Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T14:20:38.863Z Has data issue: false hasContentIssue false

17 - Urbisexuality: the evolution of bilaterian germ cell specification and reproductive systems

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

A key focus of evolutionary developmental biology (evo-devo) in recent years has been to elucidate the evolution of developmental mechanisms as a means to reconstructing the hypothetical last common ancestors of various clades. Prominent among such reconstructions have been proposals as to the nature of the mysterious Urbilateria, originally defined as the last common ancestor (LCA) of the extant Bilateria (Ecdysozoa, Lophotrochozoa and Deuterostomia) (De Robertis and Sasai 1996, Kimmel 1996). Indeed, drawings of this animal can now be found, as well as detailed information on the genetics and morphological processes that it used to construct its gut, heart, eyes, appendages, segments and body region identities (Gilbert and Singer 2006). Perhaps surprisingly, however, no explanations have yet been offered of how it might have achieved the successful reproduction that must have been necessary for it to give rise to still surviving lineages. This chapter will examine the comparative data available on the specification of bilaterian reproductive systems during development, with special emphasis on the cells containing the genetic hereditary material, the germ cells, and speculate on the possible gonad structure and reproductive strategy of Urbilateria.

Before proceeding, we should clarify our expectations as to what the study of extant species can tell us about Urbilateria. In this chapter, I wish to avoid suggesting that extant reproductive systems are simply variations on a defined metazoan reproductive ‘Bauplan’ theme; the great weakness of the current evo-devo approach stems from dilution of explanatory force with inappropriate fixations on strict, confining definitions of this kind (Scholtz 2004, 2005, Hübner 2005).

