Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T19:02:40.329Z Has data issue: false hasContentIssue false

18 - Thoughts and speculations on the ancestral arthropod segmentation pathway

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

In the past decade or so, there has been a significant increase in the available data on the developmental mechanisms underlying the process of segmentation in a wide range of arthropod taxa. This large body of data makes it possible to attempt, albeit cautiously, a comparative analysis of the various aspects of the segmentation process, and to try to find which of its features and components may have been present in the arthropod common ancestor. A recent review (Peel et al. 2005) covers much of what is known about the diversity of segmentation processes in arthropods, although even at the time of this writing, less than a year later, there is already a substantial amount of newly published data not covered therein. My aim in this chapter is not to repeat the review and synthesis presented in Peel et al. (2005), but to build on it, adding the most recent data, and expand the discussion into the more speculative domain of evolutionary reconstructions. The reader is encouraged to refer to that review for more details of the currently available data and for a more complete bibliography.

When addressing a large-scale evolutionary question, such as that suggested in the title of this chapter, it is important to define the boundaries of the problem discussed. In this review, I will focus only on the mechanisms of trunk segmentation, ignoring the differentiation and segmentation of the head region, and the posterior unsegmented region.

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 343 - 358
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, W. & Chipman, A. D. 2005. The centipede Strigamia maritima: what it can tell us about the development and evolution of segmentation. BioEssays 27, 653–660.CrossRefGoogle ScholarPubMed
Aulehla, A. & Herrmann, B. G. 2004. Segmentation in vertebrates: clock and gradient finally joined. Genes & Development 18, 2060–2067.CrossRefGoogle ScholarPubMed
Browne, W. E., Schmid, B. G. M., Wimmer, E. A. & Martindale, M. Q. 2006. Expression of otd orthologs in the amphipod crustacean, Parhyale hawaiensis. Development Genes & Evolution 216, 581–595.CrossRefGoogle ScholarPubMed
Chipman, A. D., Arthur, W. & Akam, M. 2004a. Early development and segment formation in the centipede Strigamia maritima (Geophilomorpha). Evolution & Development 6, 78–89.CrossRefGoogle Scholar
Chipman, A. D., Arthur, W. & Akam, M. 2004b. A double segment periodicity underlies segment generation in centipede development. Current Biology 14, 1250–1255.CrossRefGoogle Scholar
Chipman, A. D. & Stollewerk, A. 2006. Specification of neural precursor identity in the geophilomorph centipede Strigamia maritima. Developmental Biology 290, 337–350.CrossRefGoogle ScholarPubMed
Choe, C. P. & Brown, S. J. 2007. Evolutionary flexibility of pair-rule patterning revealed by functional analysis of secondary pair-rule genes, paired and sloppy-paired in the short-germ insect, Tribolium castaneum. Developmental Biology 302, 281–294.CrossRefGoogle ScholarPubMed
Choe, C. P., Miller, S. C. & Brown, S. J. 2006. A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proceedings of the National Academy of Sciences of the USA 103, 6560–6564.CrossRefGoogle ScholarPubMed
Collier, J. R., Monk, N. A. M., Maini, P. K. & Lewis, J. H. 1996. Pattern formation by lateral inhibition with feedback: a mathematical model of Delta-Notch intercellular signalling. Journal of Theoretical Biology 183, 429–446.CrossRefGoogle ScholarPubMed
