Skip to main content Accessibility help
×
Hostname: page-component-6d856f89d9-mhpxw Total loading time: 0 Render date: 2024-07-16T07:27:03.083Z Has data issue: false hasContentIssue false

3 - The magnetic instability of the Fermi system

Published online by Cambridge University Press:  05 March 2013

Eduardo Fradkin
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

The Hubbard model was originally introduced as the simplest system which may exhibit an insulating (Mott) state. This state is the result of strong electron–electron interactions. In this chapter we consider the Hubbard model at half-filling. The main goal here is the study of the magnetic properties of its ground state. Apart from an exact solution in one dimension, no exact results are available for this problem. This leads to the use of several approximations. The most popular one, and the oldest, is the mean-field theory (MFT). In the MFT one has the bias that the ground state does have some sort of magnetic order (i.e. ferromagnetic, Néel antiferromagnetic, etc.). The problem is then usually solved by means of a variational ansatz. However, one is usually interested in more than just the ground-state energy, which, after all, is not directly measurable and depends very sensitively on the properties at short distances. Most often we wish to evaluate the long-distance, low-frequency, properties of the correlation and response functions of this theory. Moreover, in some cases, such as in one dimension, the fluctuations overwhelm the MFT predictions.

In this chapter we will consider the standard MFT (i.e. Hartree–Fock), which is expected to become accurate at weak coupling. We will consider both ferromagnetic and antiferromagnetic states. We will also rederive these results using path integrals. As a byproduct, we will also have a theory of the fluctuations: the non-linear sigma model.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×