–315.Google Scholar
Turner, S., Black, S. and Berlo, K. (2004b). 210Pb–226Ra and 228Ra–232Th systematics in young arc lavas: implications for magma degassing and ascent rates. Earth Planet. Sci. Lett., 227, 1–16.CrossRefGoogle Scholar
Twarog, B. A. (1980). The chemical evolution of the solar neighborhood. 1. A bias-free reduction technique and data sample. Astrophys. J. Supplement Ser., 44, 1–29.CrossRefGoogle Scholar
Ulmer, P. (2001). Partial melting in the mantle wedge – the role of H2O in the genesis of mantle-derived “arc-related” magmas. Phys. Earth Planet. Inter., 127, 215–32.CrossRefGoogle Scholar
Urey, H. C. (1947). The thermodynamic properties of isotopic substances. J. Chem. Soc. Lond., 562–81.Google ScholarPubMed
Andel, T. (1992). Seafloor spreading and plate tectonics. In Understanding the Earth, eds. Brown, G., Hawkesworth, C. and Wilson, C.. Cambridge, UK: Cambridge University Press, pp. 167–85.Google Scholar
Keken, P. E., Ballentine, C. J. and Porcelli, D. (2001). A dynamical investigation of the heat and helium imbalance. Earth Planet. Sci. Lett., 188, 421–34.CrossRefGoogle Scholar
Keken, P. E., Hauri, E. H. and Ballentine, C. J. (2002). Mantle mixing: the generation, preservation, and destruction of chemical heterogeneity. Ann. Rev. Earth Planet. Sci., 30, 493–525.CrossRefGoogle Scholar
Keken, P. E., Ballentine, C. J. and Hauri, E. H. (2003). Convective mixing in the earth's mantle. In The Mantle and Core, Vol. 2, ed. Carlson, R. W.. Amsterdam: Elsevier-Pergamon, pp. 471–91.Google Scholar
Vannay, J.-C. and Sharp, Z. D. (1999). Bernhard Grasemann Himalayan inverted metamorphism constrained by oxygen isotope thermometry. Contrib. Mineral. Petrol., 137, 90–101.CrossRefGoogle Scholar
Veizer, J. and Jansen, S. L. (1979). Basement and sedimentary recycling and continental evolution. J. Geol., 87, 341–70.CrossRefGoogle Scholar
Veizer, J. and Jansen, S. L. (1985). Basement and sedimentary recycling – 2: time dimension to global tectonics. J. Geol., 93, 625–43.CrossRefGoogle Scholar
Veizer, J. and Mackenzie, F. T. (2003). Evolution of sedimentary rocks. In Sediments, Diagenesis and Sedimentary Rocks, Vol. 7, ed. Mackenzie, F. T.. Amsterdam: Elsevier-Pergamon, pp. 370–409.Google Scholar
Verchovsky, A. B., Sephton, M. A., Wright, I. P. and Pillinger, C. T. (2002). Separation of planetary noble gas carrier from bulk carbon in enstatite chondrites during stepped combustion. Earth Planet. Sci. Lett., 199, 243–55.CrossRefGoogle Scholar
Vervoort, J. D. and Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta, 63, 533–56.CrossRefGoogle Scholar
Vervoort, J. D. and Patchett, P. J. (1996). Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochim. Cosmochim. Acta, 60, 3717–33.CrossRefGoogle Scholar
Vervoort, J. D., Patchett, P. J., Gehrels, G. E. and Nutman, A. P. (1996). Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature, 379, 624–7.CrossRefGoogle Scholar
Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. and Albarède, F. (1999). Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett., 168, 79–99.CrossRefGoogle Scholar
Vervoort, J. D., Patchett, P. J., Albarède, F., Blichert-Toft, J., Rudnick, R. and Downes, H. (2000). Hf–Nd isotopic evolution of the lower crust. Earth Planet. Sci. Lett., 181, 115–29.CrossRefGoogle Scholar