Cooke, J. & Zeeman, E. C. 1976. Clock and wavefront model for control of number of repeated structures during animal morphogenesis. Journal of Theoretical Biology 58, 455–476.CrossRefGoogle ScholarPubMed
Copf, T., Rabet, N., Celniker, S. E. & Averof, M. 2003. Posterior patterning genes and the identification of a unique body region in the brine shrimp Artemia franciscana. Development 130, 5915–5927.CrossRefGoogle ScholarPubMed
Coulter, D. E. & Wieschaus, E. 1988. Gene activities and segmental patterning in Drosophila: analysis of odd-skipped and pair-rule double mutants. Genes & Development 2, 1812–1823.CrossRefGoogle ScholarPubMed
Curtis, D., Apfeld, J. & Lehmann, R. 1995. nanos is an evolutionarily conserved organizer of anterior–posterior polarity. Development 121, 1899–1910.Google ScholarPubMed
Damen, W. G., Janssen, R. & Prpic, N. M. 2005. Pair rule gene orthologs in spider segmentation. Evolution & Development 7, 618–628.CrossRefGoogle ScholarPubMed
Rosa, R., Prud'homme, B. & Balavoine, G. 2005. caudal and even-skipped in the annelid Platynereis dumerilii and the ancestry of posterior growth. Evolution & Development 7, 574–587.CrossRefGoogle ScholarPubMed
Dubrulle, J. & Pourquié, O. 2004. Coupling segmentation to axis formation. Development 131, 5783–5793.CrossRefGoogle ScholarPubMed
Dunlop, J. A. & Arango, C. P. 2005. Pycnogonid affinities: a review. Journal of Zoological Systematics and Evolutionary Research 43, 8–21.CrossRefGoogle Scholar
Epstein, M., Pillemer, G., Yelin, R., Yisraeli, J. K. & Fainsod, A. 1997. Patterning of the embryo along the anterior–posterior axis: the role of the caudal genes. Development 124, 3805–3814.Google ScholarPubMed
Fusco, G. 2005. Trunk segment numbers and sequential segmentation in myriapods. Evolution & Development 7, 608–617.CrossRefGoogle ScholarPubMed
Galis, F., Dooren, T. J. M. & Metz, J. A. 2002. Conservation of the segmented germband stage: robustness or pleiotropy?Trends in Genetics 18, 504–509.CrossRefGoogle ScholarPubMed
Giudicelli, F. & Lewis, J. 2004. The vertebrate segmentation clock. Current Opinion in Genetics and Development 14, 407–414.CrossRefGoogle ScholarPubMed
Holland, L. Z. 2002. Heads or tails? Amphioxus and the evolution of anterior–posterior patterning in deuterostomes. Developmental Biology 241, 209–228.CrossRefGoogle ScholarPubMed
Irish, V., Lehmann, R. & Akam, M. 1989. The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature 338, 646–648.CrossRefGoogle ScholarPubMed
Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. 2001. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521.CrossRefGoogle ScholarPubMed
Jaeger, J. & Goodwin, B. C. 2001. A cellular oscillator model for periodic pattern formation. Journal of Theoretical Biology 213, 171–181.CrossRefGoogle ScholarPubMed
Janssen, R., Prpic, N. M. & Damen, W. G. M. 2004. Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Developmental Biology 268, 89–104.CrossRefGoogle Scholar
Keller, R. 2006. Mechanisms of elongation in embryogenesis. Development 133, 2291–2302.CrossRefGoogle ScholarPubMed
Kontarakis, Z., Copf, T. & Averof, M. 2006. Expression of hunchback during trunk segmentation in the branchiopod crustacean Artemia franciscana. Development Genes & Evolution 216, 89–93.CrossRefGoogle ScholarPubMed
Lall, S., Ludwig, M. Z. & Patel, N. H. 2003. Nanos plays a conserved role in axial patterning outside of the diptera. Current Biology 13, 224–229.CrossRefGoogle Scholar
Larsen, C. W., Hirst, E., Alexandre, C. & Vincent, J.-P. 2003. Segment boundary formation in Drosophila embryos. Development 130, 5625–5635.CrossRefGoogle ScholarPubMed
Liu, P. Z. & Kaufman, T. C. 2005a. even-skipped is not a pair-rule gene but has segmental and gap-like functions in Oncopeltus fasciatus, an intermediate germband insect. Development 132, 2081–2092.CrossRefGoogle Scholar
