Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T12:23:58.674Z Has data issue: false hasContentIssue false

5 - The molecular biology underlying developmental evolution

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

Stephen Jay Gould opens the Prospectus of his influential Ontogeny and Phylogeny (Gould 1977) with the following quotation from Van Valen (1973): ‘A plausible argument could be made that evolution is the control of development by ecology. Oddly, neither area has figured importantly in evolutionary theory since Darwin, who contributed much to each. This is being slowly repaired for ecology … but development is still neglected.’

As accurate as these comments may have been in 1977, today, 30 years later, they no longer hold true: two new fields centred on the study of organismal development have now emerged in modern biology. One of them, which has successfully married the traditional fields of embryology and genetics, is the field of developmental genetics. The other one is known as developmental evolution, evolutionary developmental biology or simply evo-devo, and is the primary subject of this book and this chapter.

The evo-devo field has set as its ultimate goal to provide a mechanistic explanation of how developmental mechanisms changed during evolution, and how these alterations are causally linked to modifications in morphological patterns (Holland 1999). These questions are most relevant, as, so far, the formal structure of the evolutionary theory has been based upon the dynamics of alleles, individuals and populations under selective pressures and genetic drift ‘assuming’ the prior existence of these entities (Fontana and Buss 1993).

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 80 - 99
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akam, M. 1998. Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. International Journal of Developmental Biology 42, 445–451.Google ScholarPubMed
Alonso, C. R. & Wilkins, A. S. 2005. The molecular elements that underlie developmental evolution. Nature Reviews Genetics 6, 709–715.CrossRefGoogle ScholarPubMed
Arnone, M. I. & Davidson, E. H. 1997. The hardwiring of development: organization and function of genomic regulatory systems. Development 124, 1851–1864.Google ScholarPubMed
Bell, L. R., Maine, E. M., Schedl, P. & Cline, T. W. 1988. Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell 55, 1037–1046.CrossRefGoogle ScholarPubMed
Belting, H. G., Shashikant, C. S. & Ruddle, F. H. 1998. Modification of expression and cis-regulation of Hoxc8 in the evolution of diverged axial morphology. Proceedings of the National Academy of Sciences of the USA 95, 2355–2360.CrossRefGoogle ScholarPubMed
Bender, W., Akam, M., Karch, F.et al. 1983. Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221, 23–29.CrossRefGoogle ScholarPubMed
Berget, S. M., Moore, C. & Sharp, P. A. 1977. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proceedings of the National Academy of Sciences of the USA 74, 3171–3175.CrossRefGoogle ScholarPubMed
Berk, A. J. & Sharp, P. A. 1978a. Spliced early mRNAs of simian virus 40. Proceedings of the National Academy of Sciences of the USA 75, 1274–1278.CrossRefGoogle Scholar
Berk, A. J. & Sharp, P. A. 1978b. Structure of the adenovirus 2 early mRNAs. Cell 14, 695–711.CrossRefGoogle Scholar
Bharadwaj, R. & Kolodkin, A. L. 2006. Descrambling Dscam diversity. Cell 125, 421–424.CrossRefGoogle ScholarPubMed
Bomze, H. M. & Lopez, A. J. 1994. Evolutionary conservation of the structure and expression of alternatively spliced Ultrabithorax isoforms from Drosophila. Genetics 136, 965–977.Google ScholarPubMed
Breathnach, R. & Chambon, P. 1981. Organization and expression of eucaryotic split genes coding for proteins. Annual Review of Biochemistry 50, 349–383.CrossRefGoogle ScholarPubMed
Breathnach, R., Mandel, J. L. & Chambon, P. 1977. Ovalbumin gene is split in chicken DNA. Nature 270, 314–319.CrossRefGoogle ScholarPubMed
