Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-13T13:02:48.755Z Has data issue: false hasContentIssue false

1 - Evo-devo as a discipline

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

Since its inception in the early 1980s, evo-devo has evolved into a mature discipline. This is manifest in the naming of research groups, scientific journals and books, professional meetings and societies. Despite such formal attributes of a scientific discipline it is often unclear what constitutes its conceptual distinctiveness. Does evo-devo have its own set of specific questions and research methods? Does it solve biological problems that cannot be solved by other approaches? And does it represent a significant change in the theoretical understanding of development and evolution? That is, in which way do the goals, the empirical programs and the theories of evo-devo research differ from those of neighbouring disciplines such as developmental biology or evolutionary biology? The present chapter provides a concise overview of the current status of evo-devo as a discipline. This requires a short reflection on its history.

CONCEPTUAL FOUNDATIONS

The parallels between embryonic stages and the ‘scale of beings’ had already been contemplated in pre-Darwinian times, and the foundation of a scientific theory of evolution was significantly influenced by embryological arguments. Darwin called embryology ‘by far the strongest single class of facts in favour of a change of form’, and his first sketches of a phylogenetic tree seem to have been inspired by tree-like renderings of embryological differences between species (Richards 1992). Much of the early work in evolutionary biology focused on the uses of embryonic characters for taxonomical purposes.

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 5 - 30
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abouheif, E. 1997. Developmental genetics and homology: a hierarchical approach. Trends in Ecology and Evolution 12, 405–408.CrossRefGoogle ScholarPubMed
Akam, M. 1989. Hox and HOM: homologous gene clusters in insects and vertebrates. Cell 57, 347–349.CrossRefGoogle ScholarPubMed
Akam, M. 1994. The evolving role of Hox genes in arthropods. Development 1994 Supplement, 209–215.Google ScholarPubMed
Alberch, P. 1982. Developmental constraints in evolutionary processes. In Bonner, J. T. (ed.) Evolution and Development. Berlin: Springer, pp. 313–332.CrossRefGoogle Scholar
Alberch, P. & Gale, E. A. 1983. Size dependence during the development of the amphibian foot. Colchicine-induced digital loss and reduction. Journal of Embryology and Experimental Morphology 76, 177–197.Google Scholar
Alberch, P. & Gale, E. A. 1985. A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution 39, 8–23.CrossRefGoogle ScholarPubMed
Amundson, R. 2005. The Changing Role of the Embryo in Evolutionary Thought. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Arthur, W. 2001. Developmental drive: an important determinant of the direction of phenotypic evolution. Evolution & Development 3, 271–278.CrossRefGoogle ScholarPubMed
Arthur, W. 2002. The emerging conceptual framework of evolutionary developmental biology. Nature 415, 757–764.CrossRefGoogle ScholarPubMed
Beldade, P., Brakefield, P. & Long, A. D. 2005. Generating phenotypic variation: prospects from “evo-devo” research on Bicyclus anynana wing patterns. Evolution & Development 7, 101–107.CrossRefGoogle ScholarPubMed
Bell, M. A. 1987. Interacting evolutionary constraints in pelvic reduction of threespine sticklebacks, Gasterosteus aculeatus (Pisces, Gasterosteidae). Biological Journal of the Linnean Society 31, 347–382.CrossRefGoogle Scholar
Bengtson, S. & Zhao, Y. 1997. Fossilized metazoan embryos from the earliest Cambrian. Science 277, 1645–1648.CrossRefGoogle Scholar