Vetrin, V. R., Kamensky, I. L., Bayanova, T. B.et al. (1999). Melanocratic enclaves and petrogenesis of alkaline granites of the Ponoy massif (Kola Peninsula). Geochimiya, 11, 1178–90.Google Scholar
Vielzeuf, D., Clemens, J. D., Pin, C. and Moinet, E. (1990). Granites, granulites, and crustal differentiation. In Granulites and Crustal Evolution, eds. Vielzeuf, D. and Vidal, P.. Dordrecht: Kluwer, pp. 59–85.CrossRefGoogle Scholar
Villa, I. M. and Renne, P. R. (1998). Decay constants in geochronology. Episodes, 20, 1–2.Google Scholar
Vink, J. (2005). Gamma-ray observations of explosive nucleosynthesis products. Adv. Space Res., 35, 976–86.CrossRefGoogle Scholar
Visona, D. and Lombardo, B. (2002). Two-mica and tourmaline leucogranites from the Everest–Makalu region (Nepal–Tibet). Himalayan leucogranite genesis by isobaric heating? Lithos, 62, 125–50.CrossRefGoogle Scholar
Vityazev, A. V., Pechernikova, G. V. and Saphronov, V. S. (1990). Terrestrial Planets: Origin and Early Evolution. Moscow: Nauka, pp. 296.Google Scholar
Blanckenburg, F., Nions, O' R. K., Belshaw, N. S., Gibb, A. and Hein, J. R. (1996). Global distribution of beryllium isotopes in deep oceanic water as derived from Fe–Mn crusts. Earth Planet. Sci. Lett., 141, 213–26.CrossRefGoogle Scholar
Vuong, M. H., Montmerle, T., Grosso, N., Feigelson, E. D., Verstraete, L. and Ozawa, H. (2003). Determination of the gas-to-dust ratio in nearby dense clouds using X-ray absorption measurements. Astron. Astrophys., 408, 581–99.CrossRefGoogle Scholar
Walker, D., Longhi, J., Stopler, E. N., Grove, T. L. and Hays, J. F. (1975). Origin of titaniferous lunar basalts. Geochim. Cosmochim. Acta, 39, 1219–35.CrossRefGoogle Scholar
Wallerstein, G., Iben, I., Parker, P.et al. (1997). Synthesis of the elements in stars: forty years of progress. Rev. Mod. Phys., 69, 995–1084.CrossRefGoogle Scholar
Wang, L., Howell, D. A., Hoflich, P. and Wheeler, J. C. (2001). Bipolar supernova explosions. Astrophys. J., 550, 1030–5.CrossRefGoogle Scholar
Wänke, H., Dreibus, G. and Jagoutz, E. (1984). Mantle chemistry and accretion history of the Earth. In Archaean Geochemistry, ed. Kroner, A., Hanson, G. N. and Goodwin, A. M.. Berlin: Springer-Verlag, pp. 1–24.Google Scholar
Warren, P. H. (2003). The Moon. In Meteorites, Comets, and Planets, Vol. 1, eds. Davis, A. M.. Amsterdam: Elsevier-Pergamon, pp. 559–99.Google Scholar
Warren, P. H. (2005). “New” lunar meteorites: implications for composition of the global lunar surface, lunar crust, and the bulk Moon. Meteorit. Planet. Sci., 40, 477–506.CrossRefGoogle Scholar
Warren, P. H. and Kallemeyn, G. W. (1993). The ferroan-anorthositic suite, the extent of primordial lunar melting, and the bulk composition of the moon. J. Geophys. Res., 98 (E3), 5445–55.CrossRefGoogle Scholar
Wasserburg, G. J., Tera, F., Papanastassiou, D. A. and Huneke, J. C. (1977). Isotopic and chemical investigations on Angra dos Reis. Earth Planet. Sci. Lett., 35, 294–316.CrossRefGoogle Scholar
Wasserburg, G. J., Busso, M., Gallino, R. and Raiteri, C. M. (1994). Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula. Astrophys. J., 424, 412–28.CrossRefGoogle Scholar
Wasserburg, G. J., Boothroyd, A. I. and Sackmann, I. J. (1995a). Deep circulation in red giant stars: a solution to the carbon and oxygen isotope puzzles? Astrophys. J., 447 (1), L37–L40.CrossRefGoogle Scholar
