Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-14T19:19:06.085Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 March 2013

Eduardo Fradkin
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, E., Anderson, P. W., Licciardello, D. C., and Ramakrishnan, T. V. 1979. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 42,673.CrossRefGoogle Scholar
Abrikosov, A. A., Gor’kov, L. P., and Dzyaloshinskii, I. E. 1963. Methods of Quantum Field Theory in Statistical Physics. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Affleck, I. 1985. Large-N limit of SU(N ) quantum “spin” chains. Phys. Rev. Lett., 54, 966.CrossRefGoogle ScholarPubMed
Affleck, I. 1986a. Exact critical exponents for quantum spin chains, non-linear σ -models at θ = π and the quantum Hall effect. Nucl. Phys. B, 265, 409.CrossRefGoogle Scholar
Affleck, I. 1986b. Universal term in the free energy at a critical point and the conformal anomaly. Phys. Rev. Lett., 56, 746.CrossRefGoogle Scholar
Affleck, I. 1990. Field theory methods and quantum critical phenomena, in Fields, Strings and Critical Phenomena. Proceedings of the Les Houches Summer School 1988, Session XLIX, Brézin, E. and Zinn-Justin, J. (eds.). Amsterdam: North-Holland, p. 563.Google Scholar
Affleck, I. 1998. Exact correlation amplitude for the S = 1/2 Heisenberg antiferromagnetic chain. J. Phys. A: Math. Gen., 31, 4573.CrossRefGoogle Scholar
Affleck, I. 2010. Quantum impurity problems in condensed matter physics, in Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing. Proceedings of the Les Houches Summer School 2008, Session LXXXIX, Jacobson, J., Ouvry, S., Pasquier, V., Serban, D., and Cugliandolo, L. F. (eds.). Oxford: Oxford University Press.Google Scholar
Affleck, I., and Haldane, F. D. M. 1987. Critical theory of quantum spin chains. Phys. Rev. B, 36, 5291.CrossRefGoogle ScholarPubMed
Affleck, I., and Ludwig, A. W. W. 1991. Universal noninteger “ground-state degeneracy” in critical quantum systems. Phys. Rev. Lett., 67, 161.CrossRefGoogle ScholarPubMed
Affleck, I., and Marston, J. B. 1988. Large-N limit of the Heisenberg-Hubbard model: Implications for high-Tc superconductors. Phys. Rev. B, 37, 3774.CrossRefGoogle ScholarPubMed
Affleck, I., Zou, Z., Hsu, T., and Anderson, P. W. 1988a. SU(2) gauge symmetry of the large-U limit of the Hubbard model. Phys. Rev. B, 38, 745.CrossRefGoogle ScholarPubMed
Affleck, I., Kennedy, T., Lieb, E. H., and Tasaki, H. 1988b. Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys., 115, 477.CrossRefGoogle Scholar
Affleck, I., Harvey, J., Palla, L., and Semenoff, G. W. 1989. The Chern-Simons term versus the monopole. Nucl. Phys. B, 328, 575.CrossRefGoogle Scholar
Aharony, O., Gubser, S. S., Maldacena, J. M., Ooguri, H., and Oz, Y. 2000. Large N field theories, string theory and gravity. Phys. Rep., 323, 183.CrossRefGoogle Scholar
Albuquerque, A. F., and Alet, F. 2010. Critical correlations for short-range valence-bond wave functions on the square lattice. Phys. Rev. B, 82, 180408(R).CrossRefGoogle Scholar
Alet, F., Jacobsen, J. L., Misguich, G. et al. 2005. Interacting classical dimers on the square lattice. Phys. Rev. Lett., 94, 235702.CrossRefGoogle ScholarPubMed
Alet, F., Ikhlef, Y., Jacobsen, J. L., Misguich, G., and Pasquier, V. 2006. Classical dimers with aligning interactions on the square lattice. Phys. Rev. E, 74, 041124.CrossRefGoogle ScholarPubMed