Bolker, J. A. & Raff, R. A. 1996. Developmental genetics and traditional homology. BioEssays 18, 489–494.CrossRefGoogle ScholarPubMed
Bonner, J. T. 1965. Size and Cycle. Princeton: Princeton University Press.CrossRefGoogle Scholar
Bonner, J. T. (ed.) 1982. Evolution and Development. Berlin: Springer.CrossRefGoogle Scholar
Bonner, J. T. 1988. The Evolution of Complexity by Means of Natural Selection. Princeton: Princeton University Press.Google Scholar
Bookstein, F. L. 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge: Cambridge University Press.Google Scholar
Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. 1995. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346.Google ScholarPubMed
Buss, L. W. 1987. The Evolution of Individuality. Princeton: Princeton University Press.Google Scholar
Caldwell, M. W. 1994. Developmental constraints and limb evolution in Permian and extant lepidosauromorph diapsids. Journal of Vertebrate Paleontology 14, 459–471.CrossRefGoogle Scholar
Callebaut, W., Müller, G. B. & Newman, S. A. 2007. The organismic systems approach: EvoDevo and the streamlining of the naturalistic agenda. In Sansom, R. & Brandon, B. (eds.) Integrating Evolution and Development: From Theory to Practice, in press. Cambridge, MA: MIT Press.Google Scholar
Callebaut, W. & Rasskin-Gutman, D. (eds.) 2005. Modularity: Understanding the Development and Evolution of Complex Natural Systems. Cambridge, MA: MIT Press.Google Scholar
Carpenter, K., Hirsch, K. F. & Horner, J. R. 1996. Dinosaur Eggs and Babies. Cambridge: Cambridge University Press.Google Scholar
Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. 2005. From DNA to Diversity. Malden: Blackwell Science.Google Scholar
Cheverud, J. M. 1982. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36, 499–516.CrossRefGoogle ScholarPubMed
Cheverud, J. M. 1984. Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology 110, 155–171.CrossRefGoogle ScholarPubMed
Chipman, A. D. 2002. Variation, plasticity, and modularity in anuran development. Zoology 105, 97–104.CrossRefGoogle ScholarPubMed
Cobb, S. N. & O'Higgins, P. 2004. Hominins do not share a common postnatal facial ontogenetic shape trajectory. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 302, 302–321.CrossRefGoogle ScholarPubMed
Collins, J. P., Gilbert, S., Laubichler, M. & Müller, G. B. 2007. Modeling in Evo-Devo: how to integrate development, evolution, and ecology. In Laubichler, M. & Müller, G. B. (eds.) Modeling Biology: Structures, Behaviors, Evolution. Cambridge, MA: MIT Press, pp. 355–378.Google Scholar
Costa, L. D. F., Travençolo, B. A. N., Azeredo, A.et al. 2005. A field approach to three-dimensional gene expression pattern characterization. Applied Physics Letters 86, 143901–143903.CrossRefGoogle Scholar
Davey, K. G. 2003. Evolutionary aspects of thyroid hormone effects in invertebrates. In Hall, B. K., Pearson, B. J. & Müller, G. B. (eds.) Environment, Development, and Evolution. Cambridge, MA: MIT Press, pp. 279–295.Google Scholar
Davidson, E. H. 2006. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. San Diego: Academic Press.Google Scholar
Davidson, E. H., Peterson, K. & Cameron, R. A. 1995. Origin of the adult bilaterian body plans: evolution of developmental regulatory mechanisms. Science 270, 1319–1325.CrossRefGoogle Scholar
Deacon, T. W. 2006. Reciprocal linkage between self-organized processes is sufficient for self-reproduction and evolvability. Biological Theory 1, 136–149.CrossRefGoogle Scholar
Dollé, P., Dierich, A., LeMeur, M.et al. 1993. Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 75, 431–441.CrossRefGoogle ScholarPubMed
Donoghue, M. J. & Ree, R. H. 2000. Homoplasy and developmental constraint: a model and an example from plants. American Zoologist 40, 759–769.Google Scholar
