Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-21T16:22:56.707Z Has data issue: false hasContentIssue false

19 - Organismal Senescence in Plant–Fungal Symbioses

from Part IV - Senescence in Microbes

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, R. A. (ed.) (1975). Studies on the Growth Rates of Lichens (New York: Academic Press).Google Scholar
Artursson, V., Finlay, R. D. & Jansson, J. K. (2006). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 8, 110.CrossRefGoogle ScholarPubMed
Baudisch, A. (2005). Hamilton’s indicators of the force of selection. Proceedings of the National Academy of Sciences of the United States of America, 102, 8263–8.Google ScholarPubMed
Bell, G. & Kofopanou, V. (1986). The cost of reproduction. In Oxford Surveys of Evolutionary Biology, ed. Dawkins, R. & Ridley, M. (Oxford University Press).Google Scholar
Bever, J. D. (1994). Feedback between plants and their soil communities in an old field community. Ecology, 75, 1965–77.CrossRefGoogle Scholar
Bever, J. D. (1999). Dynamics within mutualism and the maintenance of diversity: inference from a model of interguild frequency dependence. Ecology Letters, 2, 5262.CrossRefGoogle Scholar
Bever, J. D., Dickie, I. A., Facelli, E., et al. (2010). Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 25, 468–78.CrossRefGoogle ScholarPubMed
Bever, J. D., Richardson, S. C., Lawrrence, B. M., et al. (2009). Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters, 12, 1321.CrossRefGoogle ScholarPubMed
Bever, J. D., Westover, K. M. & Antonovics, J. (1997). Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 85, 561–73.CrossRefGoogle Scholar
Bianciotto, V., Bandi, C., Minerdi, D., et al. (1996). An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Applied and Environmental Microbiology, 62, 3005–10.CrossRefGoogle ScholarPubMed
Bidartondo, M. I. (2005). Tansley review: the evolutionary ecology of myco-heterotrophy. New Phytologist, 167, 335–52.CrossRefGoogle ScholarPubMed
Bidartondo, M. I., Bruns, T. D., Weis, M., et al. (2003). Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proceedings of the Royal Society of London Series B: Biological Sciences, 270, 835–42.CrossRefGoogle ScholarPubMed
Bidartondo, M. I., Read, D. J., Trappe, J. M., et al. (2011). The dawn of symbiosis between plants and fungi. Biology Letters, 7, 574–7.CrossRefGoogle ScholarPubMed
Bingham, M. A. & Simard, S. (2012). Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems, 15, 188–99.CrossRefGoogle Scholar
Browning, M., Englander, L., Tooley, P. W. & Berner, D. (2008). Survival of Phytophthora ramorum hyphae after exposure to temperature extremes and various humidities. Mycologia, 100, 236–45.CrossRefGoogle ScholarPubMed
Brundrett, M. (1991). Mycorrhizas in natural ecosystems. Advances in Ecological Research, 21, 171313.CrossRefGoogle Scholar
Cairney, J. W. G. (2005). Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycological Research, 109, 720.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (1992). The number of symbiotic origins of organelles. Biosystems, 28, 91106.CrossRefGoogle ScholarPubMed
Charlesworth, B. (2000). Fisher, Medawar, Hamilton and the evolution of aging. Genetics, 156, 927–31.CrossRefGoogle ScholarPubMed
Charron, G., Furlan, V., Bernier-Cardou, M. & Doyon, G. (2001). Response of onion plants to arbuscular mycorrhizae: I. Effects of inoculation method and phosphorus fertilization on biomass and bulb firmness. Mycorrhiza, 11, 187–97.CrossRefGoogle Scholar
Childs, D. Z., Metcalf, C. J. E. & Rees, M. (2010). Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. Proceedings of the Royal Society of London Series B: Biological Sciences, 277, 3055–64.Google ScholarPubMed