Liu, P. Z. & Kaufman, T. C. 2005b. Short and long germ segmentation: unanswered questions in the evolution of a developmental mode. Evolution & Development 7, 629–646.CrossRefGoogle Scholar
Lynch, J. A., Brent, A. E., Leaf, D. S., Pultz, M. A. & Desplan, C. 2006. Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature 439, 728–732.CrossRefGoogle Scholar
Olesnicky, E. C., Brent, A. E., Tonnes, L.et al. 2006. A caudal mRNA gradient controls posterior development in the wasp Nasonia. Development 133, 3973–3982.CrossRefGoogle ScholarPubMed
Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. 1997. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648.CrossRefGoogle ScholarPubMed
Peel, A. D., Chipman, A. D. & Akam, M. 2005. Arthropod segmentation: Beyond the Drosophila paradigm. Nature Reviews Genetics 6, 905–916.CrossRefGoogle ScholarPubMed
Pourquié, O. 2003. The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–330.CrossRefGoogle ScholarPubMed
Pultz, M. A., Westendorf, L., Gale, S. D., et al. 2005. A major role for zygotic hunchback in patterning the Nasonia embryo. Development 132, 3705–3715.CrossRefGoogle Scholar
Raff, R. A. 1996. The Shape of Life. Chicago: The University of Chicago Press.Google Scholar
Rida, P. C., Minh, N. & Jiang, Y. J. 2004. A Notch feeling of somite segmentation and beyond. Developmental Biology 265, 2–22.CrossRefGoogle ScholarPubMed
Scholtz, G. 1998. Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In Fortey, R. A. & Thomas, R. A. (eds.) Arthropod Relationships. London: Chapman & Hall, pp. 317–332.CrossRefGoogle Scholar
Scholtz, G., Patel, N. H. & Dohle, W. 1994. Serially homologous engrailed stripes are generated via different cell lineages in the germ band of amphipod crustaceans (Malacostraca, Peracarida). International Journal of Developmental Biology 38, 471–478.Google Scholar
Schröder, R. 2003. The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422, 621–625.CrossRefGoogle ScholarPubMed
Shimizu, T., Bae, Y. K., Muraoka, O. & Hibi, M. 2005. Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Developmental Biology 279, 125–141.CrossRefGoogle ScholarPubMed
Shinmyo, Y., Mito, T., Matsushita, T.et al. 2005. caudal is required for gnathal and thoracic patterning and for posterior elongation in the intermediate-germband cricket Gryllus bimaculatus. Mechanisms of Development 122, 231–239.CrossRefGoogle ScholarPubMed
Stollewerk, A., Schoppmeier, M. & Damen, W. G. M. 2003. Involvement of Notch and Delta genes in spider segmentation. Nature 423, 863–865.CrossRefGoogle ScholarPubMed
Torras, R. & González-Crespo, S. 2005. Posterior expression of nanos orthologs during embryonic and larval development of the anthozoan Nematostella vectensis. International Journal of Developmental Biology 49, 895–899.CrossRefGoogle ScholarPubMed
Torras, R., Yanze, N., Schmid, V. & Gonzalez-Crespo, S. 2004. nanos expression at the embryonic posterior pole and the medusa phase in the hydrozoan Podocoryne carnea. Evolution & Development 6, 362–371.CrossRefGoogle ScholarPubMed
Dassow, G., Meir, E., Munro, E. M. & Odell, G. M. 2000. The segment polarity network is a robust developmental module. Nature 406, 188–192.CrossRefGoogle Scholar
Wolff, C. & Scholtz, G. 2002. Cell lineage, axis formation, and the origin of germ layers in the amphipod crustacean Orchestia cavimana. Developmental Biology 250, 44–58.CrossRefGoogle ScholarPubMed
Zrzavy, J., Hypsa, V. & Vlásková, M. 1998. Arthropod phylogeny: taxonomic congruence, total evidence and conditional combination approaches to morphological and molecular data sets. In Fortey, R. A. & Thomas, R. H. (eds.) Arthropod Relationships. London. Chapman & Hall, pp. 97–107.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×