Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T19:48:21.607Z Has data issue: false hasContentIssue false

Chapter 37 - Papuacedrus

Cupressales: Cupressaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Monoecious or dioecious long-lived evergreen trees, with a conical, tapering crown when young, becoming stately with age and irregularly domed, bearing open, widely spaced irregular branch and sub-branch systems. The fresh branchlet undersurfaces are conspicuously white.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 622 - 630
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, H.G. 1955. Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9: 347348.Google Scholar
Baldwin, S.L., Monteleone, B.D., Webb, L.E., et al. 2004. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea. Nature 431: 263267.CrossRefGoogle ScholarPubMed
Benes, V., Scott, S.D. & Binns, R.A. 1994. Tectonics of rift propagation into a continental margin: Western Woodlark Basin, Papua New Guinea. Journal of Geophysical Research 99: 44394455.CrossRefGoogle Scholar
Berry, E.W. 1938. Tertiary flora from the Rio Pichileufu, Argentina. Geological Society of America Special Paper 12: 1149.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 1998. The photosynthetic drought physiology of a diverse group of southern hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology 12: 465471.CrossRefGoogle Scholar
Brookfield, H.C. & Hart, D. 1966. Rainfall in the Tropical Southwest Pacific. Canberra: Australian National University.Google Scholar
Bruijnzeel, L.A., Waterloo, M.J., Proctor, J., Kuiters, A.T. & Kotterink, B. 1993. Hydrological observations in montane rainforests on Gunung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. Journal of Ecology 81: 145167.CrossRefGoogle Scholar
Cantrill, D.J. 1991. Broad-leaved coniferous foliage from the Lower Cretaceous Otway Group, southeastern Australia. Alcheringa 15: 177190.CrossRefGoogle Scholar
Cookson, I.C. & Pike, K.M. 1954. The fossil occurrence of Phyllocladus and two other podocarpaceous types in Australia. Australian Journal of Botany 2: 6067.CrossRefGoogle Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous cradle of austral temperate rainforests ? Pp 89105 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Enright, N.J. 1995. Conifers of tropical Australasia. Pp 197222 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Flower, B.P. & Kennett, J.P. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 537555.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gibbs, L.S. 1917. Dutch N.W. New Guinea: A Contribution to the Phytogeography and Flora of the Arfak Mountains. London: Taylor & Francis.CrossRefGoogle Scholar
Gillison, A.N. 1970. Structure and floristics of a montane grassland/forest transition, Donna Peaks region, Papua. Blumea 18: 7186.Google Scholar
Grubb, P.J. 1971. Interpretation of the ‘Massenerhebung’ effect on tropical mountains. Nature 229: 4445.CrossRefGoogle ScholarPubMed
Grubb, P.J. & Stevens, P.F. 1976. The Forests of the Fatima Basin and Mt Kerigomna and a Review of Montane and Subalpine Forests Elsewhere in Papua New Guinea. Canberra: Australian National University, Dept. Biogeography and Geomorphology.Google Scholar
Havel, J.J. 1975. Forest Botany. Port Moresby: PNG Department of Forests.Google Scholar
Heads, M. 2001. Birds of paradise, biogeography and ecology in New Guinea: a review. Journal of Biogeography 28: 893925.CrossRefGoogle Scholar
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R.J. 1989. Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa 13: 89102.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1994. Tertiary history and origins of the flora and vegetation. In Reid, J.B., Hill, R.S. & Brown, M.J. (eds.), Vegetation of Tasmania. Hobart: Government Printer.Google Scholar
