Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T02:33:20.329Z Has data issue: false hasContentIssue false

13 - Are transposition events at the origin of the bilaterian Hox complexes?

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

The genome sequences of two non-bilaterian animals, the cnidarians Nematostella vectensis and Hydra magnipapillata, have been recently completed. These new data lead to the fascinating result that the complement of Hox genes in the cnidarian ancestor is considerably lower than that in the bilaterians, although the complexity of their genome is otherwise similar (Technau et al. 2005). Thus, there is a correlation between the radiation of the Bilateria and the expansion of the Hox complex.

In the first part of this chapter, we shall present and discuss these data. In the second part, we shall present a novel hypothesis accounting for this phenomenon. In short, we surmise that the expansion of the Hox complex at the base of the Bilateria was due to a series of transposition events. Indeed, we hypothesise that the Hox genes themselves originate from transposons. The main support for this hypothesis is provided by the similarity between the homeodomain and the DNA-binding domain of bacterial integrases and eukaryotic transposases. We also examine some very precise rearrangements of the Hox complex in the Drosophilidae lineage. In the third part, we propose a scenario for the evolution of the Hox complex from the basic complement of Hox genes in the common ancestor of cnidarian and bilaterian animals. This scenario, based on our transposition hypothesis, accounts for several properties of the extant Hox genes.

TO SET THE SCENE: THE HOX EXPLOSION

The homeobox is a conserved motif found in a huge variety of eukaryotic genes, encoding a DNA-binding domain.