Wasserburg, G. J., Gallino, R., Busso, M., Goswami, J. N. and Raiteri, C. M. (1995b). Injection of freshly synthesized 41Ca in the early solar nebula by an Asymptotic Giant Branch Star. Astrophys. J., 440, L101–4.CrossRefGoogle Scholar
Wasson, J. T. (1985). Meteorites: Their Record of Early Solar-System History. New York: Freeman and Co, pp. 274.Google Scholar
Wasson, J. T. (1996). Chondrule formation: energetic and length scales. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 45–54.Google Scholar
Wasson, J. T. (1999). Trapped melt in IIIAB irons; solid/liquid elemental partitioning during the fractionation of the IIIAB magma. Geochim. Cosmochim. Acta, 63, 2875–89.CrossRefGoogle Scholar
Wasson, J. T. and Kallemeyn, G. W. (1988). Compositions of chondrites. Phil. Trans. Roy. Soc. London, A325, 535–44.CrossRefGoogle Scholar
Weaver, B. L. and Tarney, J. (1984). Major and trace element composition of the continental lithosphere. Phys. Chem. Earth, 15, 39–68.CrossRefGoogle Scholar
Weber, M., Davis, J. P., Thomas, C., Kruger, F., Scherbaum, F., Schlittenhardt, J. and Kornig, M. (1996). The structure of the lowermost mantle as determined from using seismic arrays. In Seismic Modelling of Earth Structure, eds. Boschi, E., Ekstrom, G. and Morelli, A., pp. 399–442.Google Scholar
Wedepohl, K. H. (1995). The composition of the continental crust. Geochim. Cosmochim. Acta, 59, 1217–32.CrossRefGoogle Scholar
Wegener, A. (1915). Die Entstehung der Kontinente und Ozeane.
Weidenschilling, S. J. (2000). Formation of planetesimals and accretion of the terrestrial planets. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 295–310.Google Scholar
Weisberg, M. K. and Prinz, M. (1996). Agglomeratic chondrules, chondrule precursors, and incomplete melting. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 119–28.Google Scholar
Wen, L. X., Silver, P., James, D. and Kuehnel, R. (2001). Seismic evidence for a thermo-chemical boundary at the base of the Earth's mantle. Earth Planet. Sci. Lett., 189, 141–53.CrossRefGoogle Scholar
Wessel, P. and Lyons, S. (1997). Distribution of large Pacific seamounts from Geosat/ERS-1: implications for the history of intraplate volcanism. J. Geophys. Res. – Solid Earth, 102, 22459–75.CrossRefGoogle Scholar
Wetherill, G. W. (1990). Formation of the earth. Ann. Rev. Earth Planet. Sci., 18, 205–56.CrossRefGoogle Scholar
Wetherill, G. W. and Inaba, S. (2000). Planetary accumulation with continuous supply of planetesimals. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 311–20.Google Scholar
Wetherill, G. W. and Stewart, G. R. (1993). Formation of planetary embryos: effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus, 106, 190–209.CrossRefGoogle ScholarPubMed
Whalen, J. B., Currie, K. L. and Chappell, B. W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 95, 407–19.CrossRefGoogle Scholar
Wiechert, U., Halliday, A. N., Lee, D.-C., Snyder, G. A., Taylor, L. A. and Rumble, D. (2001). Oxygen isotopes and the moon-forming giant impact. Science, 294, 345–8.CrossRefGoogle ScholarPubMed
Wieler, R. and Baur, H. (1994). Krypton and xenon from the solar wind and solar energetic particles in two lunar ilmenites of different antiquity. Meteoritics, 29, 570–80.CrossRefGoogle Scholar