Childs, D. Z., Rees, M., Rose, K. E., et al. (2003). Evolution of complex flowering strategies: an age- and size-structured integral projection model. Proceedings of the Royal Society of London Series B: Biological Sciences, 270, 1829–38.CrossRefGoogle ScholarPubMed
Cowden, C. C. & Peterson, C. J. (2009). A multi-mutualist simulation: applying biological market models to diverse mycorrhizal communities. Ecological Modelling, 220, 1522–33.CrossRefGoogle Scholar
Crittenden, P. (1991). Ecological significance of necromass production in mat-forming lichens. The Lichenologist, 23, 323–31.CrossRefGoogle Scholar
Denton, G. H. & Karlén, W. (1973). Holocene climatic variations: their pattern and possible cause. Quaternary Research, 3, 155205.CrossRefGoogle Scholar
Diggle, P. K. (2002). A developmental morphologist’s perspective on plasticity. Evolutionary Ecology, 16, 267–83.CrossRefGoogle Scholar
Duffy, E. M. & Cassells, A. C. (2000). The effect of inoculation of potato (Solanum tuberosum) microplants with arbuscular mycorrhizal fungi on tuber yield and tuber size distribution. Applied Soil Ecology, 15, 137–44.CrossRefGoogle Scholar
Eom, A. H., Hartnett, D. C. & Wilson, G. W. T. (2000). Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia, 122, 435–44.CrossRefGoogle ScholarPubMed
Finch, C. E. (1990). Longevity, Senescence, and the Genome (University of Chicago Press).Google Scholar
Fitter, A. H. & Garbaye, J. (1994). Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil, 159, 123–32.CrossRefGoogle Scholar
Foster, K. R. & Wensleers, T. (2006). A general model for the evolution of mutualisms. Journal of Evolutionary Biology, 19, 1283–93.CrossRefGoogle ScholarPubMed
Fusco, G. & Minelli, A. (2010). Phenotypic plasticity in development and evolution: facts and concepts. Proceedings of the Royal Society of London Series B: Biological Sciences, 365(1540), 547–56.Google ScholarPubMed
Garcia, M. B., Dahlgren, J. P. & Ehrlén, J. (2011). No evidence of senescence in a 300-year-old mountain herb. Journal of Ecology, 99, 1424–30.CrossRefGoogle Scholar
Gehring, C. A. & Whitham, T. G. (1994). Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends in Ecology and Evolution, 9, 251–5.CrossRefGoogle ScholarPubMed
Gianinazzi-Pearson, V., Arnould, C., Oufattole, M., et al. (2000). Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta, 211, 609–13.CrossRefGoogle ScholarPubMed
Griffiths, A. J. F. (1992). Fungal senescence. Annual Review of Genetics, 26, 351–72.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Hammers, M., Richardson, D. S., Burke, T. & Komdeur, J. (2012). Age-dependent terminal declines in reproductive output in a wild bird. PLoS ONE, 7, e40413.CrossRefGoogle Scholar
Harper, J. L. (1977). Population Biology of Plants (New York: Academic Press).Google Scholar
Hibbett, D. S., Gilbert, L.-B. & Donoghue, M. J. (2000). Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature, 407, 506–8.CrossRefGoogle ScholarPubMed
Hoeksema, J. D. (2010). Ongoing coevolution in mycorrhizal interactions. New Phytologist, 187, 286300.CrossRefGoogle ScholarPubMed
Hoeksema, J. D., Chaudhary, V. B., Gehring, C. A., et al. (2010). A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 13, 394407.CrossRefGoogle ScholarPubMed
Hoeksema, J. D. & Thompson, J. N. (2007). Geographic structure in a widespread plant-mycorrhizal interaction: pines and false truffles. Journal of Evolutionary Biology, 20, 1148–63.CrossRefGoogle Scholar
Honegger, R. (1993). Developmental biology of lichens. New Phytologist, 125, 659–77.CrossRefGoogle ScholarPubMed