Britten, R. J. & Davidson, E. H. 1969. Gene regulation for higher cells: a theory. Science 165, 349–357.CrossRefGoogle ScholarPubMed
Caceres, J. F. & Kornblihtt, A. R. 2002. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends in Genetics 18, 186–193.CrossRefGoogle ScholarPubMed
Carroll, S. B. 1995. Homeotic genes and the evolution of arthropods and chordates. Nature 376, 479–485.CrossRefGoogle ScholarPubMed
Carroll, S. B. 2005. Evolution at two levels: on genes and form. PLoS Biology 3, e245.CrossRefGoogle ScholarPubMed
Carthew, R. W. 2006. Gene regulation by microRNAs. Current Opinion in Genetics and Development 16, 203–208.CrossRefGoogle ScholarPubMed
Chen, B. E., Kondo, M., Garnier, A.et al. 2006. The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell 125, 607–620.CrossRefGoogle ScholarPubMed
Darzacq, X., Singer, R. H. & Shav-Tal, Y. 2005. Dynamics of transcription and mRNA export. Current Opinion in Cell Biology 17, 332–339.CrossRefGoogle ScholarPubMed
Davidson, E. H. 2001. Genomic Regulatory Systems. San Diego: Academic Press.Google Scholar
Davidson, E. H., McClay, D. R. & Hood, L. 2003. Regulatory gene networks and the properties of the developmental process. Proceedings of the National Academy of Sciences of the USA 100, 1475–1480.CrossRefGoogle ScholarPubMed
DeVries, H. 1904. Species and Varieties: Their Origin by Mutation. Chicago: The Open Court Publishing Company.Google Scholar
Faustino, N. A. & Cooper, T. A. 2003. Pre-mRNA splicing and human disease. Genes & Development 17, 419–437.CrossRefGoogle ScholarPubMed
Fontana, W. & Buss, L. W. 1993. “The arrival of the fittest”: towards a theory of biological organization. Bulletin of Mathematical Biology 56, 1–64.Google Scholar
Gompel, N., Prud'homme, B., Wittkopp, P. J., Kassner, V. A. & Carroll, S. B. 2005. Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433, 481–487.CrossRefGoogle ScholarPubMed
Gould, S. J. 1977. Ontogeny and Phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
Holland, P. W. 1999. The future of evolutionary developmental biology. Nature 402, C41–C44.CrossRefGoogle ScholarPubMed
Hummel, T., Vasconcelos, M. L., Clemens, J. C.et al. 2003. Axonal targeting of olfactory receptor neurons in Drosophila is controlled by Dscam. Neuron 37, 221–231.CrossRefGoogle ScholarPubMed
Jacob, F. 1977. Evolution and tinkering. Science 196, 1161–1166.CrossRefGoogle ScholarPubMed
Jacob, F. & Monod, J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 3, 318–356.CrossRefGoogle ScholarPubMed
Jeong, S., Rokas, A. & Carroll, S. B. 2006. Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell 125, 1387–1399.CrossRefGoogle ScholarPubMed
Jing, Q., Huang, S., Guth, S.et al. 2005. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120, 623–634.CrossRefGoogle ScholarPubMed
Johnson, J. M., Castle, J., Garrett-Engele, P.et al. 2003. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144.CrossRefGoogle ScholarPubMed
Kampa, D., Cheng, J., Kapranov, P.et al. 2004. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Research 14, 331–342.CrossRefGoogle ScholarPubMed
King, M. C. & Wilson, A. C. 1975. Evolution at two levels in humans and chimpanzees. Science 188, 107–116.CrossRefGoogle ScholarPubMed
Kornblihtt, A. R., Vibe-Pedersen, K. & Baralle, F. E. 1984. Human fibronectin: molecular cloning evidence for two mRNA species differing by an internal segment coding for a structural domain. EMBO Journal 3, 221–226.Google ScholarPubMed
Levine, M. & Davidson, E. H. 2005. Gene regulatory networks for development. Proceedings of the National Academy of Sciences of the USA 102, 4936–4942.CrossRefGoogle Scholar
Lopez, A. J. 1998. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annual Review of Genetics 32, 279–305.CrossRefGoogle Scholar
Lopez, A. J. & Hogness, D. S. 1991. Immunochemical dissection of the Ultrabithorax homeoprotein family in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 88, 9924–9928.CrossRefGoogle ScholarPubMed
