Skip to main content Accessibility help
×
Hostname: page-component-599cfd5f84-jhfc5 Total loading time: 0 Render date: 2025-01-07T05:54:58.988Z Has data issue: false hasContentIssue false

Chapter 11 - Pseudolarix

Pinales: Cedraceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Medium-sized to tall (to 40 m), deciduous trees, with distinctive multi-tiered crown shapes and straight or crooked trunks, bearing abundant fan-like sprays of summer bright-green, autumn bright-yellow, then winter-deciduous foliage. Their wider (and much later seasonally flushing) leaves arise along branchlets in a single plane and more golden autumn colours distinguish Pseudolarix from Larix.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 255 - 271
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, C.A. & Lowther, J.S. 1955. A new Cretaceous conifer from Alaska. American Journal of Botany 42: 522528.CrossRefGoogle Scholar
Basinger, J.F. 1991. The fossil forests of the Buchanan Lake Formation (early Tertiary), Axel Heiberg Island, Canadian Arctic Archipelago: preliminary floristics and paleoclimate. Bulletin of the Geological Survey of Canada 403 :3956.Google Scholar
Bell, W.A. 1956. Lower Cretaceous Floras of Western Canada. Ottawa: Geological Survey of Canada.CrossRefGoogle Scholar
Boulter, M.C. & Kvacek, Z. 1989. The Palaeocene flora of the Isle of Mull. Palaeontological Association of London Special Papers on Palaeontology 42:1149.Google Scholar
Buchholtz, J.T. 1931. The suspensor of Sciadopitys. Botanical Gazette 92: 243262.CrossRefGoogle Scholar
Buchholtz, J.T. & Old, E.M. 1933. The anatomy of the embryo of Cedrus in the dormant stage. American Journal of Botany 20: 3544.CrossRefGoogle Scholar
Buzek, F. & S̆rámek, J. 1985. Sulfur isotopes in the study of stone monument conservation. Studies in Conservation 30:171.CrossRefGoogle Scholar
Chaney, R.W. 1940. Tertiary forests and continental history. Geological Society of America Bulletin v.Google Scholar
Chaney, R.W. 1947. Tertiary centers and migration routes, in origin and development of natural floristic areas with special reference to North America. Ecological Monographs 17(2): 139148.CrossRefGoogle Scholar
Chaney, R.W. & Hu, H.H. 1940. A Miocene Flora from Shantung Province, China. Washington, DC: Carnegie Institute of Washington.Google Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Collinson, M.E. 1983. Accumulations of fruits and seeds in three small sedimentary environments in southern England and their palaeoecological implications. Annals of Botany 52: 583592.CrossRefGoogle Scholar
Dorofeev, P.I. 1961. New data on Tertiary flora from the region of Antropovo on the River Tavda. Dokl Akad Nauk USSR Earth Science Section 137: 335338.Google Scholar
Farjon, A. 2003. The remaining diversity of conifers. Acta Horticulturae 615: 7589.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Florin, R. 1940 Die Koniferen etc. V. Palaeontographica 85(5): 243–236.Google Scholar
Florin, R. 1948. Enumeration of gymnosperms collected on Swedish expeditions to western and north-western China in 1930–1934. Acta Horti Bergiani 14: 121312.Google Scholar
Florin, R. 1951. Evolution in Cordaitales and Conifers. Acta Horti Bergiani 15: 285388.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Givulescu, R. 1948. Noti asupra florei sarmatice din estul Bazinului neogen al Borodului. Rev Muz Min Geol 8: 248258.Google Scholar
Gooch, N.L. 1992. Two new species of Pseudolarix Gordon (Pinaceae) from the middle Eocene of the Pacific Northwest. PaleoBios 14: 1319.Google Scholar