Alicea, J., Oreg, Y., Refael, G., von Oppen, F., and Fisher, M. P. A. 2011. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nature Phys., 7, 412.CrossRefGoogle Scholar
Amit, D. J. 1980. Field Theory, the Renormalization Group and Critical Phenomena. New York, NY: McGraw-Hill.Google Scholar
Amit, D. J., Goldschmidt, Y., and Grinstein, G. 1980. Renormalisation group analysis of the phase transition in the 2D Coulomb gas, sine-Gordon theory and XY -model. J. Phys. A: Math. Gen., 13, 585.CrossRefGoogle Scholar
Anderson, P. W. 1958. Absence of diffusion in certain random lattices. Phys. Rev., 109, 1492.CrossRefGoogle Scholar
Anderson, P. W. 1970. A poor man’s derivation of the scaling laws of the Kondo problem. J. Phys. C: Solid State Phys., 3, 2436.CrossRefGoogle Scholar
Anderson, P. W. 1973. Resonating valence bonds: A new kind of insulator?Mater. Res. Bull., 8, 153.CrossRefGoogle Scholar
Anderson, P. W. 1987. The resonating valence bond state in La2CuO4 and superconductivity. Science, 235, 1196.CrossRefGoogle Scholar
Anderson, P. W., Yuval, G., and Hamann, D. R. 1970. Exact results in the Kondo problem. II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical models. Phys. Rev. B, 1, 4464.CrossRefGoogle Scholar
Ardonne, E., Fendley, P., and Fradkin, E. 2004. Topological order and conformal quantum critical points. Ann. Phys., 310, 493.CrossRefGoogle Scholar
Armour, W., Hands, S., Kogut, J. B. et al. 2011. Magnetic monopole plasma phase in (2 + 1)d compact quantum electrodynamics with fermionic matter. Phys. Rev. D, 84, 014502.CrossRefGoogle Scholar
Arovas, D., Schrieffer, J. R., and Wilczek, F. 1984. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett., 53, 722.CrossRefGoogle Scholar
Arovas, D. P., and Auerbach, A. 1988. Functional integral theories of low-dimensional quantum Heisenberg models. Phys. Rev. B, 38, 316.CrossRefGoogle ScholarPubMed
Arovas, D. P., Schrieffer, J. R., Wilczek, F., and Zee, A. 1985. Statistical mechanics of anyons. Nucl. Phys. B, 251, 117.CrossRefGoogle Scholar
Assaad, F. F. 2005. Phase diagram of the half-filled two-dimensional SU(N ) Hubbard- Heisenberg model: A quantum Monte Carlo study. Phys. Rev. B, 71, 075103.CrossRefGoogle Scholar
Auerbach, A. 1994. Interacting Electrons and Quantum Magnetism, 2nd edn. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Avron, J. E., Seiler, R., and Simon, B. 1983. Homotopy and quantization in condensed matter physics. Phys. Rev. Lett., 51, 51.CrossRefGoogle Scholar
Avron, J. E., Seiler, R. and Zograf, P. G. 1995. Viscosity in quantum Hall fluids. Phys. Rev. Lett., 75, 697.CrossRefGoogle ScholarPubMed
Babujian, H. M., and Tsvelik, A. M. 1986. Heisenberg magnet with an arbitrary spin and anisotropic chiral field. Nucl. Phys. B, 265, 24.CrossRefGoogle Scholar
Bais, F. A., van Driel, P., and de Wild Propitius, M. 1992. Quantum symmetries in discrete gauge theories. Phys. Lett. B, 280, 63.CrossRefGoogle Scholar
Balatsky, A., and Fradkin, E. 1991. Singlet quantum Hall effect and Chern-Simons theories. Phys. Rev. B, 43, 10622.CrossRefGoogle ScholarPubMed
Balian, R., Drouffe, J. M., and Itzykson, C. 1975. Gauge fields on a lattice. II. Gaugeinvariant Ising model. Phys. Rev. D, 11, 2098.CrossRefGoogle Scholar
Bander, M., and Itzykson, C. 1977. Quantum-field-theory calculation of the two-dimensional Ising model correlation function. Phys. Rev. D, 15, 463.CrossRefGoogle Scholar
Banks, T., and Lykken, J. D. 1990. Landau-Ginzburg description of anyonic superconductors. Nucl. Phys. B, 336, 500.CrossRefGoogle Scholar