Hoogland, R.D. 1958. The alpine flora of Mt. Wilhelm. Blumea 4(suppl.): 220238.Google Scholar
Hope, G. & Tulip, J. 1994. A long vegetation history from lowland Irian Jaya, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 385398.CrossRefGoogle Scholar
Hope, G.S. 1976. The vegetational history of Mt. Wilhelm, Papua New Guinea. Journal of Ecology 64: 627663.CrossRefGoogle Scholar
Hope, G.S. 1986. Development of present day biotic distributions in the New Guinea mountains. Pp 129145 in Barlow, B. (ed.), Flora and Fauna of Alpine Australasia. Melbourne: CSIRO.CrossRefGoogle Scholar
Johns, R.J. 1995. Papuacedrus papuana var papuana. Cupressaceae. Curtis’s Botanical Magazine 12: 6672.CrossRefGoogle Scholar
Johns, R.J., Edwards, P.J., Utteridge, T.M.A. & Hopkins, H.C.F. 2006. Alpine and Subalpine Flora of Mount Jaya. London: Royal Botanic Gardens Kew.Google Scholar
Lawver, L.A. & Gahagan, L.M. 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology 198: 1137.CrossRefGoogle Scholar
Mathew, B. 1995. Editorial: Flora Malesiana. Curtis’s Botanical Magazine 12: 51.CrossRefGoogle Scholar
McGlone, M.S. 1988. New Zealand. Pp 557602 in Huntley, B. & Webb, T. III (eds.), Vegetation History. Dordrecht: Kluwer.CrossRefGoogle Scholar
Paijmans, K. & Loffler, E. 1972. High altitude forests and grasslands of Mt. Albert Edward, New Guinea. Journal of Tropical Geography 34: 5864.Google Scholar
Pigram, C.J. & Davies, H.L. 1987. Terranes and the accretion history of the New Guinea orogen. Journal of Australian Geology and Geophysics 10: 193211.Google Scholar
Pole, M. 2007. Conifer and cycad distribution in the Miocene of southern New Zealand. Australian Journal of Botany 55: 143164.CrossRefGoogle Scholar
Polhemus, D.A. & Polhemus, J.T. 1998. Assembling New Guinea: 40 million years of island arc accretion as indicated by the distributions of aquatic Heteroptera (Insecta). Pp 327340 in Hall, R. & Holloway, J.D. (eds.), Biogeography and Geological Evolution of SE Asia. Leiden: Backhuys.Google Scholar
Proctor, J., Lee, Y.F., Langley, A.M., Mynro, W.R.C. & Nelson, T. 1988. Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. I: Environment, forest structure and floristics. Journal of Ecology 76: 320340.CrossRefGoogle Scholar
Richards, P.W. 1996. The Tropical Rainforest, an Ecological Study. Cambridge: Cambridge University Press.Google Scholar
Saulei, S.M. 1990. Forest research and development in Papua New Guinea. Ambio 19: 379382.Google Scholar
Smith, J.M.B. 1975. Mountain grasslands of New Guinea. Journal of Biogeography 2: 2744.CrossRefGoogle Scholar
Van Royen, P. 1965. An outline of the flora and vegetation of the Cyclops Mountains. Nova Guinea n.s. 21: 451469.Google Scholar
Van Royen, P. 1979. The Alpine Flora of New Guinea, vol. 12. Amsterdam: J. Cramer.Google Scholar
Van Steenis, C.G.G.J. 1961. An attempt towards an explanation of the effect of mountain mass elevation. Proceedings of the Royal Academy of Science of the Netherlands 64: 435442.Google Scholar
Wade, L.K. & McVean, D.N.L. 1969. Mt Wilhelm Studies. I. The Alpine and Subalpine Vegetation. Canberra: Australian National University Department of Biogeography and Geomorphology.Google Scholar
Whitmore, T.C. 1984. Tropical Rain Forests of the Far East. Oxford: Oxford University Press.Google Scholar
Wilf, P., Little, S.A., Iglesias, A., et al. 2009. Papuacedrus (Cupressaceae) in Eocene Patagonia: a new fossil link to Australasian rainforests. American Journal of Botany 96: 20312047.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Papuacedrus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.041
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Papuacedrus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.041
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Papuacedrus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.041
Available formats
×