Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-09T11:04:21.410Z Has data issue: false hasContentIssue false

Chapter 36 - Allotransplantation of Human Ovarian Tissue

from Section 9 - New Research and Technologies

Published online by Cambridge University Press:  27 March 2021

Jacques Donnez
Affiliation:
Catholic University of Louvain, Brussels
S. Samuel Kim
Affiliation:
University of Kansas School of Medicine
Get access

Summary

The first live birth to occur after ovarian-tissue transplantation between two genetically different sisters was reported in 2011. Since this is an acceptable practice with monozygotic twins, there is no apparent reason to refrain from using it with genetically different sisters, especially if one of the sisters previously received bone marrow from the other, leading to complete chimerism (HLA compatibility) between donor and recipient, thus obviating the need for immunosuppressive treatment. This approach allows for natural conception, which could be important on moral, ethical or religious grounds.

Type
Chapter
Information
Fertility Preservation
Principles and Practice
, pp. 410 - 419
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borgmann-Staudt, A, Rendtorff, R, Reinmuth, S et al. Fertility after allogeneic haematopoietic stem cell transplantation in childhood and adolescence. Bone Marrow Transplant, 2011;47:271. DOI:10.1038/bmt.2011.78CrossRefGoogle ScholarPubMed
Kalich-Philosoph, L, Roness, H, Carmely, A et al. Cyclophosphamide triggers follicle activation and “Burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med, 2013;5(185):185ra62. DOI:10.1126/scitranslmed.3005402.Google Scholar
Salooja, N, Szydlo, RM, Socie, G et al. Pregnancy outcomes after peripheral blood or bone marrow transplantation: a retrospective survey. Lancet, 2001;358(9278):271276. DOI:https://doi.org/10.1016/S0140-6736(01)05482-4CrossRefGoogle ScholarPubMed
Lutchman Singh, K, Davies, M, Chatterjee, R. Fertility in female cancer survivors: pathophysiology, preservation and the role of ovarian reserve testing. Hum Reprod Update, 2005;11(1):6989. DOI:10.1093/humupd/dmh052Google Scholar
Silber, SJ, Lenahan, K, Levine, DJ et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N Engl J Med, 2005;353(1):58–63. doi: 10.1056/NEJMoa043157.CrossRefGoogle Scholar
Silber, SJ. Ovary cryopreservation and transplantation for fertility preservation. Mol Hum Reprod, 2012;18(2):5967. DOI:10.1093/molehr/gar082Google Scholar
Silber, S. How ovarian transplantation works and how resting follicle recruitment occurs: a review of results reported from one center. Women’s Health (Lond), 2016; 12(2): 217–227.Google Scholar
Silber, S, Kagawa, N, Kuwayama, M, Gosden, R. Duration of fertility after fresh and frozen ovary transplantation. Fertil Steril, 2010;94(6):21912196. DOI:https://doi.org/10.1016/j.fertnstert.2009.12.073Google Scholar
Donnez, J, Dolmans, M-M, Squifflet, J, Kerbrat, G, Jadoul, P. Live birth after allografting of ovarian cortex between monozygotic twins with Turner syndrome (45,XO/46,XX mosaicism) and discordant ovarian function. Fertil Steril, 2011;96(6):14071411. DOI:https://doi.org/10.1016/j.fertnstert.2011.09.012Google Scholar
Jadoul, P, Dolmans, MM, Donnez, J. Fertility preservation in girls during childhood: is it feasible, efficient and safe and to whom should it be proposed? Hum Reprod Update, 2010;16(6):617630. DOI:10.1093/humupd/dmq010Google Scholar
Borgström, B, Hreinsson, J, Rasmussen, C et al. Fertility preservation in girls with Turner syndrome: prognostic signs of the presence of ovarian follicles. J Clin Endocrinol Metabol, 2009;94(1):7480. DOI:10.1210/jc.2008-0708Google ScholarPubMed
Silber, SJ, Gosden, RG. Ovarian transplantation in a series of monozygotic twins discordant for ovarian failure. N Engl J Med, 2007;356(13):13821384. DOI:10.1056/NEJMc066574Google Scholar
Saitou, M, Payer, B, Lange, UC et al. Specification of germ cell fate in mice. Philos Trans R Soc Lond B Biol Sci, 2003;358(1436):136313670. DOI:10.1098/rstb.2003.1324Google Scholar
