Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-13T03:32:03.718Z Has data issue: false hasContentIssue false

20 - Arthropod appendages: a prime example for the evolution of morphological diversity and innovation

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

The morphology of the appendages of the arthropods has been adapted to a large number of life styles that is virtually unparalleled in any other organ in the Metazoa. Different appendage types exist e.g. for walking, swimming, jumping, prey-capture, chewing, biting, mating, egg-laying, breathing in air, fresh water and salt water, and sensory perception (see Figure 20.1 for examples). Very specialised appendage types exist for specialised modes of life: for example, the spinnerets in spiders, brush legs for the distribution of pheromones (e.g. some moths) or stings for defence (e.g. bees and wasps). In many cases, appendages from a single segment or from several segments unite and form an entirely new structure capable of tapping into new resources, e.g. the labium of insects, formed by the fusion of an appendage pair, or the proboscis of ticks, mosquitoes and flies, all of which are composed of the appendages of at least two head segments.

A number of different appendage types can be present on a single individual. The number of different appendage types and their specific morphology depend on the species' life style, but in most cases at least three different types are present: appendages for sensory perception, feeding and locomotion (Figure 20.1).

The appendages of the arthropods thus have been a prime target of adaptive evolution. They are unparalleled in their sheer number of novel forms and functions. Therefore, they are an excellent model for the study of the principles of adaptive evolution and morphological change and innovation.

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 381 - 398
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M. K. & Kaufman, T. C. 1986. The relationship between the functional complexity and the molecular organization of the Antennapedia locus of Drosophila melanogaster. Genetics 114, 919–942.Google ScholarPubMed
Abu-Shaar, M. & Mann, R. S. 1998. Generation of multiple antagonistic domains along the proximodistal axis during Drosophila leg development. Development 125, 3821–3830.Google ScholarPubMed
Abzhanov, A., Holtzman, S. & Kaufman, T. C. 2001. The Drosophila proboscis is specified by two Hox genes, proboscipedia and Sex combs reduced, via repression of leg and antennal appendage genes. Development 128, 2803–2814.Google ScholarPubMed
Abzhanov, A. & Kaufman, T. C. 1999. Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. Development 126, 1121–1128.Google ScholarPubMed
Abzhanov, A. & Kaufman, T. C. 2000. Homologs of Drosophila appendage genes in the patterning of arthropod limbs. Developmental Biology 227, 673–689.CrossRefGoogle ScholarPubMed
Abzhanov, A. & Kaufman, T. C. 2004. Hox genes and tagmatization of the higher Crustacea (Malacostraca). In Scholtz, G. (ed.) Evolutionary Developmental Biology of Crustacea. (Crustacean Issues 15), Lisse: Balkema, pp. 43–74.Google Scholar
Abzhanov, A., Popadic, A. & Kaufman, T. C. 1999. Chelicerate Hox genes and the homology of arthropod segments. Evolution & Development 1, 77–89.CrossRefGoogle ScholarPubMed
Angelini, D. R. & Kaufman, T. C. 2004. Functional analyses in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects. Developmental Biology 271, 306–321.CrossRefGoogle ScholarPubMed
Angelini, D. R. & Kaufman, T. C. 2005a. Insect appendages and comparative ontogenetics. Developmental Biology 286, 57–77.CrossRefGoogle Scholar
Angelini, D. R. & Kaufman, T. C. 2005b. Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development. Developmental Biology 283, 409–423.CrossRefGoogle Scholar
Angelini, D. R., Liu, P. Z., Hughes, C. L. & Kaufman, T. C. 2005. Hox gene function and interaction in the milkweed bug Oncopeltus fasciatus (Hemiptera). Developmental Biology 287, 440–455.CrossRefGoogle Scholar
Averof, M. & Patel, N. H. 1997. Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388, 682–686.CrossRefGoogle ScholarPubMed
Beeman, R. W., Stuart, J. J., Haas, M. S. & Denell, R. E. 1989. Genetic analysis of the homeotic gene complex (HOM-C) in the beetle Tribolium castaneum. Developmental Biology 133, 196–209.CrossRefGoogle ScholarPubMed