Grímsson, F. & Zetter, R. 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Hamilton, W. 1983. Cretaceous and Cenozoic history of the northern continents. Annals of the Missouri Botanical Garden 70(3): 440458.CrossRefGoogle Scholar
Hancock, J.M. & Kauffman, E.G. 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society 136(2): 175186.CrossRefGoogle Scholar
Hao-min, L. & Gui-ying, Y. 1984. Miocene Qiuligou flora in Dunhua County Jilin Province. Acta Palaeontologica Sinica 23: 204214.Google Scholar
Harris, T.M. 1979. The Yorkshire Jurassic Flora. 5. Coniferales. London: British Museum.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hickel, R. 1932. Note sur gisement de vegetaux Pliocenes dans le Bas-Rhin. Bulletin de la Société Dendrologique de France 83: 4348.Google Scholar
Hopkins, D.M. (ed.). 1967. The Bering Land Bridge. Stanford, CA: Stanford University Press.Google Scholar
Jackson, H.R. & Gunnarsson, K. 1990. Reconstructions of the Arctic: Mesozoic to present. Tectonophysics 172(3–4): 303322.CrossRefGoogle Scholar
Jahren, A.H., 2007. The Arctic forest of the middle Eocene. Annual Reviews of Earth Planetary Science 35: 509540.CrossRefGoogle Scholar
Kan, X.Z., Wang, S.S., Ding, X. & Wang, X.Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution 44(2): 765777.CrossRefGoogle ScholarPubMed
Keller, A.M. & Hendrix, M.S. 1997. Paleoclimatologic analysis of a Late Jurassic petrified forest, southeastern Mongolia. Palaios 12: 282291.CrossRefGoogle Scholar
Khoshoo, T.N. 1961. Chromosome numbers in gymnosperms. Silvae Genetica 10: 132.Google Scholar
Kimura, T. & Horiuchi, J. 1978. Pseudolarix niponica sp. nov., from the Palaeogene Noda Group, northeast Japan. Proceedings of the Japan Academy, Ser. B, Physical and Biological Sciences 54: 429434.CrossRefGoogle Scholar
Kolesnikova, T.D. 1963. New data on the Tertiary flora of Bashkiria. Botanicheskii zhurnal 48: 14241437.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kornilova, V.S., Imankulova, S.K. 1972. Conifers from the Oligocene sediments of Akmole and Erzhilinsaya (Turgaiskii Trough). Nauka 4: 6980.Google Scholar
Kovar-Eder, J. & Berger, J.-P. 1987. Die Oberoligozäne Flora von Unter-Rudling bei Eferding in Oberösterreich. Annalen des Naturhistorischen Museums in Wien. 89: 57–93.Google Scholar
Krassilov, V.A. 1967. Early Cretaceous Flora of South Primorye and Its Significance to Stratigraphy. Moscow: Nauka.Google Scholar
Krassilov, V.A. 1982. Early Cretaceous flora of Mongolia. Palaeontographica, Abt., B. 181: 143.Google Scholar
Kryshtofovich, AN, Palibin, IV, Shaparenko, KK & Yarmolenko, AV. 1956. The Oligocene flora from the Ashutas Mountains in Kazakhstana. Palaeobotanica 1:1179.Google Scholar
Kuan, C.-T. 1981. Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxonomica Sinica 14: 407420 (in Chinese).Google Scholar
LePage, B.A. 2003. The evolution, biogeography and palaeoecology of the Pinaceae based on fossil and extant representatives. Acta Horticultura 615: 2952.CrossRefGoogle Scholar
LePage, B. & Basinger, J. 1989. Early Tertiary Larix from the Canadian High Arctic. Musk-Ox 37: 103109.Google Scholar
LePage, B.A. & Basinger, J.F. 1991. The evolutionary and biogeographic history of Pseudolarix. American Journal of Botany 78: 118.Google Scholar
LePage, B.A. & Basinger, J.F. 1995. Evolutionary history of the genus Pseudolarix Gordon (Pinaceae). International Journal of Plant Sciences 156: 910950.CrossRefGoogle Scholar
Li, H.-L. 1953. Present distribution and habitats of the conifers and taxads. Evolution 7: 245261.CrossRefGoogle Scholar
Li, L.C. 1993. Studies on the karyotype and systematic position of Larix Mill. (Pinaceae). Acta Phytotaxonomica Sinica 31: 405412.Google Scholar