Duboule, D. 1994. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate bauplan and the evolution of morphologies through heterochrony. Development 1994 supplement, 135–142.Google ScholarPubMed
Duboule, D. & Dollé, P. 1989. The structural and functional organisation of the mouse Hox gene family resembles that of Drosophila homeotic genes. EMBO Journal 8, 1497–1505.Google ScholarPubMed
Dudley, M. & Poethig, R. S. 1991. The effect of a heterochronic mutation, Teopod2, on the cell lineage of the maize shoot. Development 111, 733–739.Google ScholarPubMed
Dworkin, I. M., Tanda, S. & Larsen, E. 2001. Are entrenched characters developmentally constrained? Creating biramous limbs in an insect. Evolution & Development 3, 424–431.CrossRefGoogle Scholar
Eberhard, W. G. 2001. Multiple origins of a major novelty: moveable abdominal lobes in male sepsid flies (Diptera: Sepsidae), and the question of developmental constraints. Evolution & Development 3, 206–222.CrossRefGoogle Scholar
Eble, G. J. 2002. Multivariate approaches to development and evolution. In Minugh-Purvis, N. & McNamara, K. J. (eds.) Human Evolution Through Developmental Change. Baltimore: Johns Hopkins University Press, pp. 51–78.Google Scholar
Edelman, G. M. 1988. Topobiology. New York: Basic Books.Google Scholar
Eldredge, N. & Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. In Schopf, T. J. M. (ed.) Models in Paleobiology. San Francisco: Freeman, Cooper, pp. 82–115.Google Scholar
Emlen, D. J. 2000. Integrating development with evolution: A case study with beetle horns. BioScience 50, 403–418.CrossRefGoogle Scholar
Fusco, G. 2001. How many processes are responsible for phenotypic evolution?Evolution & Development 3, 279–286.CrossRefGoogle ScholarPubMed
Gilbert, S. F. 2001. Ecological developmental biology: developmental biology meets the real world. Developmental Biology 233, 1–32.CrossRefGoogle ScholarPubMed
Gilbert, S. F. & Bolker, J. A. 2001. Homologies of process and modular elements of embryonic construction. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 291, 1–12.CrossRefGoogle ScholarPubMed
Gilbert, S. F. & Bolker, J. A. 2003. Ecological developmental biology: preface to the symposium. Evolution & Development 5, 3–8.CrossRefGoogle ScholarPubMed
Goldschmidt, R. 1940. The Material Basis of Evolution. New Haven: Yale University Press.Google Scholar
Goodwin, B. C., Holder, N. & Wylie, C. C. (eds.) 1983. Development and Evolution. Cambridge: Cambridge University Press.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
Gould, S. J. & Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London B 205, 581–598.CrossRefGoogle Scholar
Graham, A., Papalopulu, N. & Krumlauf, R. 1989. The murine and Drosophila homeobox gene complex have common features of organisation and expression. Cell 57, 367–378.CrossRefGoogle ScholarPubMed
Haeckel, E. 1866. Generelle Morphologie der Organismen. Berlin: Reimer.CrossRefGoogle Scholar
Hall, B. K. 1983. Epigenetic control in development and evolution. In Goodwin, B. C., Holder, N. & Wylie, C. G. (eds.) Development and Evolution. Cambridge: Cambridge University Press, pp. 353–379.Google Scholar
Hall, B. K. 1984. Developmental processes underlying heterochrony as an evolutionary mechanism. Canadian Journal of Zoology 62, 1–7.CrossRefGoogle Scholar
Hall, B. K. 1992. Evolutionary Developmental Biology. London: Chapman & Hall.CrossRefGoogle Scholar
Hall, B. K., Pearson, B. J. & Müller, G. B. (eds.) 2003. Environment, Development, and Evolution. Cambridge, MA: MIT Press.Google Scholar
Hamburger, V. 1980. Embryology and the modern synthesis in evolutionary theory. In Mayr, E. & Provine, W. B. (eds.) The Evolutionary Synthesis: Perspectives on the Unification of Biology. Cambridge: Harvard University Press, pp. 96–112.CrossRefGoogle Scholar