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 239 - 260
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboobaker, A. A. & Blaxter, M. L. 2003. Hox gene loss during dynamic evolution of the nematode cluster. Current Biology 13, 37–40.CrossRefGoogle ScholarPubMed
Aguinaldo, A. M., Turbeville, J. M., Linford, L. S.et al. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493.CrossRefGoogle ScholarPubMed
Akam, M., Dawson, I. & Tear, G. 1988. Homeotic genes and the control of segment diversity. Development 104 (supplement), 123–133.Google Scholar
Baguñà, J. & Riutort, M. 2004. The dawn of bilaterian animals: the case of acoelomorph flatworms. BioEssays 26, 1046–1057.CrossRefGoogle ScholarPubMed
Ball, E. E. & Miller, D. J. 2006. Phylogeny: the continuing classificatory conundrum of chaetognaths. Current Biology 16, R593–R596.CrossRefGoogle ScholarPubMed
Bergson, C. & McGinnis, W. 1990. An autoregulatory enhancer element of the Drosophila homeotic gene Deformed. EMBO Journal 9, 4287–4297.Google ScholarPubMed
Bernstein, R. M., Schluter, S. F., Bernstein, H. & Marchalonis, J. J. 1996. Primordial emergence of the recombination activating gene 1 (RAG1): sequence of the complete shark gene indicates homology to microbial integrases. Proceedings of the National Academy of Sciences of the USA 93, 9454–9459.CrossRefGoogle ScholarPubMed
Bharathan, G., Janssen, B. J., Kellogg, E. A. & Sinha, N. 1997. Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa?Proceedings of the National Academy of Sciences of the USA 94, 13749–13753.CrossRefGoogle ScholarPubMed
Biémont, C. & Vieira, C. 2006. Junk DNA as an evolutionary force. Nature 443, 521–524.CrossRefGoogle ScholarPubMed
Cameron, R. A., Rowen, L., Nesbitt, R.et al. 2006. Unusual gene order and organization of the sea urchin Hox cluster. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 306, 45–58.CrossRefGoogle ScholarPubMed
Chourrout, D., Delsuc, F., Chourrout, P.et al. 2006. Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442, 684–687.CrossRefGoogle ScholarPubMed
Cook, C. E., Jiménez, E., Akam, M. & Saló, E. 2004. The Hox gene complement of acoel flatworms, a basal bilaterian clade. Evolution & Development 6, 154–163.CrossRefGoogle ScholarPubMed
De, P. & Rodgers, K. K. 2004. Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1. Immunological Reviews 200, 70–82.CrossRefGoogle Scholar
Rosa, R., Grenier, J., Andreeva, T.et al. 1999. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399, 772–776.CrossRefGoogle ScholarPubMed
Deutsch, J. & Guyader, H. 1998. The neuronal zootype: a hypothesis. Comptes Rendus de l'Académie des Sciences (Paris), série III 321, 713–719.CrossRefGoogle ScholarPubMed
Duboule, D. 1994. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate bauplan and the evolution of morphologies through heterochrony. Development 1994 supplement, 135–142.Google ScholarPubMed
Duboule, D. & Morata, G. 1994. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends in Genetics 10, 358–364.CrossRefGoogle ScholarPubMed
Ekker, S. C., Jackson, D. G., Kessler, D. P.et al. 1994. The degree of variation in DNA sequence recognition among four Drosophila homeotic proteins. EMBO Journal 13, 3551–3560.Google ScholarPubMed
Ferrier, D. E. & Holland, P. W. 2001. Ancient origin of the Hox gene cluster. Nature Reviews Genetics 2, 33–38.CrossRefGoogle ScholarPubMed
Ferrier, D. E., Minguillon, C., Holland, P. W. & Garcia-Fernàndez, J. 2000. The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14. Evolution & Development 2, 284–293.CrossRefGoogle ScholarPubMed
Garcia-Fernàndez, J. 2005. The genesis and evolution of homeobox gene clusters. Nature Reviews Genetics 6, 881–892.CrossRefGoogle ScholarPubMed
Gauchat, D., Mazet, F., Berney, C.et al. 2000. Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning. Proceedings of the National Academy of Sciences of the USA 97, 4493–4498.CrossRefGoogle ScholarPubMed
Golic, K. G. 1994. Local transposition of P elements in Drosophila melanogaster and recombination between duplicated elements using a site-specific recombinase. Genetics 137, 551–563.Google ScholarPubMed
Greer, J. M., Puetz, J., Thomas, K. R. & Capecchi, M. R. 2000. Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403, 661–665.CrossRefGoogle ScholarPubMed
Henikoff, S. 1998. Conspiracy of silence among repeated transgenes. BioEssays 20, 532–535.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Hiom, K., Melek, M. & Gellert, M. 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470.CrossRefGoogle ScholarPubMed
Holland, P. W. & Takahashi, T. 2005. The evolution of homeobox genes: implications for the study of brain development. Brain Research Bulletin 66, 484–490.CrossRefGoogle Scholar
Hughes, N. C. & Jacobs, D. K. 2005. The end of everything: metazoan terminal addition. Evolution & Development 7, 497.CrossRefGoogle ScholarPubMed
Kamm, K., Schierwater, B., Jakob, W., Dellaporta, S. L. & Miller, D. J. 2006. Axial patterning and diversification in the Cnidaria predate the Hox system. Current Biology 16, 920–926.CrossRefGoogle ScholarPubMed
Kapitonov, V. V. & Jurka, J. 2005. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biology 3, e181.CrossRefGoogle Scholar
Kaufman, P. D. & Rio, D. C. 1991. Drosophila P-element transposase is a transcriptional repressor in vitro. Proceedings of the National Academy of Sciences of the USA 88, 2613–2617.CrossRefGoogle ScholarPubMed
Knoll, A. H. & Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science 284, 2129–2137.CrossRefGoogle ScholarPubMed
Lewis, E. B. 1978. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570.CrossRefGoogle ScholarPubMed
Long, S., Martinez, P., Chen, W. C., Thorndyke, M. & Byrne, M. 2003. Evolution of echinoderms may not have required modification of the ancestral deuterostome HOX gene cluster: first report of PG4 and PG5 Hox orthologues in echinoderms. Development Genes & Evolution 213, 573–576.CrossRefGoogle Scholar
Lou, L., Bergson, C. & McGinnis, W. 1995. Deformed expression in the Drosophila central nervous system is controlled by an autoactivated intronic enhancer. Nucleic Acids Research 23, 3481–3487.CrossRefGoogle ScholarPubMed