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 321 - 342
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. T. 1973. Embryology and Phylogeny in Annelids and Arthropods. Oxford: Pergamon Press.Google Scholar
Aravin, A. A., Klenov, M. S., Vagin, V. V.et al. 2004. Dissection of a natural RNA silencing process in the Drosophila melanogaster germ line. Molecular and Cellular Biology 24, 6742–6750.CrossRefGoogle ScholarPubMed
Balfour, F. M. 1885. A Treatise on Comparative Embryology. London: MacMillan and Co.Google Scholar
Beklemishev, W. N. 1969. Principles of Comparative Anatomy of Invertebrates: Organology. Chicago: University of Chicago Press and Edinburgh: Oliver and Boyd.Google Scholar
Berrill, N. J. & Liu, C. K. 1948. Germplasm, Weismann, and Hydrozoa. Quarterly Review of Biology 23, 124–132.CrossRefGoogle ScholarPubMed
Bounoure, L. 1939. L'origine des cellules reproductrices et le problème de la lignée germinale. Paris: Gauthier-Villars.Google Scholar
Bourlat, S. J., Juliusdottir, T., Lowe, C. J.et al. 2006. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444, 85–88.CrossRefGoogle ScholarPubMed
Bourlat, S. J., Nielsen, C., Lockyer, A. E., Littlewood, D. T. & Telford, M. J. 2003. Xenoturbella is a deuterostome that eats molluscs. Nature 424, 925–928.CrossRefGoogle ScholarPubMed
Brusca, G. J. & Brusca, R. C. 2003. Invertebrates. Sunderland, MA: Sinauer Associates.Google Scholar
Buss, L. W. 1983. Evolution, development, and the units of selection. Proceedings of the National Academy of Sciences of the USA 80, 1387–1391.CrossRefGoogle Scholar
Carré, D., Djediat, C. & Sardet, C. 2002. Formation of a large Vasa-positive granule and its inheritance by germ cells in the enigmatic chaetognaths. Development 129, 661–670.Google ScholarPubMed
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
Robertis, E. M. & Sasai, Y. 1996. A common plan for dorsoventral patterning in Bilateria. Nature 380, 37–40.CrossRefGoogle ScholarPubMed
DeFalco, T., Bras, S. & Doren, M. 2004. Abdominal-B is essential for proper sexually dimorphic development of the Drosophila gonad. Mechanisms of Development 121, 1323–1333.CrossRefGoogle ScholarPubMed
Delsuc, F., Brinkmann, H., Chourrout, D. & Philippe, H. 2006. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965–968.CrossRefGoogle Scholar
Deragon, J. M. & Capy, P. 2000. Impact of transposable elements on the human genome. Annals of Medicine 32, 264–273.CrossRefGoogle ScholarPubMed
Eddy, E. M. 1975. Germ plasm and the differentiation of the germ cell line. International Review of Cytology 43, 229–280.CrossRefGoogle ScholarPubMed
Extavour, C. & Akam, M. E. 2003. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130, 5869–5884.CrossRefGoogle ScholarPubMed
Extavour, C., Pang, K., Matus, D. Q. & Martindale, M. Q. 2005. vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evolution & Development 7, 201–215.CrossRefGoogle Scholar
Fedoroff, N. V. 1999. Transposable elements as a molecular evolutionary force. Annals of the New York Academy of Sciences 870, 251–264.CrossRefGoogle ScholarPubMed
Gerhart, J. & Kirschner, M. 1997. Cells, Embryos and Evolution: Toward a Cellular and Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability. Malden, MA: Blackwell Science.Google Scholar
Giese, A. C. & Pearse, J. S. (eds.) 1974–1989. Reproduction of Marine Invertebrates. New York: Academic Press.Google Scholar
Gilbert, S. F. & Singer, S. R. 2006. Developmental Biology. Sunderland, MA: Sinauer Associates.Google Scholar
Hargitt, G. T. 1919. Germ cells of Coelenterates. VI. General considerations, discussion, conclusions. Journal of Morphology 33, 1–60.CrossRefGoogle Scholar
Heys, F. 1931. The problem of the origin of germ cells. Quarterly Review of Biology 6, 1–45.CrossRefGoogle Scholar
Hubbard, E. J. & Greenstein, D. 2000. The Caenorhabditis elegans gonad: a test tube for cell and developmental biology. Developmental Dynamics 218, 2–22.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Hübner, C. 2005. Hox genes, homology and axis formation: the application of morphological concepts to evolutionary developmental biology. Theory in Biosciences 124, 371–396.CrossRefGoogle Scholar
Illmensee, K., Mahowald, A. P. & Loomis, M. R. 1976. The ontogeny of germ plasm during oogenesis in Drosophila. Developmental Biology 49, 40–65.CrossRefGoogle ScholarPubMed
Johnson, A. D., Crother, B., White, M. E.et al. 2003. Regulative germ cell specification in axolotl embryos: a primitive trait conserved in the mammalian lineage. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, 1371–1379.CrossRefGoogle ScholarPubMed
Kahan, B. W. & Ephrussi, B. 1970. Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. Journal of the National Cancer Institute 44, 1015–1036.Google ScholarPubMed
Kai, T. & Spradling, A. 2004. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 428, 564–569.CrossRefGoogle ScholarPubMed
Kimmel, C. B. 1996. Was Urbilateria segmented?Trends in Genetics 12, 329–331.CrossRefGoogle ScholarPubMed
Kleinsmith, L. J. & Pierce, G. B. Jr. 1964. Multipotentiality of single embryonal carcinoma cells. Cancer Research 24, 1544–1551.Google ScholarPubMed
Lamarck, J.-B. 1809. Philosophie Zoologique. Paris.Google Scholar
Li, M. A., Alls, J. D., Avancini, R. M., Koo, K. & Godt, D. 2003. The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila. Nature Cell Biology 5, 994–1000.CrossRefGoogle ScholarPubMed
Manton, S. M. 1949. Studies on the Onychophora. VII. The early embryonic stages of Peripatopsis, and some general considerations concerning the morphology and phylogeny of the Arthropoda. Philosophical Transactions of the Royal Society of London B 233, 483–580.CrossRefGoogle Scholar
Marletaz, F., Martin, E., Perez, Y.et al. 2006. Chaetognath phylogenomics: a protostome with deuterostome-like development. Current Biology 16, R577–578.CrossRefGoogle ScholarPubMed
Matsui, Y., Zsebo, K. & Hogan, B. L. 1992. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847.CrossRefGoogle ScholarPubMed
Matus, D. Q., Copley, R. R., Dunn, C. W.et al. 2006. Broad taxon and gene sampling indicate that chaetognaths are protostomes. Current Biology 16, R575–R576.CrossRefGoogle ScholarPubMed