Hentschel, H. G., Glimm, T., Glazier, J. A. & Newman, S. A. 2004. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proceedings of the Royal Society of London B 271, 1713–1722.CrossRefGoogle ScholarPubMed
Holland, L. Z., Holland, P. W. & Holland, N. D. 1996. Revealing homologies between body parts of distantly related animals by in situ hybridization to developmental genes: amphioxus versus vertebrates. In Ferraris, J. D. & Palumbi, S. R. (eds.) Molecular Zoology. New York: Wiley-Liss, pp. 267–295.Google Scholar
Holland, P. 1992. Homeobox genes in vertebrate evolution. BioEssays 14, 267–273.CrossRefGoogle ScholarPubMed
Holland, P. W. 1999. Gene duplication: past, present, and future. Seminars in Cell and Developmental Biology 10, 541–547.CrossRefGoogle Scholar
Hämmerling, J. 1929. Dauermodifikationen. Berlin: Borntraeger.Google Scholar
Jablonka, E. & Lamb, M. J. 1995. Epigenetic Inheritance and Evolution. Oxford: Oxford University Press.Google Scholar
Jernvall, J. 2000. Linking development with generation of novelty in mammalian teeth. Proceedings of the National Academy of Sciences of the USA 97, 2641–2645.CrossRefGoogle ScholarPubMed
Jernvall, J., Keranen, S. V. & Thesleff, I. 2000. Evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography. Proceedings of the National Academy of Sciences of the USA 97, 14444–14448.CrossRefGoogle ScholarPubMed
Jollos, V. 1934. Inherited changes produced by heat treatment in Drosophila melanogasterGenetica 16, 476–494.CrossRefGoogle Scholar
Kammerer, P. 1923. Breeding experiments on the inheritance of acquired characters. Nature 111, 637–640.CrossRefGoogle Scholar
Kammerer, P. 1925. Neuvererbung oder Vererbung erworbener Eigenschaften. Stuttgart: Walter Seifert Verlag.Google Scholar
Katz, M. J. 1983. Ontophyletics: studying evolution beyond the genome. Perspectives in Biology and Medicine 26, 323–333.CrossRefGoogle Scholar
Katz, M. J., Lasek, R. J. & Kaiserman-Abramof, I. R. 1981. Ontophyletics of the nervous system: eyeless mutants illustrate how ontogenetic buffer mechanisms channel evolution. Proceedings of the National Academy of Sciences of the USA 78, 397–401.CrossRefGoogle ScholarPubMed
Keys, D. N., Lewis, D. L., Selegue, J. E.et al. 1999. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283, 532–534.CrossRefGoogle ScholarPubMed
Kim, J., Kerr, J. Q. & Min, G. S. 2000. Molecular heterochrony in the early development of Drosophila. Proceedings of the National Academy of Sciences of the USA 97, 212–216.CrossRefGoogle ScholarPubMed
Kirschner, M. & Gerhart, J. 1998. Evolvability. Proceedings of the National Academy of Sciences of the USA 95, 8420–8427.CrossRefGoogle ScholarPubMed
Kowalevsky, A. 1866. Entwicklungsgeschichte der einfachen Ascidien. Mémoires de l'Académie Impériale des Sciences de St.-Pétersbourg (7) 10, 11–30.Google Scholar
Larsen, E. 2003. Genes, cell behavior, and the evolution of form. In Müller, G. B. & Newman, S. A. (eds.) Origination of Organismal Form. Cambridge, MA: MIT Press, pp. 119–131.Google Scholar
Laubichler, M. D. & Maienschein, J. (eds.) 2007. From Embryology to Evo-Devo: A History of Developmental Evolution. Cambridge, MA: MIT Press.Google Scholar
Laubichler, M. D. & Müller, G. B. (eds.) 2007. Modeling Biology: Structures, Behaviors, Evolution. Cambridge, MA: MIT Press.Google Scholar
Lee, P. N., Callaerts, P., Couet, H. G. & Martindale, M. Q. 2003. Cephalopod Hox genes and the origin of morphological novelties. Nature 424, 1061–1065.CrossRefGoogle ScholarPubMed
Love, A. C. 2003. Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biology and Philosophy 18, 309–345.CrossRefGoogle Scholar