Banks, T., Myerson, R., and Kogut, J. 1977. Phase transitions in abelian lattice gauge theories. Nucl. Phys. B, 129, 493.CrossRefGoogle Scholar
Barkeshli, M., and Wen, X. G. 2010a. Classification of Abelian and non-Abelian multilayer fractional quantum Hall states through the pattern of zeros. Phys. Rev. B, 82, 245301.CrossRefGoogle Scholar
Barkeshli, M., and Wen, X. G. 2010b. Effective field theory and projective construction for ℤk parafermion fractional quantum Hall states. Phys. Rev. B, 81, 155302.CrossRefGoogle Scholar
Barrett, S. E., Dabbagh, G., Pfeiffer, L. N., West, K. W., and Tycko, R. 1995. Optically pumped NMR evidence for finite-size skyrmions in GaAs quantum wells near Landau level filling ν = 1. Phys. Rev. Lett., 74, 5112.CrossRefGoogle ScholarPubMed
Baskaran, G., and Anderson, P. W. 1988. Gauge theory of high-temperature superconductors and strongly correlated Fermi systems. Phys. Rev. B, 37, 580.CrossRefGoogle ScholarPubMed
Baskaran, G., Zou, Z., and Anderson, P. W. 1987. The resonating valence bond state and high-Tc superconductivity - a mean field theory. Solid State Commun., 63, 973.CrossRefGoogle Scholar
Baxter, R. J. 1982. Exactly Solved Models in Statistical Mechanics. New York, NY: Academic Press.Google Scholar
Baym, G. 1974. Lectures on Quantum Mechanics. New York, NY: Benjamin.Google Scholar
Baym, G., and Pethick, C. J. 1991. Landau Fermi Liquid Theory. New York, NY: John Wiley & Sons.CrossRefGoogle Scholar
Bekenstein, J. D. 1973. Black holes and entropy. Phys. Rev. D, 7, 2333.CrossRefGoogle Scholar
Belavin, A. A., Polyakov, A. M., and Zamolodchikov, A. B. 1984. Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B, 241, 333.CrossRefGoogle Scholar
Bergknoff, H., and Thacker, H. B. 1979. Structure and solution of the massive Thirring model. Phys. Rev. D, 19, 3666.CrossRefGoogle Scholar
Bernevig, B. A., Hughes, T. L., and Zhang, S. C. 2006. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 314, 1757.CrossRefGoogle ScholarPubMed
Berry, M. V. 1984. Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. London A, 392, 45.CrossRefGoogle Scholar
Bethe, H. 1931. Theory of metals. I. Eigenvalues and eigenfunctions of the linear atomic chain. Z. Phys., 71, 205.CrossRefGoogle Scholar
Bishara, W., Bonderson, P., Nayak, C., Shtengel, K., and Slingerland, J. K. 2009. Interferometric signature of non-abelian anyons. Phys. Rev. B, 80, 155303.CrossRefGoogle Scholar
Bloch, F. 1930. Theory of ferromagnetism. Z. Phys., 61, 206.CrossRefGoogle Scholar
Bloch, F. 1933. Stopping power of atoms with several electrons. Z. Phys., 81, 363.CrossRefGoogle Scholar
Blok, B., and Wen, X. G. 1990. Effective theories of the fractional quantum Hall effect: Hierarchy construction. Phys. Rev. B, 42, 8145.Google ScholarPubMed
Blöte, H. W. J., Cardy, J. L., and Nightingale, M. P. 1986. Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. Phys. Rev. Lett., 56, 742.CrossRefGoogle ScholarPubMed
Bombelli, L., Koul, R. K., Lee, J., and Sorkin, R. D. 1986. Quantum source of entropy for black holes. Phys. Rev. D, 34, 373.CrossRefGoogle ScholarPubMed
Bonderson, P., Kitaev, A., and Shtengel, K. 2006. Detecting non-abelian statistics in the ν = 5/2 fractional quantum Hall state. Phys. Rev. Lett., 96, 016803.CrossRefGoogle ScholarPubMed
Borzi, R. A., Grigera, S. A., Farrell, J. et al. 2007. Formation of a nematic fluid at high fields in Sr3Ru2O7. Science, 315, 214.CrossRefGoogle ScholarPubMed