Wieler, R., Anders, E., Baur, H., Lewis, R. S. and Signer, P. (1991). Noble gases in “phase Q”: closed-system etching of an Allende residue. Geochim. Cosmochim. Acta, 55, 1709–22.CrossRefGoogle Scholar
Wieler, R., Humbert, F. and Marty, B. (1999). Evidence for a predominantly non-solar origin of nitrogen in the lunar regolith revealed by single grain analyses. Earth Planet. Sci. Lett., 167, 47–60.CrossRefGoogle Scholar
Wiens, R. C., Huss, G. R. and Burnett, D. S. (1999). The solar oxygen-isotopic composition: predictions and implications for solar nebula processes. Meteorit. Planet. Sci., 34, 99–107.CrossRefGoogle Scholar
Wilde, S. A., Valley, J. W., Peck, W. H. and Graham, C. M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175–8.CrossRefGoogle ScholarPubMed
Wille, M., Kramers, J. D., Nägler, T. F.et al. (2007). Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta, 71, 2417–35.CrossRefGoogle Scholar
Williams, Q. and Hemley, R. J. (2001). Hydrogen in the deep Earth. Ann. Rev. Earth Planet. Sci., 29, 365–418.CrossRefGoogle Scholar
Williams, Q. and Knittle, E. (1997). Constraints on core chemistry from the pressure dependence of the bulk modulus. Phys. Earth Planet. Inter., 100, 49–59.CrossRefGoogle Scholar
Wilson, T. L., Serabyn, E. and Henkel, C. (1986). The high-velocity CO outflow in Orion. Astron. Astrophys., 167, L17–L20.Google Scholar
Wimmer-Schweingruber, R. F., Bochsler, P. and Kern, O. (1998). First determination of the silicon isotopic composition of the solar wind: WIND/MASS results. J. Geophys. Res., 103 (A9), 20621–30.CrossRefGoogle Scholar
Wimmer-Schweingruber, R. F., Bochsler, P. and Wurz, P. (1999a). Isotopes in the solar wind: new results from ACE, SOHO and WIND. In Solar Wind, Vol. 9, eds. Habbal, S. R., Esser, R., Hollweg, J. V. and Isenberg, P. A.. New York: Amer. Inst. Phys., pp. 147–152.Google Scholar
Wimmer-Schweingruber, R. F., Boschsler, P., Gloeckler, G.et al. (1999b). On the bulk isotopic composition of magnesium and silicon during the May 1998 CME: ACE/SWIMS. Geophys. Res. Lett., 26, 165–8.CrossRefGoogle Scholar
Winther, K. T. (1996). An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem. Geol., 127, 43–59.CrossRefGoogle Scholar
Wisshak, K., Guber, K., Voss, F., Kappeler, F. and Reffo, G. (1993). Neutron-capture in Sm-148, Sm-150 – a sensitive probe of the s-process neutron density. Phys. Rev., 48, 1401–19.Google Scholar
Wolf, R. and Anders, E. (1980). Moon and Earth: compositional differences inferred from siderophiles, volatiles and alkalis in basalts. Geochim. Cosmochim. Acta, 44, 2111–24.CrossRefGoogle Scholar
Wood, B. E., Muller, H.-R., Zank, G. P. and Linsky, J. (2002). Measured mass-loss rates of solar-like stars as a function of age and activity. Astrophys. J., 574, 412–25.CrossRefGoogle Scholar
Wood, B. J. and Halliday, A. N. (2005). Cooling of the Earth and core formation after the giant impact. Nature, 437, 1345–8.CrossRefGoogle ScholarPubMed
Wood, J. A. (1967). Olivine and pyroxene compositions in Type II carbonaceous chondrites. Geochim. Cosmochim. Acta, 31, 2095–108.CrossRefGoogle Scholar
Wood, J. A. (1981). The interstellar dust as a precursor of Ca, Al-rich inclusions in carbonaceous chondrites. Earth Planet. Sci. Lett., 56, 32–44.CrossRefGoogle Scholar