Huiskes, A. H. L., Gremmen, N. J. M. & Francke, J. W. (1997). The delicate stability of lichen symbiosis: comparative studies on the photosynthesis of the lichen Mastodia tesselata and its free-living phycobiont, the alga Prasiola crispa. In Antarctic Communities: Species, Structure and Survival, ed. Battaglia, B., Valencia, J. & Walton, D. W. H. (Cambridge University Press).Google Scholar
Hutchings, M. J. (1999). Clonal plants as cooperative systems: benefits in heterogeneous environments. Plant Species Biology, 14, 110.CrossRefGoogle Scholar
Ingham, R. (1988). Interactions between nematodes and vesicular-arbuscular mycorrhizae. Agriculture, Ecosystems and Environment, 24, 169–82.CrossRefGoogle Scholar
Johnson, N. C., Wilson, G. W. T., Bowker, M. A., et al. (2010). Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences of the United States of America, 107, 2093–8.Google ScholarPubMed
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Kennedy, P. G., Hortal, S., Bergemann, S. E. & Bruns, T. D. (2007). Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance. Journal of Ecology, 95, 1338–45.CrossRefGoogle Scholar
Kiers, E. T., Duhamel, M., Beesetty, Y., et al. (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333, 880–2.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1977). Evolution of ageing. Nature, 270, 301–4.CrossRefGoogle ScholarPubMed
Lechowicz, M. J. (1983). Age dependence of photosynthesis in the caribou lichen Cladina stellaris. Plant Physiology, 71, 893–5.CrossRefGoogle ScholarPubMed
Leimar, O., Hammerstein, P. & Van Dooren, T. J. M. (2006). A new perspective on developmental plasticity and the principles of adaptive morph determination. American Naturalist, 167, 367–76.CrossRefGoogle ScholarPubMed
Lilleskov, E. A., Bruns, T. D., Horton, T. R., et al. (2004). Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiology Ecology, 49, 319–32.CrossRefGoogle ScholarPubMed
Liu, J., Maldonado-Mendoza, I., Lopez-Meyer, M., et al. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant Journal, 50, 529–44.CrossRefGoogle Scholar
Loso, M. G. & Doak, D. F. (2006). The biology behind lichenometric dating curves. Oecologia, 147, 223–29.CrossRefGoogle ScholarPubMed
Lutzoni, F., Pagel, M. & Reeb, V. (2001). Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411, 937–40.CrossRefGoogle ScholarPubMed
Margulis, L. & Bermudes, D. (1985). Symbiosis as a mechanism of evolution: status of cell symbiosis theory. Symbiosis, 1, 101–24.Google ScholarPubMed
Martin, F., Duplessis, S., Ditengou, F., et al. (2001). Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytologist, 151, 145–54.CrossRefGoogle ScholarPubMed
Marx, D. H. (1972). Ectomycorrhizae as biological deterrents to pathogenic root infections. Annual Review of Phytopathology, 10, 429–54.CrossRefGoogle ScholarPubMed
Metcalf, C. J. E. & Pavard, S. (2007). Why evolutionary biologists should be demographers. Trends in Ecology and Evolution, 22, 205–12.CrossRefGoogle ScholarPubMed
Metcalf, C. J. E., Rose, K. E., Childs, D. Z., et al. (2008). Evolution of flowering decisions in a stochastic, density-dependent environment. Proceedings of the National Academy of Sciences of the United States of America, 105, 10466–70.Google Scholar
Mock, K. E., Rowe, C. A., Hooten, M. B., et al. (2008). Clonal dynamics in western North American aspen (Populus tremuloides). Molecular Ecology, 17, 4827–44.CrossRefGoogle ScholarPubMed
Molina, R., Massicotte, H. & Trappe, J. M. (1992). Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In Mycorrhizal Functioning: An Integrative Plant-Fungal Process, ed. Allen, M. F. (New York: Chapman & Hall).Google Scholar
Moran, N. A. (2006). Symbiosis. Current Biology, 16, 866–71.CrossRefGoogle ScholarPubMed
Morgan, J. A. W., Bending, G. D. & White, P. J. (2005). Biological costs and benefits to plant-microbe interactions in the rhizosphere. Journal of Experimental Botany, 56, 1729–39.CrossRefGoogle ScholarPubMed