Love, A. C. & Raff, R. 2005. Larval ectoderm, organizational homology, and the origins of evolutionary novelty. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 306, 18–34.Google Scholar
Lovejoy, C. O., Cohn, M. J. & White, T. D. 1999. Morphological analysis of the mammalian postcranium: a developmental perspective. Proceedings of the National Academy of Sciences of the USA 96, 13247–13252.CrossRefGoogle ScholarPubMed
Løvtrup, S. 1974. Epigenetics. London: Wiley.Google Scholar
Mabee, P. M. 2000. Developmental data and phylogenetic systematics: evolution of the vertebrate limb. American Zoologist 40, 789–800.Google Scholar
Margulis, L. & Fester, R. (eds.) 1991. Symbiosis as a Source of Evolutionary Innovation. Cambridge: MIT Press.Google ScholarPubMed
Matsuda, R. 1987. Animal Evolution in Changing Environments with Special Reference to Abnormal Metamorphosis. New York: Wiley.Google Scholar
MaynardSmith, J. Smith, J., Burian, R., Kauffman, S.et al. 1985. Developmental constraints and evolution. The Quarterly Review of Biology 60, 265–287.Google Scholar
Mayr, E. 1960. The emergence of evolutionary novelties. In Tax, S. (ed.) Evolution After Darwin. Chicago: University of Chicago Press, pp. 349–380.Google Scholar
McGhee, G. R. 2007. The Geometry of Evolution. Cambridge: Cambridge University Press.Google Scholar
McGinnis, W., Garber, R. L., Wirz, J., Kuroiwa, A. & Gehring, W. J. 1984. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37, 403–408.CrossRefGoogle ScholarPubMed
McGinnis, W. & Krumlauf, R. 1992. Homeobox genes and axial patterning. Cell 68, 283–302.CrossRefGoogle ScholarPubMed
McKinney, M. L. & McNamara, K. J. 1991. Heterochrony. New York: Plenum Press.CrossRefGoogle Scholar
McNamara, K. J. 1997. Shapes of Time: The Evolution of Growth and Development. Baltimore: Johns Hopkins University Press.Google Scholar
Minelli, A. 1998. Molecules, developmental modules, and phenotypes: a combinatorial approach to homology. Molecular Phylogenetics and Evolution 9, 340–347.CrossRefGoogle ScholarPubMed
Minelli, A. 2003. The Development of Animal Form: Ontogeny, Morphology, and Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K. & Bookstein, F. 2004. Comparison of cranial ontogenetic trajectories among hominoids. Journal of Human Evolution 46, 679–697.CrossRefGoogle Scholar
Moss, L. 2003. What Genes Can't Do. Cambridge, MA: MIT Press.Google Scholar
Müller, G. B. 1986. Effects of skeletal change on muscle pattern formation. Bibliotheca Anatomica 29, 91–108.Google Scholar
Müller, G. B. 1989. Ancestral patterns in bird limb development: a new look at Hampé's experiment. Journal of Evolutionary Biology 2, 31–47.CrossRefGoogle Scholar
Müller, G. B. 1990. Developmental mechanisms at the origin of morphological novelty: a side-effect hypothesis. In Nitecki, M. H. (ed.) Evolutionary Innovations. Chicago: Chicago Press, pp. 99–130.Google Scholar
Müller, G. B. 1991. Experimental strategies in evolutionary embryology. American Zoologist 31, 605–615.CrossRefGoogle Scholar
Müller, G. B. 2003. Homology: the evolution of morphological organization. In Müller, G. B. & Newman, S. A. (eds.) Origination of Organismal Form. Cambridge, MA: MIT Press, pp. 51–69.Google Scholar
Müller, G. B. 2007. Six memos for EvoDevo. In Laubichler, M. D. & Maienschein, J. (eds.) From Embryology to Evo-Devo: A History of Embryology in the 20th Century, in press. Cambridge, MA: MIT Press.Google Scholar
Müller, G. B. & Newman, S. A. (eds.) 2003. Origination of Organismal Form: Beyond the Gene in Development and Evolution. Cambridge, MA: MIT Press.Google Scholar
Müller, G. B. & Newman, S. A. (eds.) 2005a. Evolutionary innovation and morphological novelty. Special Issue of the Journal of Experimental Zoology B (Molecular and Developmental Evolution) 304 (6).Google Scholar