Beermann, A., Jay, D. G., Beeman, R. W.et al. 2001. The Short antennae gene of Tribolium is required for limb development and encodes the orthologue of the Drosophila Distal-less protein. Development 128, 287–297.Google ScholarPubMed
Bishop, S. A., Klein, T., Arias, A. Martinez & Couso, J. P. 1999. Composite signaling from Serrate and Delta establishes leg segments in Drosophila through Notch. Development 126, 2993–3003.Google ScholarPubMed
Bitsch, J. 2001. The hexapod appendage: basic structure, development and origin. Annales de la Société Entomologique de France (Nouvelle Série) 37, 175–193.Google Scholar
Boxshall, G. A. 2004. The evolution of arthropod limbs. Biological Reviews 79, 253–300.CrossRefGoogle ScholarPubMed
Casares, F. & Mann, R. S. 1998. Control of antennal versus leg development in Drosophila. Nature 392, 723–726.CrossRefGoogle ScholarPubMed
Casares, F. & Mann, R. S. 2001. The ground state of the ventral appendage in Drosophila. Science 293, 1477–1480.CrossRefGoogle ScholarPubMed
Chu, J., Dong, P. D. & Panganiban, G. 2002. Limb type-specific regulation of bric a brac contributes to morphological diversity. Development 129, 695–704.Google Scholar
Cohen, S. M. 1993. Imaginal disc development. In Bate, M. & Arias, A. Martinez (eds.) The Development of Drosophila melanogaster. Volume II. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, pp. 747–841.Google Scholar
Cohen, S. M. & Jürgens, G. 1989a. Proximal–distal pattern formation in Drosophila: graded requirement for Distal-less gene activity during limb development. Roux' Archives of Developmental Biology 198, 157–169.CrossRefGoogle Scholar
Cohen, S. M. & Jürgens, G. 1989b. Proximal-distal pattern formation in Drosophila: cell autonomous requirement for Distal-less gene activity in limb development. EMBO Journal 8, 2045–2055.Google Scholar
Damen, W. G. M., Hausdorf, M., Seyfarth, E. A. & Tautz, D. 1998. A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proceedings of the National Academy of Sciences of the USA 95, 10665–10670.CrossRefGoogle Scholar
DeCamillis, M. A. & ffrench-Constant, R. 2003. Proboscipedia represses distal signaling in the embryonic gnathal limb fields of Tribolium castaneum. Development Genes & Evolution 213, 55–64.Google ScholarPubMed
DeCamillis, M. A., Lewis, D. L., Brown, S. J., Beeman, R. W. & Denell, R. E. 2001. Interactions of the Tribolium Sex combs reduced and proboscipedia orthologs in embryonic labial development. Genetics 159, 1643–1648.Google ScholarPubMed
Celis, J. F., Tyler, D. M., Celis, J. & Bray, S. J. 1998. Notch signalling mediates segmentation of the Drosophila leg. Development 125, 4617–4626.Google ScholarPubMed
Dong, P. D., Chu, J. & Panganiban, G. 2000. Coexpression of the homeobox genes Distal-less and homothorax determines Drosophila antennal identity. Development 127, 209–216.Google ScholarPubMed
Dong, P. D., Chu, J. & Panganiban, G. 2001. Proximodistal domain specification and interactions in developing Drosophila appendages. Development 128, 2365–2372.Google ScholarPubMed
Dong, P. D., Dicks, J. S. & Panganiban, G. 2002. Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna. Development 129, 1967–1974.Google ScholarPubMed
Emerald, B. S. & Cohen, S. M. 2004. Spatial and temporal regulation of the homeotic selector gene Antennapedia is required for the establishment of leg identity in Drosophila. Developmental Biology 267, 462–472.CrossRefGoogle ScholarPubMed
Emerald, B. S., Curtis, J., Mlodzik, M. & Cohen, S. M. 2003. distal antenna and distal antenna related encode nuclear proteins containing pipsqueak motifs involved in antenna development in Drosophila. Development 130, 1171–1180.CrossRefGoogle ScholarPubMed
Fristrom, D. & Fristrom, J. W. 1993. The metamorphic development of the adult epidermis. In Bate, M. & Arias, A. Martinez (eds.) The Development of Drosophila melanogaster, Vol. II, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, pp. 843–897.Google Scholar
Galindo, M. I., Bishop, S. A., Greig, S. & Couso, J. P. 2002. Leg patterning driven by proximal-distal interactions and EGFR signaling. Science 297, 256–259.CrossRefGoogle ScholarPubMed
Giorgianni, M. W. & Patel, N. H. 2004. Patterning of the branched head appendages in Schistocerca americana and Tribolium castaneum. Evolution & Development 6, 402–410.CrossRefGoogle ScholarPubMed
Giorgianni, M. W. & Patel, N. H. 2005. Conquering land, air and water: the evolution and development of arthropod appendages. In Briggs, D. E. G. (ed.) Evolving Form and Function: Fossils and Development. New Haven: Peabody Museum of Natural History, Yale University, pp. 159–188.Google Scholar