Wood, J. A. (1985). Meteoritic constraints on processes in the solar nebula. In Protostars and Planets II, eds. Black, D. C. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 687–702.Google Scholar
Wood, J. A. (1988). Chondritic meteorites and the solar nebula. Ann. Rev. Earth Planet. Sci., 16, 53–72.CrossRefGoogle Scholar
Wood, J. A. (1996). Unresolved issues in the formation of chondrules and chondrites. In Chondrules and the Protoplanetary Disk, eds. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. Cambridge, UK: Cambridge University Press, pp. 55–69.Google Scholar
Wood, J. A. (2000). Pressure and temperature profiles in the solar nebula. In From Dust to Terrestrial Planets, eds. Benz, W., Kallenbach, R. and Lugmair, G. W.. Dordrecht: Kluwer, pp. 87–96.Google Scholar
Wooden, D. H. (1997). Observational evidence for mixing and dust condensation on core-collapse supernovae. In Astrophysical Implications of the Laboratory Study of Presolar Materials, eds. Bernatowicz, T. I. and Zinner, E.. New York: Amer. Inst. Phys, pp. 317–76.Google Scholar
Woolf, V. M., Tomikin, J. and Lambert, D. L. (1995). The r-process element europium in galactic disc F and G dwarf stars. Astrophys. J., 453, 660–72.CrossRefGoogle Scholar
Woosley, S. E. (1997). Neutron-rich nucleosynthesis in carbon deflagration supernovae. Astrophys. J., 476, 801–10.CrossRefGoogle Scholar
Woosley, S. E. (2001). Models for type Ia supernovae. Nucl. Phys., A688, 9c–16c.Google Scholar
Woosley, S. and Janka, T. (2005). The physics of core-collapse supernovae. Nature (Physics), 1, 147–54.Google Scholar
Woosley, S. E. and Weaver, T. A. (1995). The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl., 101, 181–235.CrossRefGoogle Scholar
Woosley, S. E., Hartmann, D. H., Hofmann, R. D. and Haxton, W. C. (1990). The neutrino process. Astrophys. J., 356, 272–301.CrossRefGoogle Scholar
Woosley, S. E., Heger, A. and Weaver, T. A. (2002). The evolution and explosion of massive stars. Rev. Mod. Phys., 74, 1015–72.CrossRefGoogle Scholar
Workman, R. K. and Hart, S. R. (2005). Major and trace element composition of the depleted mid-ocean ridge basalt mantle (depleted MORB-source mantle; in Section 27.2 the abbreviation is widened to “depleted mixed mantle”). Earth Planet. Sci. Lett., 231, 53–72.CrossRefGoogle Scholar
Workman, R. K., Hart, S. R., Jackson, M. D.et al. (2004). Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: evidence from the Samoan Volcanic Chain. Geochem. Geophys. Geosyst., 5, Q04008, doi:10.1029/2003GC000623.CrossRefGoogle Scholar
Yin, Q.-Z., Lee, C.-T. and Ott, U. (2006). Signatures of the s-process in presolar silicon carbide grains: barium through hafnium. Astrophys. J., 647, 676–84.CrossRefGoogle Scholar
Yoder, H. S. Jr. and Tilley, C. E. (1962). Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrol., 3, 342–532.CrossRefGoogle Scholar
Yoneda, S. and Grossman, L. (1995). Condensation of CaO–MgO–Al2O3–SiO2 liquids from cosmic gases. Geochim. Cosmochim. Acta, 59, 3413–44.CrossRefGoogle Scholar
York, D. (1967). The best isochron. Earth Planet. Sci. Lett., 2, 479–82.CrossRefGoogle Scholar
Young, E. D. and Russell, S. S. (1998). Oxygen reservoirs in the early solar nebula inferred from an Allende calcium–aluminium-rich inclusions. Science, 282, 452–5.CrossRefGoogle Scholar