Müller, G. B. & Newman, S. A. 2005b. The innovation triad: an EvoDevo agenda. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 304, 487–503.CrossRefGoogle Scholar
Neumann-Held, E. & Rehmann-Sutter, C. 2006. Genes in Development: Rereading the Molecular Paradigm. Durham, NC: Duke University Press.CrossRefGoogle Scholar
Newlon, A. W., III, Yund, P. O. & Stewart-Savage, J. 2003. Phenotypic plasticity of reproductive effort in a colonial ascidian, Botryllus schlosseri. Journal of Experimental Zoology A (Comparative and Experimental Biology) 297, 180–188.CrossRefGoogle Scholar
Newman, S. A. 1994. Generic physical mechanisms of tissue morphogenesis: a common basis for development and evolution. Journal of Evolutionary Biology 7, 467–488.CrossRefGoogle Scholar
Newman, S. A., Forgacs, G. & Müller, G. B. 2006. Before programs: the physical origination of multicellular forms. International Journal of Developmental Biology 50, 289–299.CrossRefGoogle ScholarPubMed
Newman, S. A. & Müller, G. B. 2000. Epigenetic mechanisms of character origination. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 288, 304–317.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Newman, S. A. & Müller, G. B. 2005. Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 304, 593–609.CrossRefGoogle Scholar
Newman, S. A. & Müller, G. B. 2006. Genes and form: inherency in the evolution of developmental mechanisms. In Neumann-Held, E. & Rehmann-Sutter, C. (eds.) Genes in Development: Rereading the Molecular Paradigm. Durham, NC: Duke University Press, pp. 38–73.CrossRefGoogle Scholar
Nijhout, H. F. 1999. Control mechanisms of polyphenic development in insects. BioScience 49, 181–192.CrossRefGoogle Scholar
Parichy, D. M., Shaffer, H. B. & Mangel, M. 1992. Heterochrony as a unifying theme in evolution and development. Evolution 46, 1252–1254.CrossRefGoogle Scholar
Parks, A. L., Parr, B. A., Chin, J.-E., Leaf, D. S. & Raff, R. A. 1988. Molecular analysis of heterochronic changes in the evolution of direct developing sea urchins. Journal of Evolutionary Biology 1, 27–44.CrossRefGoogle Scholar
Pigliucci, M. 2001. Phenotypic Plasticity: Beyond Nature and Nurture. Baltimore: Johns Hopkins University Press.Google Scholar
Prossinger, H. & Bookstein, F. 2003. Statistical estimators of frontal sinus cross section ontogeny from very noisy data. Journal of Morphology 257, 1–8.CrossRefGoogle ScholarPubMed
Raff, R. 1996. The Shape of Life. Chicago: Chicago University Press.Google Scholar
Raff, R. A., Anstrom, J. A., Huffman, C. J.et al. 1984. Origin of a gene regulatory mechanism in the evolution of echinoderms. Nature 310, 312–314.CrossRefGoogle ScholarPubMed
Raff, R. A. & Kaufman, T. C. 1983. Embryos, Genes, and Evolution. New York: Macmillan.Google Scholar
Raff, R. A. & Wray, G. A. 1989. Heterochrony: developmental mechanisms and evolutionary results. Journal of Evolutionary Biology 2, 409–434.CrossRefGoogle Scholar
Rasmussen, N. 1987. A new model of developmental constraints as applied to the Drosophila system. Journal of Theoretical Biology 127, 271–299.CrossRefGoogle ScholarPubMed
Rasskin-Gutman, D. 2003. Boundary constraints for the emergence of form. In Müller, G. B. & Newman, S. A. (eds.) Origination of Organismal Form. Boston, MA: MIT Press, pp. 305–322.Google Scholar
Reid, R. G. B. 2007. Biological Emergences: Evolution by Natural Experiment. Cambridge, MA: MIT Press.Google Scholar
Richards, R. J. 1992. The Meaning of Evolution. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Riedl, R. 1978. Order in Living Organisms. Chichester: John Wiley & Sons.Google Scholar
Robert, J. S. 2004. Embryology, Epigenesis, and Evolution: Taking Development Seriously. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Rose, C. S. 2003. Thyroid hormone-mediated development in vertebrates: what makes frogs unique. In Hall, B. K., Pearson, B. J. & Müller, G. B. (eds.) Environment, Development, and Evolution. Cambridge, MA: MIT Press, pp. 197–237.Google Scholar