Boyanovsky, D., Dagotto, E., and Fradkin, E. 1987. Anomalous currents, induced charge and bound states on a domain wall of a semiconductor. Nucl. Phys. B, 285, 340.CrossRefGoogle Scholar
Cabra, D. C., Fradkin, E., Rossini, G. L., and Schaposnik, F. A. 2000. Non-abelian fractional quantum Hall states and chiral coset conformal field theories. Int. J. Mod. Phys. A, 30, 4857.Google Scholar
Calabrese, P., and Cardy, J. 2004. Entanglement entropy and quantum field theory. JSTAT J. Statist. Mech.: Theor. Exp. 04, P06002.Google Scholar
Calabrese, P., and Cardy, J. 2007. Entanglement and correlation functions following a local quench: A conformal field theory approach. JSTAT J. Statist. Mech.: Theor. Exp., 2007, P10004.CrossRefGoogle Scholar
Calabrese, P., and Cardy, J. 2009. Entanglement entropy and conformal field theory. J. Phys. A: Math. Theor., 42, 504005.CrossRefGoogle Scholar
Calabrese, P., and Essler, F. H. L. 2010. Universal corrections to scaling for block entanglement in spin-1/2 X X chains. JSTAT J. Statist. Mech.: Theor. Exp., 2010, P08029.Google Scholar
Calabrese, P., and Lefevre, A. 2008. Entanglement spectrum in one-dimensional systems. Phys. Rev. A, 78, 032329.CrossRefGoogle Scholar
Calabrese, P., Cardy, J., and Tonni, E. 2009. Entanglement entropy of two disjoint intervals in conformal field theory. JSTAT J. Statist. Mech.: Theor. Exp., 2009, P11001.CrossRefGoogle Scholar
Callan, C. G., and Harvey, J. A. 1985. Anomalies and fermion zero modes on strings and domain walls. Nucl. Phys. B, 250, 427.CrossRefGoogle Scholar
Callan, C. G., and Wilczek, F. 1994. On geometric entropy. Phys. Lett. B, 333, 55.CrossRefGoogle Scholar
Camino, F. E., Zhou, W., and Goldman, V. J. 2005. Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Phys. Rev. B, 72, 075342.CrossRefGoogle Scholar
Cano, J., and Fendley, P. 2010. Spin Hamiltonians with resonating-valence-bond ground states. Phys. Rev. Lett., 105, 067205.CrossRefGoogle ScholarPubMed
Canright, G. S., Girvin, S. M., and Brass, A. 1989. Statistics and flux in two dimensions. Phys. Rev. Lett., 63, 2291.CrossRefGoogle ScholarPubMed
Cardy, J. 1996. Scaling and Renormalization in Statistical Physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cardy, J., and Peschel, I. 1988. Finite-size dependence of the free energy in two-dimensional critical systems. Nucl. Phys. B, 300, 377.CrossRefGoogle Scholar
Cardy, J. L. 1984. Conformal invariance and universality in finite-size scaling. J. Phys. A: Math. Gen., 17, L385.CrossRefGoogle Scholar
Cardy, J. L. 1986. Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories. Nucl. Phys. B, 275, 200.CrossRefGoogle Scholar
Cardy, J. L. 1989. Boundary conditions, fusion rules, and the Verlinde formula. Nucl. Phys. B, 324, 581.CrossRefGoogle Scholar
Cardy, J. L., and Calabrese, P. 2010. Unusual corrections to scaling in entanglement entropy. JSTAT J. Statist. Mech.: Theor. Exp., P04023.CrossRefGoogle Scholar
Cardy, J. L., Castro-Alvaredo, O. A., and Doyon, B. 2007. Form factors of branch-point twist fields in quantum integrable models and entanglement entropy. J. Stat. Phys., 130, 129.CrossRefGoogle Scholar
Carlson, E. W., Emery, V. J., Kivelson, S. A., and Orgad, D. 2004. Concepts in high temperature superconductivity, in The Physics of Conventional and Unconventional Superconductors, Bennemann, K. H. and Ketterson, J. B. (eds.). Berlin: Springer-Verlag. arXiv:cond-mat/0206217.Google Scholar