Nash, T. H. (2008). Lichen Biology (Cambridge University Press).CrossRefGoogle Scholar
Newsham, K., Fitter, A. & Watkinson, A. (1995). Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology, 9911000.CrossRefGoogle Scholar
Noë, R. & Hammerstein, P. (1995). Biological markets. Trends in Ecology and Evolution, 10, 336–9.CrossRefGoogle ScholarPubMed
Nussey, D. H., Froy, H., Lemaître, J.-F., et al. (2013). Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 12, 214–25.CrossRefGoogle ScholarPubMed
Nussey, D. H., Kruuk, L. E. B., Morris, A. & Clutton-Brock, T. H. (2007). Environmental conditions in early life influence ageing rates in a wild population of red deer. Current Biology, 17, R1000–1.CrossRefGoogle Scholar
Osiewacz, H. D. (2002). Genes, mitochondria and aging in filamentous fungi. Ageing Research Reviews, 1, 425–42.CrossRefGoogle ScholarPubMed
Paracer, S. & Ahmadjian, V. (2000). Symbiosis: An Introduction to Biological Associations (Oxford University Press).CrossRefGoogle Scholar
Peay, K. G., Kennedy, P. G. & Bruns, T. D. (2008). Fungal community ecology: a hybrid beast with a molecular master. BioScience, 58, 799810.CrossRefGoogle Scholar
Piercey-Normore, M. D. (2004). Selection of algal genotypes by three species of lichen fungi in the genus Cladonia. Canadian Journal of Botany, 82, 947–61.CrossRefGoogle Scholar
Pringle, A., Chen, D. & Taylor, J. W. (2003). Sexual fecundity is correlated to size in the lichenized fungus Xanthoparmelia cumberlandia. Bryologist, 106, 221–5.CrossRefGoogle Scholar
Rasmussen, H. N. (1995). Terrestrial Orchids: From Seed to Mycotrophic Plant (Cambridge University Press).CrossRefGoogle Scholar
Remy, W., Taylor, T. N., Hass, H. & Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences of the United States of America, 91, 11841–3.Google ScholarPubMed
Reznick, D., Nunney, L. & Tessier, A. (2000). Big houses, big cars, superfleas and the costs of reproduction. Trends in Ecology and Evolution, 15, 421–5.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (2000). Intrinsic aging-related mortality in birds. Journal of Avian Biology, 31, 103–11.CrossRefGoogle Scholar
Roach, D. A. (1993). Evolutionary senescence in plants. Genetica, 91, 5364.CrossRefGoogle Scholar
Roach, D. A., Ridley, C. E. & Dudycha, J. L. (2009). Longitudinal analysis of Plantago: age by environment interactions reveal aging. Ecology, 90, 1427–33.CrossRefGoogle ScholarPubMed
Ronsheim, M. L. (2012). The effect of mycorrhizae on plant growth and reproduction varies with soil phosphorus and developmental stage. American Midland Naturalist, 167, 2839.CrossRefGoogle Scholar
Rose, M. R., Rauser, C. L., Benford, G., et al. (2007). Hamilton’s forces of natural selection after forty years. Evolution, 61, 1265–76.CrossRefGoogle ScholarPubMed
Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. (2004). The evolution of cooperation. Quarterly Review of Biology, 79, 135–60.CrossRefGoogle ScholarPubMed
Salguero-Gómez, R., Shefferson, R. P. & Hutchings, M. J. (2013). Plants do not count … or do they? New perspectives on the universality of senescence. Journal of Ecology, 101, 545–54.CrossRefGoogle ScholarPubMed
Salguero-Gómez, R., Siewert, W., Casper, B. B. & Tielbörger, K. (2012). A demographic approach to study effects of climate change in desert plants. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 367, 3100–14.CrossRefGoogle ScholarPubMed
Schwartz, M. W. & Hoeksema, J. D. (1998). Specialization and resource trade: biological markets as a model of mutualisms. Ecology, 79, 1029–38.CrossRefGoogle Scholar