McDonald, J. F. 1993. Evolution and consequences of transposable elements. Current Opinion in Genetics and Development 3, 855–864.CrossRefGoogle ScholarPubMed
McLaren, A. 2000. Germ and somatic cell lineages in the developing gonad. Molecular and Cellular Endocrinology 163, 3–9.CrossRefGoogle ScholarPubMed
Medvedev, Z. A. 1981. On the immortality of the germ line: genetic and biochemical mechanism. A review. Mechanisms of Ageing and Development 17, 331–359.CrossRefGoogle ScholarPubMed
Michod, R. E. 1999. Individuality, immortality, and sex. In Keller, L. (ed.) Levels of Selection in Evolution. Princeton, NJ: Princeton University Press, pp. 53–74.Google Scholar
Mochizuki, K., Nishimiya-Fujisawa, C. & Fujisawa, T. 2001. Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Development Genes & Evolution 211, 299–308.CrossRefGoogle ScholarPubMed
Moore, L. A., Broihier, H. T., Doren, M. & Lehmann, R. 1998. Gonadal mesoderm and fat body initially follow a common developmental path in Drosophila. Development 125, 837–844.Google ScholarPubMed
Nieuwkoop, P. D. & Sutasurya, L. A. 1979. Primordial Germ Cells in the Chordates. Cambridge: Cambridge University Press.Google Scholar
Nieuwkoop, P. D. & Sutasurya, L. A. 1981. Primordial Germ Cells in the Invertebrates: From Epigenesis to Preformation. Cambridge: Cambridge University Press.Google Scholar
Potswald, H. E. 1969. Cytological observations on the so-called neoblasts in the serpulid Spirorbis. Journal of Morphology 128, 241–260.CrossRefGoogle Scholar
Potswald, H. E. 1972. The relationship of early oocytes to putative neoblasts in the serpulid Spirorbis borealis. Journal of Morphology 137, 215–228.CrossRefGoogle Scholar
Raz, E. 2000. The function and regulation of vasa-like genes in germ cell development. Genome Biology 1, reviews 1017.1011–1017.1016.CrossRefGoogle ScholarPubMed
Resnick, J. L., Bixler, L. S., Cheng, L. & Donovan, P. J. 1992. Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–551.CrossRefGoogle ScholarPubMed
Ressom, R. E. & Dixon, K. E. 1988. Relocation and reorganization of germ plasm in Xenopus embryos after fertilization. Development 103, 507–518.Google ScholarPubMed
Robert, V. J., Vastenhouw, N. L. & Plasterk, R. H. 2004. RNA interference, transposon silencing, and cosuppression in the Caenorhabditis elegans germ line: similarities and differences. Cold Spring Harbour Symposia on Quantitative Biology 69, 397–402.CrossRefGoogle ScholarPubMed
Rohwedel, J., Sehlmeyer, U., Shan, J., Meister, A. & Wobus, A. M. 1996. Primordial germ cell-derived mouse embryonic germ (EG) cells in vitro resemble undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. Cell Biology International 20, 579–587.CrossRefGoogle ScholarPubMed
Saffman, E. E. & Lasko, P. 1999. Germline development in vertebrates and invertebrates. Cellular and Molecular Life Sciences 55, 1141–1163.CrossRefGoogle ScholarPubMed
Schaner, C. E., Deshpande, G., Schedl, P. D. & Kelly, W. G. 2003. A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Developmental Cell 5, 747–757.CrossRefGoogle ScholarPubMed
Scholtz, G. 2004. Baupläne versus ground patterns, phyla versus monophyla: aspects of patterns and processes in evolutionary developmental biology. In Scholtz, G. (ed.) Evolutionary Developmental Biology of Crustacea (Crustacean Issues) 15. Lisse: Balkema, pp. 3–16.Google Scholar
Scholtz, G. 2005. Homology and ontogeny: pattern and process in comparative developmental biology. Theory in Biosciences 124, 121–143.CrossRefGoogle ScholarPubMed
Shamblott, M. J., Axelman, J., Wang, S.et al. 1998. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy of Sciences of the USA 95, 13726–13731.CrossRefGoogle ScholarPubMed
Shibata, N., Umesono, Y., Orii, H.et al. 1999. Expression of vasa (vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Developmental Biology 206, 73–87.CrossRefGoogle ScholarPubMed
Stewart, T. A. & Mintz, B. 1981. Successive generations of mice produced from an established culture line of euploid teratocarcinoma cells. Proceedings of the National Academy of Sciences of the USA 78, 6314–6318.CrossRefGoogle ScholarPubMed
Styhler, S., Nakamura, A., Swan, A. & Suter, B. 1998. vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development 125, 1569–1578.Google ScholarPubMed
Sunanaga, T., Saito, Y. & Kawamura, K. 2006. Postembryonic epigenesis of Vasa-positive germ cells from aggregated hemoblasts in the colonial ascidian, Botryllus primigenus. Development Growth and Differentiation 48, 87–100.CrossRefGoogle ScholarPubMed
Sunanaga, T., Watanabe, A. & Kawamura, K. 2007. Involvement of vasa homolog in germ line recruitment from coelomic stem cells in budding tunicates. Development Genes & Evolution217, 1–11.CrossRefGoogle ScholarPubMed
Sweasy, J. B., Lauper, J. M. & Eckert, K. A. 2006. DNA polymerases and human diseases. Radiation Research 166, 693–714.CrossRefGoogle ScholarPubMed
Takamura, K., Fujimura, M. & Yamaguchi, Y. 2002. Primordial germ cells originate from the endodermal strand cells in the ascidian Ciona intestinalis. Development Genes & Evolution 212, 11–18.CrossRefGoogle ScholarPubMed
Tanaka, S. S., Toyooka, Y., Akasu, R.et al. 2000. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes & Development 14, 841–853.Google ScholarPubMed
Vagin, V. V., Sigova, A., Li, C.et al. 2006. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324.CrossRefGoogle ScholarPubMed
Vienne, A. & Pontarotti, P. 2006. Metaphylogeny of 82 gene families sheds a new light on chordate evolution. International Journal of Biological Sciences 2, 32–37.CrossRefGoogle ScholarPubMed
Weismann, A. 1892. The Germ-Plasm: A Theory of Heredity. London: Walter Scott.Google Scholar
West-Eberhard, M. J. 2003. Developmental Plasticity and Evolution. New York, NY: Oxford University Press.
Wolff, E. 1964. L'origine de la lignée germinale chez les vertébrés et chez quelques groupes d'invertebrés. Paris: Hermann.Google Scholar
Wolpert, L., Beddington, R., Jessell, T.et al. 2002. Principles of Development. Oxford: Oxford University Press.Google Scholar
Wolpert, L., Jessell, T., Lawrence, P.et al. 2007. Principles of Development. Bath: Oxford University Press.Google Scholar
Zwaka, T. P. & Thomson, J. A. 2005. A germ cell origin of embryonic stem cells?Development 132, 227–233.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×