Lebl, J, Zahradníková, M, Vlasak, I, Neuhuber, F. Discordant growth pattern and ovarian function in monozygotic twins with 45,X/46,XX mosaicism. Horm Res Paediatr, 2001;55(2):102105.Google Scholar
Young, LE. Imprinting of genes and the barker hypothesis. Twin Res, 2012;4(5):307317. DOI:10.1375/twin.4.5.307Google Scholar
Hajkova, P, Erhardt, S, Lane, N et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev, 2002;117(1):1523. DOI:https://doi.org/10.1016/S0925-4773(02)00181-8Google Scholar
Donnez, J, Silber, S, Andersen, CY et al. Children born after autotransplantation of cryopreserved ovarian tissue: a review of 13 live births. Ann Med, 2011;43(6):437450. DOI:10.3109/07853890.2010.546807CrossRefGoogle Scholar
Van Eyck, AS, Jordan, BF, Gallez, B et al. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil Steril, 2009;92(1):374381. DOI:10.1016/j.fertnstert.2008.05.012Google Scholar
Donnez, J, Squifflet, J, Pirard, C, Jadoul, P, Dolmans, M-M. Restoration of ovarian function after allografting of ovarian cortex between genetically non-identical sisters. Hum Reprod, 2010;25(10):24892495. DOI:10.1093/humrep/deq186CrossRefGoogle ScholarPubMed
Donnez, J, Squifflet, J, Pirard, C et al. Live birth after allografting of ovarian cortex between genetically non-identical sisters. Hum Reprod, 2011;26(6):13841388. DOI:10.1093/humrep/der089Google Scholar
Donnez, J, Dolmans, MM, Pirard, C et al. Allograft of ovarian cortex between two genetically non-identical sisters: case report. Hum Reprod, 2007;22(10):26532659. DOI:10.1093/humrep/dem211Google Scholar
Starzl, TE. Chimerism and tolerance in transplantation. Proc Natl Acad Sci U S A, 2004;101(Suppl 2):1460714614. DOI:10.1073/pnas.0404829101CrossRefGoogle ScholarPubMed
Gineikiene, E, Stoskus, M, Griskevicius, L. Recent advances in quantitative chimerism analysis. Expert Rev Mol Diagn, 2009;9(8):817832. DOI:10.1586/erm.09.66CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM, Demylle, D et al. Restoration of ovarian function after orthotopic (intraovarian and periovarian) transplantation of cryopreserved ovarian tissue in a woman treated by bone marrow transplantation for sickle cell anaemia: case report. Hum Reprod, 2005;21(1):183188. DOI:10.1093/humrep/dei268CrossRefGoogle Scholar
Donnez, J, Martinez-Madrid, B, Jadoul, P et al. Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update, 2006;12(5):519535. DOI:10.1093/humupd/dml032Google Scholar
Silber, SJ, Grudzinskas, G, Gosden, RG. Successful pregnancy after microsurgical transplantation of an intact ovary. 2008(1533–4406 (Electronic)).Google Scholar
Hamawi, K, Magalhaes‐Silverman, MD, Bertolatus, JA. Outcomes of renal transplantation following bone marrow transplantation. Am J Transplant, 2003;3(3):301305. DOI:10.1034/j.1600-6143.2003.00015.xGoogle Scholar
Donnez, J, Dolmans, M-M. Fertility preservation in women. N Engl J Med, 2017;377(17):16571665. DOI:10.1056/NEJMra1614676CrossRefGoogle ScholarPubMed
Gellert, SE, Pors, SE, Kristensen, SG et al. Transplantation of frozen-thawed ovarian tissue: an update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J Assist Reprod and Genet, 2018(1573–7330 (Electronic)). DOI:10.1007/s10815-018-1144-2Google Scholar
Diaz-Garcia, C, Domingo, J, Garcia-Velasco, JA et al. Oocyte vitrification versus ovarian cortex transplantation in fertility preservation for adult women undergoing gonadotoxic treatments: a prospective cohort study. Fertil Steril, 2018. DOI:10.1016/j.fertnstert.2017.11.018Google Scholar
Jensen, AK, Macklon, KT, Fedder, J et al. 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen-thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children. J Assist Reprod Genet, 2016. DOI:10.1007/s10815-016-0843-9CrossRefGoogle Scholar
Donnez, J, Dolmans, MM, Demylle, D et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet, 2004;364(9443):14051410. DOI:10.1016/S0140-6736(04)17222-XGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×