Shefferson, R. P. & Roach, D. A. (2010). Longitudinal analysis of Plantago: adaptive benefits of iteroparity in a short-lived, herbaceous perennial. Ecology, 91, 441–7.CrossRefGoogle Scholar
Shefferson, R. P. & Roach, D. A. (2013). Longitudinal analysis in Plantago: strength of selection and reverse age analysis reveal age-indeterminate senescence. Journal of Ecology, 101, 577–84.CrossRefGoogle ScholarPubMed
Shefferson, R. P., Warren, R. J. II & Pulliam, H. R. (2014). Life history costs make perfect sprouting maladaptive in two herbaceous perennials. Journal of Ecology, 102, 1318–28.CrossRefGoogle Scholar
Shriver, R., Cutler, K. & Doak, D. (2012). Comparative demography of an epiphytic lichen: support for general life history patterns and solutions to common problems in demographic parameter estimation. Oecologia, 170, 137–46.CrossRefGoogle ScholarPubMed
Simard, S. W., Beiler, K. J., Bingham, M. A., et al. (2012). Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews, 26, 3960.CrossRefGoogle Scholar
Smith, S. E. & Read, D. J. (2008). Mycorrhizal Symbiosis (New York: Academic Press).Google Scholar
Smith, S. E. & Smith, F. A. (1990). Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytologist, 114, 138.CrossRefGoogle ScholarPubMed
Solbrig, O. T. (1980). Demography and natural selection. In Demography and Evolution in Plant Populations, ed. Solbrig, O. T. (Berkeley: University of California Press).Google Scholar
Spitze, K. (1991). Chaoborus predation and life-history evolution in Daphnia pulex: temporal pattern of population diversity, fitness, and mean life history. Evolution, 45, 8292.Google ScholarPubMed
Stearns, S. C. & Magwene, P. (2003). The naturalist in a world of genomics. American Naturalist, 161, 171–80.CrossRefGoogle Scholar
Taylor, D. L., Bruns, T. D., Leake, J. R. & Read, D. J. (2002). Mycorrhizal specificity and function in myco-heterotrophic plants. In Mycorrhizal Ecology, ed. Van der Hejden, M. G. A. & Sanders, I. R. (Berlin: Springer-Verlag).Google Scholar
Teste, F. P., Simard, S. W., Durall, D. M., et al. (2009). Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology, 90, 2808–22.CrossRefGoogle ScholarPubMed
Thompson, J. N. & Cunningham, B. M. (2002). Geographic structure and dynamics of coevolutionary selection. Nature, 417, 735–8.CrossRefGoogle ScholarPubMed
Thompson, J. N. & Fernandez, C. C. (2006). Temporal dynamics of antagonism and mutualism in a geographically variable plant-insect interaction. Ecology, 87, 103–12.CrossRefGoogle Scholar
Tibell, L. (2001). Photobiont association and molecular phylogeny of the lichen genus Chaenotheca. Bryologist, 104, 191–8.CrossRefGoogle Scholar
van der Heijden, M. G. A. & Horton, T. R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97, 1139–50.CrossRefGoogle Scholar
Vaupel, J. W., Baudisch, A., Dölling, M., et al. (2004). The case for negative senescence. Theoretical Population Biology, 65, 339–51.CrossRefGoogle ScholarPubMed
Verbruggen, E., Röling, W. F. M., Gamper, H. A., et al. (2010). Positive effects of organic farming on below‐ground mutualists: large‐scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist, 186, 968–79.CrossRefGoogle ScholarPubMed
Wehner, J., Antunes, P. M., Powell, J. R., et al. (2010). Plant pathogen protection by arbuscular mycorrhizae: a role for fungal diversity? Pedobiologia, 53, 197201.CrossRefGoogle Scholar
Werner, G. D., Strassmann, J. E., Ivens, A. B., et al. (2014). Evolution of microbial markets. Proceedings of the National Academy of Sciences of the United States of America, 111, 1237–44.Google ScholarPubMed
Wijesinghe, D. K. & Handel, S. N. (1994). Advantages of clonal growth in heterogeneous habitats: an experiment with Potentilla simplex. Journal of Ecology, 82, 495502.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×