Gonzalez-Crespo, S., Abu-Shaar, M., Torres, M.et al. 1998. Antagonism between extradenticle function and Hedgehog signalling in the developing limb. Nature 394, 196–200.CrossRefGoogle ScholarPubMed
Gonzalez-Crespo, S. & Morata, G. 1996. Genetic evidence for the subdivision of the arthropod limb into coxopodite and telopodite. Development 122, 3921–3928.Google ScholarPubMed
Hughes, C. L. & Kaufman, T. C. 2000. RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development 127, 3683–3694.Google ScholarPubMed
Hughes, C. L. & Kaufman, T. C. 2002. Hox genes and the evolution of the arthropod body plan. Evolution & Development 4, 459–499.CrossRefGoogle ScholarPubMed
Inoue, Y., Mito, T., Miyawaki, K.et al. 2002. Correlation of expression patterns of homothorax, dachshund, and Distal-less with the proximodistal segmentation of the cricket leg bud. Mechanisms of Development 113, 141–148.CrossRefGoogle ScholarPubMed
Jockusch, E. L., Nulsen, C., Newfeld, S. J. & Nagy, L. M. 2000. Leg development in flies versus grasshoppers: differences in dpp expression do not lead to differences in the expression of downstream components of the leg patterning pathway. Development 127, 1617–1626.Google Scholar
Jockusch, E. L., Williams, T. A. & Nagy, L. M. 2004. The evolution of patterning of serially homologous appendages in insects. Development Genes & Evolution 214, 324–338.CrossRefGoogle ScholarPubMed
Joulia, L., Bourbon, H.-M. & Cribbs, D. L. 2005. Homeotic proboscipedia function modulates hedgehog-mediated organizer activity to pattern adult Drosophila mouthparts. Developmental Biology 278, 496–510.CrossRefGoogle ScholarPubMed
Joulia, L., Deutsch, J., Bourbon, H. M. & Cribbs, D. L. 2006. The specification of a highly derived arthropod appendage, the Drosophila labial palps, requires the joint action of selectors and signaling pathways. Development Genes & Evolution 216, 431–442.CrossRefGoogle ScholarPubMed
Kojima, T. 2004. The mechanism of Drosophila leg development along the proximodistal axis. Development Growth & Differentiation 46, 115–129.CrossRefGoogle ScholarPubMed
Lecuit, T. & Cohen, S. M. 1997. Proximal-distal axis formation in the Drosophila leg. Nature 388, 139–145.CrossRefGoogle ScholarPubMed
Mardon, G., Solomon, N. M. & Rubin, G. M. 1994. dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development 120, 3473–3486.Google ScholarPubMed
Mittmann, B. & Scholtz, G. 2003. Development of the nervous system in the ‘head’ of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Development Genes & Evolution 213, 9–17.Google ScholarPubMed
Niwa, N., Inoue, Y., Nozawa, A.et al. 2000. Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127, 4373–4381.Google ScholarPubMed
Niwa, N., Saitoh, M., Ohuchi, H., Yoshioka, H. & Noji, S. 1997. Correlation between Distal-less expression patterns and structures of appendages in the development of the two-spotted cricket, Gryllus bimaculatus. Zoological Science 14, 115–125.CrossRefGoogle Scholar
Ober, K. A. & Jockusch, E. L. 2006. The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum. Developmental Biology 294, 391–405.CrossRefGoogle ScholarPubMed
Panganiban, G., Nagy, L. & Carroll, S. B. 1994. The role of the Distal-less gene in the development and evolution of insect limbs. Current Biology 4, 671–675.CrossRefGoogle ScholarPubMed
Popadic, A., Panganiban, G., Rusch, D., Shear, W. A. & Kaufman, T. C. 1998. Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures. Development Genes & Evolution 208, 142–150.Google ScholarPubMed
Popadic, A., Rusch, D., Peterson, M., Rogers, B. T. & Kaufman, T. C. 1996. Origin of the arthropod mandible. Nature 380, 395.CrossRefGoogle Scholar
Prpic, N. M. 2004. Homologs of wingless and decapentaplegic display a complex and dynamic expression profile during appendage development in the millipede Glomeris marginata (Myriapoda: Diplopoda). Frontiers in Zoology 1, 6.CrossRefGoogle Scholar
Prpic, N. M. & Damen, W. G. M. 2004. Expression patterns of leg genes in the mouthparts of the spider Cupiennius salei (Chelicerata: Arachnida). Development Genes & Evolution 214, 296–302.CrossRefGoogle Scholar
Prpic, N. M., Janssen, R., Wigand, B., Klingler, M. & Damen, W. G. M. 2003. Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Developmental Biology 264, 119–140.CrossRefGoogle ScholarPubMed
Prpic, N. M. & Tautz, D. 2003. The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Developmental Biology 260, 97–112.CrossRefGoogle ScholarPubMed