Casini, H., and Huerta, M. 2005. Entanglement and alpha entropies for a massive scalar field in two dimensions. JSTAT J. Statist. Mech.: Theor. Exp., 2005, P12012.CrossRefGoogle Scholar
Casini, H., and Huerta, M. 2007. Universal terms for the entanglement entropy in 2 + 1 dimensions. Nucl. Phys. B, 764, 183.CrossRefGoogle Scholar
Casini, H., and Huerta, M. 2009. Entanglement entropy in free quantum field theory. J. Phys. A: Math. Theor., 42, 504007.CrossRefGoogle Scholar
Casini, H., Fosco, C. D., and Huerta, M. 2005. Entanglement and alpha entropies for a massive Dirac field in two dimensions. JSTAT J. Statist. Mech.: Theor. Exp., 2005, P07007.Google Scholar
Casini, H., Huerta, M., and Myers, R. C. 2011. Towards a derivation of holographic entanglement entropy. JHEP J. High Energy Phys., 2011, 036.CrossRefGoogle Scholar
Castelnovo, C., Chamon, C., Mudry, C., and Pujol, P. 2004. From quantum mechanics to classical statistical physics: Generalized Rokhsar-Kivelson Hamiltonians and the “stochastic matrix form” decomposition. Ann. Phys., 318, 316.CrossRefGoogle Scholar
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K. 2009. The electronic properties of graphene. Rev. Mod. Phys., 81, 109.CrossRefGoogle Scholar
Chaikin, P. M., and Lubensky, T. C. 1995. Principles of Condensed Matter Physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chakravarty, S. 2010. Scaling of von Neumann entropy at the Anderson transition. Int. J. Mod. Phys. B, 24, 1823 (Special volume on Fifty Years of Anderson Localization).CrossRefGoogle Scholar
Chakravarty, S., Halperin, B. I., and Nelson, D. R. 1988. Low-temperature behavior of two-dimensional quantum antiferromagnets. Phys. Rev. Lett., 60, 1057.CrossRefGoogle ScholarPubMed
Chamon, C., Fradkin, E., and López, A. 2007. Fractional statistics and duality: Strong tunneling behavior of edge states of quantum Hall liquids in the Jain sequence. Phys. Rev. Lett., 98, 176801.CrossRefGoogle Scholar
Chamon, C., Jackiw, R., Nishida, Y., Pi, S. Y., and Santos, L. 2010. Quantizing Majorana fermions in a superconductor. Phys. Rev. B, 81, 224515.CrossRefGoogle Scholar
Chamon, C., and Fradkin, E. 1997. Distinct universal conductances in tunneling to quantum Hall states: The role of contacts. Phys. Rev. B, 56, 2012.Google Scholar
Chamon, C., Freed, D. E., and Wen, X. G. 1996. Nonequilibrium quantum noise in chiral Luttinger liquids. Phys. Rev. B, 53, 4033.Google Scholar
Chamon, C., Freed, D. E., Kivelson, S. A., Sondhi, S. L., and Wen, X. G. 1997. Two-point-contact interferometer for quantum Hall systems. Phys. Rev. B, 55, 2331.CrossRefGoogle Scholar
Chandra, P., Coleman, P., and Larkin, A. I. 1990. Ising transition in frustrated Heisenberg models. Phys. Rev. Lett., 64, 88.CrossRefGoogle ScholarPubMed
Chang, A. M. 2003. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys., 75, 1449.CrossRefGoogle Scholar
Chang, A. M., Pfeiffer, L. N., and West, K. W. 1996. Observation of chiral Luttinger behavior in electron tunneling into fractional quantum Hall edges. Phys. Rev. Lett., 77, 2538.CrossRefGoogle ScholarPubMed
Chen, Y.-H., Wilczek, F., Witten, E., and Halperin, B. I. 1989. On anyon superconductivity. Int. J. Mod. Phys. B, 3, 1001.CrossRefGoogle Scholar
Cho, G. Y., and Moore, J. E. 2011. Topological BF field theory description of topological insulators. Ann. Phys., 326, 1515.CrossRefGoogle Scholar