Young, E. D., Simon, J. I., Galy, A., Russell, S. S., Tonui, E. and Lovera, O. (2005). Supra-canonical 26Al / 27Al and the residence time of calcium–aluminium-rich inclusionss in the solar protoplanetary disk. Science, 308, 223–7.CrossRefGoogle Scholar
Yurimoto, H. and Kuramoto, K. (2004). Molecular cloud origin for the oxygen isotope heterogeneity in the Solar system. Science, 305, 1763–6.CrossRefGoogle ScholarPubMed
Yurimoto, H., Ito, M. and Nagasawa, H. (1998). Oxygen isotope exchange between refractory inclusion in Allende and solar nebula gas. Science, 282, 1874–7.CrossRefGoogle ScholarPubMed
Zack, T., Moraes, R. and Kronz, A. (2004). Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol., 148, 471–88.CrossRefGoogle Scholar
Zahnle, K. and Kasting, J. F. (1986). Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus, 68, 462–80.CrossRefGoogle Scholar
Zaikowski, A. (1980). I–Xe dating of Allende inclusions: antiquity and fine structure. Earth Planet. Sci. Lett., 47, 211–22.CrossRefGoogle Scholar
Zeng, L., Saleeby, J. B. and Asimow, P. (2005). Nd isotope disequilibrium during crustal anatexis: a record from the Goat Ranch migmatite complex, southern Sierra Nevada batholite, California. Geology, 33, 53–6.CrossRefGoogle Scholar
Zhang, Y., Huang, S., Schneider, D.et al. (1996). Pyroxene structures, cathodoluminescence and the thermal history of the enstatite chondrites. Meteoritics, 31, 87–96.CrossRefGoogle Scholar
Zhao, D. (2004). Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Inter., 146, 3–34.CrossRefGoogle Scholar
Zharkov, V. N. (1983). Internal Structure of Earth and Planets. Moscow: Nauka, pp. 415.Google Scholar
Zindler, A. and Hart, S. (1986). Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14, 493–571.CrossRefGoogle Scholar
Zinner, E. (1998). Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites. Ann. Rev. Earth Planet. Sci., 26, 147–88.CrossRefGoogle Scholar
Zinner, E. K. and Goepel, C. (1992). Evidence for 26Al in feldspars from the H4 chondrite Ste. Marguerite. Meteoritics, 27, 311–12.Google Scholar
Zinner, E., Nittler, L. R., Alexander, C. M. O. and Gallino, R. (2006). The study of radioisotopes in presolar dust grains. New Astron. Rev., 50, 574–7.CrossRefGoogle Scholar
Zolensky, M. E., Weisberg, M. K., Buchanan, P. C. and Mittlefehldt, D. W. (1996). Mineralogy of carbonaceous chondrite clasts in howardite, eucrite and diogenite achondrites achondrites and the Moon. Meteorit. Planet. Sci., 31, 518–37.CrossRefGoogle Scholar
Zozulya, D. R., Bayanova, T. B. and Eby, G. N. (2005). Geology and age of the late Archean Keivy alkaline province, Northeastern Baltic Shield. J. Geol., 113, 601–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Igor Tolstikhin, Jan Kramers, Universität Bern, Switzerland
  • Book: The Evolution of Matter
  • Online publication: 04 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535604.031
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Igor Tolstikhin, Jan Kramers, Universität Bern, Switzerland
  • Book: The Evolution of Matter
  • Online publication: 04 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535604.031
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Igor Tolstikhin, Jan Kramers, Universität Bern, Switzerland
  • Book: The Evolution of Matter
  • Online publication: 04 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535604.031
Available formats
×