Ludwig, M. Z., Patel, N. H. & Kreitman, M. 1998. Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change. Development 125, 949–958.Google Scholar
Maniatis, T. & Reed, R. 2002. An extensive network of coupling among gene expression machines. Nature 416, 499–506.CrossRefGoogle ScholarPubMed
Modrek, B. & Lee, C. 2002. A genomic view of alternative splicing. Nature Genetics 30, 13–19.CrossRefGoogle ScholarPubMed
Padgett, R. A., Grabowski, P. J., Konarska, M. M., Seiler, S. & Sharp, P. A. 1986. Splicing of messenger RNA precursors. Annual Review of Biochemistry 55, 1119–1150.CrossRefGoogle ScholarPubMed
Pagani, F. & Baralle, F. E. 2004. Genomic variants in exons and introns: identifying the splicing spoilers. Nature Reviews Genetics 5, 389–396.CrossRefGoogle ScholarPubMed
Plasterk, R. H. 2006. Micro RNAs in animal development. Cell 124, 877–881.CrossRefGoogle ScholarPubMed
Prud'homme, B., Gompel, N., Rokas, A.et al. 2006. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440, 1050–1053.CrossRefGoogle Scholar
Rockman, M. V. & Wray, G. A. 2002. Abundant raw material for cis-regulatory evolution in humans. Molecular Biology and Evolution 19, 1991–2004.CrossRefGoogle ScholarPubMed
Schmucker, D., Clemens, J. C., Shu, H.et al. 2000. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684.CrossRefGoogle ScholarPubMed
Schmucker, D. & Flanagan, J. G. 2004. Generation of recognition diversity in the nervous system. Neuron 44, 219–222.CrossRefGoogle Scholar
Sharp, P. A. 1993. Split genes and RNA splicing. In Ringertz, N. (ed.) Nobel Lectures, Physiology or Medicine 1991–1995. Singapore: World Scientific Publishing Co., pp. 145–174.Google Scholar
Smale, S. T. & Kadonaga, J. T. 2003. The RNA polymerase II core promoter. Annual Review of Biochemistry 72, 449–479.CrossRefGoogle ScholarPubMed
Smith, C. W., Patton, J. G. & Nadal-Ginard, B. 1989. Alternative splicing in the control of gene expression. Annual Review of Genetics 23, 527–577.CrossRefGoogle ScholarPubMed
Stern, D. L. 2000. Evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091.CrossRefGoogle ScholarPubMed
Szutorisz, H., Dillon, N. & Tora, L. 2005. The role of enhancers as centres for general transcription factor recruitment. Trends in Biochemical Sciences 30, 593–599.CrossRefGoogle ScholarPubMed
Tilghman, S. M., Tiemeier, D. C., Seidman, J. G.et al. 1978. Intervening sequence of DNA identified in the structural portion of a mouse beta-globin gene. Proceedings of the National Academy of Sciences of the USA 75, 725–729.CrossRefGoogle ScholarPubMed
Valen, L. 1973. Festschrift. Science 180, 488.Google Scholar
Wang, X. & Chamberlin, H. M. 2004. Evolutionary innovation of the excretory system in Caenorhabditis elegans. Nature Genetics 36, 231–232.CrossRefGoogle ScholarPubMed
Wang, X., Greenberg, J. F. & Chamberlin, H. M. 2004. Evolution of regulatory elements producing a conserved gene expression pattern in Caenorhabditis. Evolution & Development 6, 237–245.CrossRefGoogle ScholarPubMed
Watson, J. D. & Crick, F. H. 1953a. Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964–967.CrossRefGoogle Scholar
Watson, J. D. & Crick, F. H. 1953b. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738.CrossRefGoogle Scholar
White, R. A. & Wilcox, M. 1984. Protein products of the bithorax complex in Drosophila. Cell 39, 163–171.CrossRefGoogle ScholarPubMed
Wray, G. A. 2003. Transcriptional regulation and the evolution of development. International Journal of Developmental Biology 47, 675–684.Google ScholarPubMed
Wray, G. A., Hahn, M. W., Abouheif, E.et al. 2003. The evolution of transcriptional regulation in eukaryotes. Molecular Biology and Evolution 20, 1377–1419.CrossRefGoogle ScholarPubMed
Wu, L., Fan, J. & Belasco, J. G. 2006. MicroRNAs direct rapid deadenylation of mRNA. Proceedings of the National Academy of Sciences of the USA 103, 4034–4039.CrossRefGoogle ScholarPubMed
Zhu, H., Hummel, T., Clemens, J. C.et al. 2006. Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe. Nature Neuroscience 9, 349–355.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×