Rubin, H. 1990. On the nature of enduring modifications induced in cells and organisms. American Journal of Physiology 258, 19–24.Google ScholarPubMed
Ruvkun, G. & Giusto, J. 1989. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 338, 313–319.CrossRefGoogle ScholarPubMed
Salazar-Ciudad, I., Newman, S. A. & Solé, R. V. 2001. Phenotypic and dynamical transitions in model genetic networks. I. Emergence of patterns and genotype-phenotype relationships. Evolution & Development 3, 84–94.CrossRefGoogle ScholarPubMed
Sansom, R. & Brandon, B. (eds.) 2007. Integrating Evolution and Development: From Theory to Practice. Cambridge, MA: MIT Press.Google Scholar
Sarkar, S. 2003. Generalized norms of reaction for ecological developmental biology. Evolution & Development 5, 106–115.CrossRefGoogle ScholarPubMed
Schlichting, C. & Pigliucci, M. 1998. Phenotypic Evolution: A Reaction Norm Perspective. Sunderland: Sinauer.Google Scholar
Schlosser, G. & Wagner, G. P. (eds.) 2004. Modularity in Development and Evolution. Chicago: University of Chicago Press.Google Scholar
Sharpe, J., Ahlgren, U., Perry, P.et al. 2002. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296, 541–545.CrossRefGoogle ScholarPubMed
Shubin, N., Tabin, C. & Carroll, S. 1997. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648.CrossRefGoogle ScholarPubMed
Steinberg, M. S. 1963. Reconstruction of tissues by dissociated cells. Science 141, 401–408.CrossRefGoogle ScholarPubMed
Stern, D. L. 1998. A role of Ultrabithorax in morphological differences between Drosophila species. Nature 396, 463–466.CrossRefGoogle ScholarPubMed
Streicher, J., Donat, M. A., Strauss, B.et al. 2000. Computer based three-dimensional visualization of developmental gene expression. Nature Genetics 25, 147–152.CrossRefGoogle ScholarPubMed
Streicher, J. & Müller, G. B. 1992. Natural and experimental reduction of the avian fibula: developmental thresholds and evolutionary constraint. Journal of Morphology 214, 269–285.CrossRefGoogle Scholar
Sultan, S. E. 2003. Phenotypic plasticity in plants: a case study in ecological development. Evolution & Development 5, 25–33.CrossRefGoogle ScholarPubMed
Thomas, R. D. K. & Reif, W.-E. 1993. The skeleton space: a finite set of organic designs. Evolution 47, 341–360.CrossRefGoogle ScholarPubMed
Tollrian, R. & Harvell, C. D. (eds.) 1999. The Ecology and Evolution of Inducible Defenses. Princeton: Princeton University Press.Google Scholar
True, J. R. & Carroll, S. B. 2002. Gene co-option in physiological and morphological evolution. Annual Review of Cell and Developmental Biology 18, 53–80.CrossRefGoogle ScholarPubMed
Vermeij, G. J. 2006. Historical contingency and the purported uniqueness of evolutionary innovations. Proceedings of the National Academy of Sciences of the USA 103, 1804–1809.CrossRefGoogle ScholarPubMed
Vogl, C. & Rienesel, J. 1991. Testing for developmental constraints: carpal fusions in urodeles. Evolution 45, 1516–1519.CrossRefGoogle ScholarPubMed
Dassow, G. & Munro, E. 1999. Modularity in animal development and evolution: elements of a conceptual framework for EvoDevo. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 285, 307–325.3.0.CO;2-V>CrossRefGoogle Scholar
Vrba, E. S. 2003. Ecology, development, and evolution: perspectives from the fossil record. In Hall, B. K., Pearson, B. J. & Müller, G. B. (eds.) Environment, Development, and Evolution. Cambridge, MA: MIT Press, pp. 85–105.Google Scholar
Waddington, C. H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150, 563–565.CrossRefGoogle Scholar
Waddington, C. H. 1956. Genetic assimilation. Advances in Genetics 10, 257–290.Google Scholar