Manuel, M. & Parco, Y. 2000. Homeobox gene diversification in the calcareous sponge, Sycon raphanus. Molecular Phylogenetics and Evolution 17, 97–107.CrossRefGoogle ScholarPubMed
Marletaz, F., Martin, E., Perez, Y.et al. 2006. Chaetognath phylogenomics: a protostome with deuterostome-like development. Current Biology 16, R577–R778.CrossRefGoogle ScholarPubMed
Matus, D. Q., Copley, R. R., Dunn, C. W.et al. 2006. Broad taxon and gene sampling indicate that chaetognaths are protostomes. Current Biology 16, R575–R576.CrossRefGoogle ScholarPubMed
McGinnis, W. & Krumlauf, R. 1992. Homeobox genes and axial patterning. Cell 68, 283–302.CrossRefGoogle ScholarPubMed
Monteiro, A. S. & Ferrier, D. E. 2006. Hox genes are not always colinear. International Journal of Biological Sciences 2, 95–103.CrossRefGoogle Scholar
Negre, B., Ranz, J. M., Casals, F., Caceres, M. & Ruiz, A. 2003. A new split of the Hox gene complex in Drosophila: relocation and evolution of the gene labial. Molecular Biology and Evolution 20, 2042–2054.CrossRefGoogle ScholarPubMed
Neuteboom, S. T., Peltenburg, L. T., Dijk, M. A. & Murre, C. 1995. The hexapeptide LFPWMR in Hoxb-8 is required for cooperative DNA binding with Pbx1 and Pbx2 proteins. Proceedings of the National Academy of Sciences of the USA 92, 9166–9170.CrossRefGoogle ScholarPubMed
Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. 1997. Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 90, 479–490.CrossRefGoogle ScholarPubMed
Papillon, D., Perez, Y., Fasano, L., Parco, Y. & Caubit, X. 2003. Hox gene survey in the chaetognath Spadella cephaloptera: evolutionary implications. Development Genes & Evolution 213, 142–148.Google ScholarPubMed
Peifer, M., Karch, F. & Bender, W. 1987. The Bithorax Complex: control of segmental identity. Genes & Development 1, 891–898.CrossRefGoogle Scholar
Pierce, R. J., Wu, W., Hirai, H.et al. 2005. Evidence for a dispersed Hox gene cluster in the platyhelminth parasite Schistosoma mansoni. Molecular Biology and Evolution 22, 2491–2503.CrossRefGoogle ScholarPubMed
Powers, T. P. & Amemiya, C. T. 2004. Evidence for a Hox14 paralog group in vertebrates. Current Biology 14, R183–R184.CrossRefGoogle ScholarPubMed
Quesneville, H., Bergman, C. M., Andrieu, O.et al. 2005. Combined evidence annotation of transposable elements in genome sequences. PLoS Computational Biology 1, 166–175.CrossRefGoogle ScholarPubMed
Randazzo, F. M., Seeger, M. A., Huss, C. A.et al. 1993. Structural changes in the Antennapedia-complex of Drosophila pseudoobscura. Genetics 134, 319–330.Google ScholarPubMed
Reddy, Y. V., Perkins, E. J. & Ramsden, D. A. 2006. Genomic instability due to V(D)J recombination-associated transposition. Genes & Development 20, 1575–1582.CrossRefGoogle Scholar
Richelle-Maurer, E., Boury-Esnault, N., Itskovich, V. B.et al. 2006. Conservation and phylogeny of a novel family of non-Hox genes of the Antp class in Demospongiae (Porifera). Journal of Molecular Evolution 63, 222–230.CrossRefGoogle Scholar
Ringrose, L., Rehmsmeier, M., Dura, J. M. & Paro, R. 2003. Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Developmental Cell 5, 759–571.CrossRefGoogle ScholarPubMed
Ruiz-Trillo, I., Riutort, M., Littlewood, D. T., Herniou, E. A. & Baguñà, J. 1999. Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science 283, 1919–1923.CrossRefGoogle Scholar
Ryan, J. F., Burton, P. M., Mazza, M. E.et al. 2006. The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes. Evidence from the starlet sea anemone, Nematostella vectensis. Genome Biology 7, R64.CrossRefGoogle ScholarPubMed
Schatz, D. G., Oettinger, M. A. & Baltimore, D. 1989. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048.CrossRefGoogle Scholar
Schierwater, B. 2005. My favorite animal, Trichoplax adhaerens. BioEssays 27, 1294–1302.CrossRefGoogle ScholarPubMed
Schuchert, P. 1993. Trichoplax adhaerens (Phylum Placozoa) has cells that react with antibodies against the neuropeptide RFamide. Acta Zoologica 74, 115–117.CrossRefGoogle Scholar
Spanopoulou, E., Zaitseva, F., Wang, F. H.et al. 1996. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell 87, 263–276.CrossRefGoogle ScholarPubMed
Tarchini, B. & Duboule, D. 2006. Control of HoxD genes' collinearity during early limb development. Developmental Cell 10, 93–103.CrossRefGoogle ScholarPubMed
Technau, U., Rudd, S., Maxwell, P.et al. 2005. Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends in Genetics 21, 633–639.CrossRefGoogle ScholarPubMed
Telford, M. J. 2000. Evidence for the derivation of the Drosophila fushi tarazu gene from a Hox gene orthologous to lophotrochozoan Lox5. Current Biology 10, 349–352.CrossRefGoogle ScholarPubMed
Thompson, C. B. 1995. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3, 531–539.CrossRefGoogle Scholar
Valentine, J. W. 2006. Ancestors and Urbilateria. Evolution & Development 8, 391–393.CrossRefGoogle ScholarPubMed
Dijk, M. A. & Murre, C. 1994. Extradenticle raises the DNA binding specificity of homeotic selector gene products. Cell 78, 617–624.CrossRefGoogle ScholarPubMed
Volff, J.- N. 2006. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28, 913–922.CrossRefGoogle ScholarPubMed
Wong, V. Y., Aisemberg, G. O., Gan, W. B. & Macagno, E. R. 1995. The leech homeobox gene Lox4 may determine segmental differentiation of identified neurons. Journal of Neuroscience 15, 5551–5559.CrossRefGoogle ScholarPubMed
Yasukochi, Y., Ashakumary, L. A., Wu, C.et al. 2004. Organization of the Hox gene cluster of the silkworm, Bombyx mori: a split of the Hox cluster in a non-Drosophila insect. Development Genes & Evolution 214, 606–614.CrossRefGoogle Scholar
Zákány, J., Kmita, M. & Duboule, D. 2004. A dual role for Hox genes in limb anterior-posterior asymmetry. Science 304, 1669–1672.CrossRefGoogle ScholarPubMed
Zeng, C., Pinsonneault, J., Gellon, G., McGinnis, N. & McGinnis, W. 1994. Deformed protein binding sites and cofactor binding sites are required for the function of a small segment-specific regulatory element in Drosophila embryos. EMBO Journal 13, 2362–2377.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×