Mädler, K. 1939. Die pliozäne flora von Frankfurt am Main. Frankfurt am Main: Alexander Doweld.Google Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Mai, D.H. & Walther, H., 1988. Die pliozänen Floren von Thüringen Deutsche Demokratische Republik. Quartärpaläont 7: 55297.Google Scholar
Manton, I. 1950. Problems of Cytology and Evolution in the Pteridophyta. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
McIntyre, D.J. 1991. Pollen and spore flora of an Eocene forest, eastern Axel Heiberg Island, N.W.T. Bulletin of the Geological Survey of Canada 403: 8398.Google Scholar
Meyen, S.V. 1987. Fundamentals of Palaeobotany. London: Chapman & Hall.CrossRefGoogle Scholar
Miki, S. 1957. Pinaceae of Japan, with special reference to its remains. Journal of the Institute of Polytechnics Osaka City University Japan Series D 8: 221272.Google Scholar
Miller, C.N. 1976. Early evolution in the Pinaceae. Review of Palaeobotany and Palynology 21: 101117.CrossRefGoogle Scholar
Miller, C.N. 1977 Mesozoic conifers. Botanical Review 43: 217280.CrossRefGoogle Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp. 448486 in Beck, C.B. (ed.) Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Moss, P.T., Greenwood, D.R. & Archibald, S.B. 2005. Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia Washington State) from palynology. Canadian Journal of Earth Sciences 42(2): 187204.CrossRefGoogle Scholar
Muntzing, A. 1933. Hybrid incompatibility and the origin of polyploidy. Hereditas 18: 3355.CrossRefGoogle Scholar
Nakai, T. 1938. Indigenous species of conifers and taxads of Korea and Manchuria and their distribution. I. Tyosen San-rin Kayho 158: 129 (in Japanese).Google Scholar
Nkongolo, K.K. & Mehes-Smith, M. 2012. Karyotype evolution in the Pinaceae: implication with molecular phylogeny. Genome 55: 735753.CrossRefGoogle Scholar
Ozaki, K. 1979. Late Miocene Tatsumitoge flora of Tottori Prefecture, southwest Honshu, Japan (I). Science Reports of the Yokohama National University Section II 26: 3156.Google Scholar
Page, C.N. 1972. An interpretation of the morphology and evolution of the cone and shoot of Equisetum. Journal of the Linnean Society Botany 65: 359397.CrossRefGoogle Scholar
Page, C.N. 1979. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Price, W.R. 1931. On the distribution of Pseudolarix fortunei, the Golden larch. Kew Bulletin 2: 6768.Google Scholar
Raven, P.H. & Axelrod, D.I. 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61: 539673.CrossRefGoogle Scholar
Reid, C. & Reid, E.M., 1915. The Pliocene floras of the Dutch–Prussian border. Meded Rijksopsp Delfst 6: 1178.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schloemer-Jaeger, A. 1958. Alttertiaere Pflanzen aus Floezcn der Broegger-halbinsel Spitzbergens. Palaeontographica Abteilung B 104: 39103.Google Scholar
Seward, A.C. 1912. Jurassic plants from Amurland. Memoirs of the Geological Survey of New South Wales 81:134.Google Scholar
Seward, A.C. 1919. Fossil Plants. Cambridge: Cambridge University Press.Google Scholar
Stebbins, G.L. 1938. Cytological characteristics associated with the different growth habits in the dicotyledons. American Journal of Botany 25: 189198.CrossRefGoogle Scholar
Stebbins, G.L. 1947. Types of polyploids; their classification and significance. Advances in Genetics 1: 403429.CrossRefGoogle ScholarPubMed
Stebbins, G.L. 1963. Variation and Evolution in Plants. New York: Columbia University Press.Google Scholar