Wagner, A. 2005. Robustness and Evolvability in Living Systems. Princeton: Princeton University Press.Google Scholar
Wagner, G. P. 1988. The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. Journal of Evolutionary Biology 1, 45–66.CrossRefGoogle Scholar
Wagner, G. P. 1989. The biological homology concept. Annual Review of Ecology and Systematics 20, 51–69.CrossRefGoogle Scholar
Wagner, G. P. 1996. Homologues, natural kinds, and the evolution of modularity. American Zoologist 36, 36–43.CrossRefGoogle Scholar
Wagner, G. P. 2000. What is the promise of developmental evolution? Part I: Why is developmental biology necessary to explain evolutionary innovations?Journal of Experimental Zoology B (Molecular and Developmental Evolution) 288, 95–98.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Wagner, G. P. 2001. What is the promise of developmental evolution? Part II: A causal explanation of evolutionary innovations may be impossible. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 291, 305–309.CrossRefGoogle ScholarPubMed
Wagner, G. P. & Altenberg, L. 1996. Complex adaptations and the evolution of evolvability. Evolution 50, 967–976.CrossRefGoogle ScholarPubMed
Wagner, G. P. & Chiu, C. H. 2001. The tetrapod limb: a hypothesis on its origin. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 291, 226–240.CrossRefGoogle ScholarPubMed
Wagner, G. P. & Müller, G. B. 2002. Evolutionary innovations overcome ancestral constraints: a re-examination of character evolution in male sepsid flies (Diptera: Sepsidae). Evolution & Development 4, 1–6.CrossRefGoogle Scholar
Wake, D. B. 1982. Functional and developmental constraints and opportunities in the evolution of feeding systems in urodeles. In Mossakowski, D. & Roth, G. (eds.) Environmental Adaptation and Evolution. Stuttgart: Gustav Fischer, pp. 51–66.Google Scholar
Wake, D. B. 1996. Evolutionary developmental biology – prospects for an evolutionary synthesis at the developmental level. Memoirs of the California Academy of Science 20, 97–107.Google Scholar
Webb, J. F. 1989. Developmental constraints and evolution of the lateral line system in teleost fishes. In Coombs, S., Gäner, P. & Münz, H. (eds.) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 79–97.CrossRefGoogle Scholar
Weninger, W. J., Geyer, S. H., Mohun, T. J.et al. 2006. High resolution episcopic microscopy: rapid 3D-analysis of gene expression and tissue architecture. Anatomy and Embryology 211, 213–221.CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. 2003. Developmental Plasticity and Evolution. Oxford: Oxford University Press.
Wilkins, A. 2002. The Evolution of Developmental Pathways. Sunderland: Sinauer Associates.Google Scholar
Wolterek, R. 1909. Weitere experimentelle Untersuchungen über Artveränderung, speziell über das Wesen quantitativer Artunterschiede bei Daphniden. Verhandlungen der Deutschen Zoologischen Gesellschaft 1909, 110–172.Google Scholar
Wray, G. A. 1999. Evolutionary dissociations between homologous genes and homologous structures. In Bock, G. R. & Cardew, G. (eds.) Homology. Chichester: Wiley, pp. 189–203.Google Scholar
Wray, G. A. & Lowe, C. J. 2000. Developmental regulatory genes and echinoderm evolution. Systematic Biology 49, 151–174.CrossRefGoogle ScholarPubMed
Wray, G. A. & McClay, D. R. 1989. Molecular heterochronies and heterotopies in early echinoid development. Evolution 43, 803–813.CrossRefGoogle ScholarPubMed
Wuketits, F. M. & Ayala, F. J. (eds.) 2005. Handbook of Evolution, Vol. 2. Weinheim: Wiley-VCH.CrossRefGoogle Scholar
Zákány, J., Gerard, M., Favier, B. & Duboule, D. 1997. Deletion of a HoxD enhancer induces transcriptional heterochrony leading to transposition of the sacrum. EMBO Journal 15, 4393–4402.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×