Prpic, N. M., Wigand, B., Damen, W. G. M. & Klingler, M. 2001. Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages. Development Genes & Evolution 211, 467–477.CrossRefGoogle ScholarPubMed
Raff, R. A. 1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form. Chicago: University of Chicago Press.Google Scholar
Rauskolb, C. 2001. The establishment of segmentation in the Drosophila leg. Development 128, 4511–4521.Google ScholarPubMed
Rauskolb, C. & Irvine, K. D. 1999. Notch-mediated segmentation and growth control of the Drosophila leg. Developmental Biology 210, 339–350.CrossRefGoogle ScholarPubMed
Rogers, B. T., Peterson, M. D. & Kaufman, T. C. 2002. The development and evolution of insect mouthparts as revealed by the expression patterns of gnathocephalic genes. Evolution & Development 4, 96–110.CrossRefGoogle ScholarPubMed
Sanchez-Salazar, J., Pletcher, M. T., Bennett, R. L.et al. 1996. The Tribolium decapentaplegic gene is similar in sequence, structure, and expression to the Drosophila dpp gene. Development Genes & Evolution 206, 237–246.CrossRefGoogle ScholarPubMed
Sander, K. 1983. The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In Goodwin, B. C., Holder, N. & Wylie, C. C. (eds.) Development and Evolution: The Sixth Symposium of the British Society for Developmental Biology. Cambridge: Cambridge University Press, pp. 137–159.Google Scholar
Scholtz, G., Mittmann, B. & Gerberding, M. 1998. The pattern of Distal-less expression in the mouthparts of crustaceans, myriapods and insects: new evidence for a gnathobasic mandible and the common origin of Mandibulata. International Journal of Developmental Biology 42, 801–810.Google ScholarPubMed
Schoppmeier, M. & Damen, W. G. M. 2001. Double-stranded RNA interference in the spider Cupiennius salei: the role of Distal-less is evolutionarily conserved in arthropod appendage formation. Development Genes & Evolution 211, 76–82.CrossRefGoogle ScholarPubMed
Shiga, Y., Yasumoto, R., Yamagata, H. & Hayashi, S. 2002. Evolving role of Antennapedia protein in arthropod limb patterning. Development 129, 3555–3561.Google ScholarPubMed
Shippy, T. D., Guo, J., Brown, S. J., Beeman, R. W. & Denell, R. E. 2000. Analysis of maxillopedia expression pattern and larval cuticular phenotype in wild-type and mutant Tribolium. Genetics 155, 721–731.Google ScholarPubMed
Snodgrass, R. E. 1935. Principles of Insect Morphology. New York: McGraw-Hill.Google Scholar
Struhl, G. 1982. Genes controlling segmental specification in the Drosophila thorax. Proceedings of the National Academy of Sciences of the USA 79, 7380–7384.CrossRefGoogle ScholarPubMed
Suzanne, M., Estella, C., Calleja, M. & Sanchez-Herrero, E. 2003. The hernandez and fernandez genes of Drosophila specify eye and antenna. Developmental Biology 260, 465–483.CrossRefGoogle ScholarPubMed
Telford, M. J. & Thomas, R. H. 1998. Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proceedings of the National Academy of Sciences of the USA 95, 10671–10675.CrossRefGoogle ScholarPubMed
Walossek, D. & Müller, K. J. 1997. Cambrian ‘Orsten’-type arthropods and the phylogeny of Crustacea. In Fortey, R. A. & Thomas, R. H. (eds.) Arthropod Relationships. London: Chapman and Hall, pp. 139–153.Google Scholar
Westheide, W. & Rieger, R. M. 1996. Spezielle Zoologie, Band 1, Einzeller und Wirbellose Tiere. Stuttgart: Gustav Fischer Verlag.Google Scholar
Whittington, H. B. 1997. The trilobite body. In Kaesler, R. L. (ed.) Treatise on Invertebrate Palaeontology. Part O. Arthropoda 1. Trilobita, revised. Vol. 1: Introduction, Order Agnostida, Order Redlichiida. Boulder, CO: The Geological Society of America and Lawrence, KS: The University of Kansas, pp. 87–135.Google Scholar
Whittington, H. B. & Almond, J. E. 1987. Appendages and habits of the Upper Ordovician trilobite Triarthrus eatoni. Philosphical Transactions of the Royal Society of London B 317, 1–46.CrossRefGoogle Scholar
Wu, J. & Cohen, S. M. 1999. Proximodistal axis formation in the Drosophila leg: subdivision into proximal and distal domains by Homothorax and Distal-less. Development 126, 109–117.Google ScholarPubMed
Yamamoto, D. S., Sumitani, M., Tojo, K., Lee, J. M. & Hatakeyama, M. 2004. Cloning of a decapentaplegic orthologue from the sawfly, Athalia rosae (Hymenoptera), and its expression in the embryonic appendages. Development Genes & Evolution 214, 128–133.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×