Stewart, W.N. & Rothwell, G.W. 1993. Paleobotany and the Evolution of Plants, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Supniewska, H. 1954. Krotkopedy Pseudolarix amabilis Rehd. Z pliocenu pod Huba w Karpatach zachodnic. Institute of Geology (Warsaw) Proceedings. 71: 133146 (in Polish).Google Scholar
Szafer, W. 1947. The Pliocene flora of Kroscienko in Poland. Pol Akad Umiejetn 72: 1213.Google Scholar
Takhtajan, A. 1969. Flowering Plants: Origin and Dispersal. Edinburgh: Oliver & Boyd.Google Scholar
Takhtajan, A.L. 1956. The Higher Plants 1. Psilophytales – Coniferales. Moscow: Academia of Sciences of USSR (in Russian).Google Scholar
Takhtajan, A.L. 1957. On the origin of temperate flora of Eurasia. Botanische Zhurnal 42: 16351653.Google Scholar
Takhtajan, A.L. 1966. Major phytochoria of the Late Cretaceous and the Palaeocene in the territory of the USSR and adjacent countries. Botanische Zhurnal 51: 12171230.Google Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaido University Ser IV. Geology 11: 119398.Google Scholar
Tanai, T. & Onoe, T. 1961. A Mio–Pliocene flora from the Ningyo-Toge area on the border between Tottori and Okayama prefectures, Japan. Geological Survey of Japan 187: 163.Google Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 250(3): 287.CrossRefGoogle Scholar
Teslenko, Y.V. 1970. Geologic history of larches and pseudolarches. Paleontology Journal 4: 241247.Google Scholar
Tiffney, B.H. 1985a. Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. Journal of the Arnold Arboretum 66: 7394.CrossRefGoogle Scholar
Tiffney, B.H. 1985b. The Eocene North Atlantic land bridge: its importance in the Tertiary and modern phytogeography of the Northern Hemisphere. Journal of the Arnold Arboretum 66: 243273.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vakhrameev, V.A. & Labedev, E.L. 1976. A new Pseudolarix from the Upper Cretaceous of the northeast of the USSR. Paleontology Journal 10: 500504.Google Scholar
Wang, C.-W. 1961. The Forests of China, With a Survey of Grassland and Desert Vegetation. Cambridge, MA: Maria Moors Cabot Foundation Publications.Google Scholar
Wang, X.-Q., Han, Y. & Hong, D.-Y. 1998a. A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution 213: 165172.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998b. PCR-RFLP analysis of the chloroplast gene trn K in the Pinaceae, with special reference to the systematic position of Cathaya. Israel Journal of Plant Sciences 46(4): 265271.CrossRefGoogle Scholar
Wehr, W.C. & Schorn, H.E. 1993. Current research on Eocene conifers at Republic, Washington. Washington Geology 20:2023.Google Scholar
Wolfe, J.A. 1975. Some aspects of plant geography of the Northern Hemisphere during the Late Cretaceous and Tertiary. Annals of the Missouri Botanical Garden 62: 264279.CrossRefGoogle Scholar
Ying, T.-S. & Li, L.-Q. 1981. Ecological distribution of endemic genera of taxads and conifers in China and neighbouring area in relation to phytogeographical significance. Acta Phytotaxonomica Sinica 29: 400415 (in Chinese, with English summary).Google Scholar
Ying, T. S., Zhang, Y. L. & Boufford, D. E. 1993. The Endemic Genera of Seed Plants of China. Beijing: Science Press.Google Scholar
Zanni, M. & Ravazzi, C. 2007. Description and differentiation of Pseudolarix amabilis pollen: palaeoecological implications and new identification key to fresh bisaccate pollen. Review of Palaeobotany and Palynology 145: 3575.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Pseudolarix
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Pseudolarix
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Pseudolarix
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.015
Available formats
×