Cho, H., Young, J. B., Kang, W. et al. 1998. Hysteresis and spin transitions in the fractional quantum Hall effect. Phys. Rev. Lett., 81, 2522.CrossRefGoogle Scholar
Chubukov, A. V. 1993. Kohn-Luttinger effect and the instability of a two-dimensional repulsive Fermi liquid at T = 0. Phys. Rev. B, 48, 1097.CrossRefGoogle ScholarPubMed
Chung, S. B., Bluhm, H., and Kim, E.-A. 2007. Stability of half-quantum vortices in px + i py superconductors. Phys. Rev. Lett., 99, 197002.CrossRefGoogle Scholar
Coleman, P. 1984. New approach to the mixed-valence problem. Phys. Rev. B, 29, 3035.CrossRefGoogle Scholar
Coleman, S. 1975. Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D, 11, 2088.CrossRefGoogle Scholar
Coleman, S. 1985. Aspects of Symmetry. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cooper, N. R., Wilkin, N. K., and Gunn, J. M. F. 2001. Quantum phase of vortices in rotating Bose-Einstein condensates. Phys. Rev. Lett., 87, 120405.CrossRefGoogle ScholarPubMed
Creutz, M. 2001. Aspects of chiral symmetry and the lattice. Rev. Mod. Phys., 73, 119.CrossRefGoogle Scholar
Dagotto, E., and Moreo, A. 1989. Phase diagram of the frustrated spin-1/2 Heisenberg antiferromagnet in 2 dimensions. Phys. Rev. Lett., 63, 2148.CrossRefGoogle ScholarPubMed
Dagotto, E., Fradkin, E., and Moreo, A. 1988. SU(2) gauge invariance and order parameters in strongly coupled electronic systems. Phys. Rev. B, 38, 2926.CrossRefGoogle ScholarPubMed
Das Sarma, S., and Pinczuk, A. (eds.). 1997. Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Two-Dimensional Semiconductor Structures. New York, NY: Wiley.
Das Sarma, S., Freedman, M., and Nayak, C. 2005. Topologically protected qubits from a possible non-abelian fractional quantum Hall state. Phys. Rev. Lett., 94, 166802.CrossRefGoogle ScholarPubMed
Das Sarma, S., Freedman, M., Nayak, C., Simon, S. H., and Stern, A. 2008. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys., 80, 1083.Google Scholar
Dashen, R., and Frishman, Y. 1975. Four-fermion interactions and scale invariance. Phys. Rev. D, 11, 2781.CrossRefGoogle Scholar
Dashen, R., Hasslacher, B., and Neveu, A. 1975. Particle spectrum in model field theories from semiclassical functional integral techniques. Phys. Rev. D, 12, 2443.CrossRefGoogle Scholar
de Gennes, P. G. 1966. Superconductivity of Metals and Alloys. New York, NY: W. A. Benjamin.Google Scholar
de Gennes, P. G., and Prost, J. 1993. The Physics of Liquid Crystals. Oxford: Oxford Science/Clarendon.Google Scholar
de Picciotto, R., Reznikov, M., Heiblum, M. et al. 1997. Direct observation of a fractional charge. Nature, 389, 162.CrossRefGoogle Scholar
den Nijs, M. P. M. 1981. Derivation of extended scaling relations between critical exponents in two-dimensional models from the one-dimensional Luttinger model. Phys. Rev. B, 23, 6111.CrossRefGoogle Scholar
Deser, S., Jackiw, R., and Templeton, S. 1982. Three-dimensional massive gauge theories. Phys. Rev. Lett., 48, 975.CrossRefGoogle Scholar
Di Francesco, P., Mathieu, P., and Sénéchal, D. 1997. Conformal Field Theory. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Dirac, P. A. M. 1931. Quantised singularities in the electromagnetic field. Proc. Roy. Soc. London, 133, 60.CrossRefGoogle Scholar
Dirac, P. A. M. 1955. Gauge invariant formulation of quantum electrodynamics. Can. J. Phys., 33, 650.CrossRefGoogle Scholar
Dixon, L., Friedan, D., Martinec, E., and Shenker, S. 1987. The conformal field theory of orbifolds. Nucl. Phys. B, 282, 13.CrossRefGoogle Scholar
Dolev, M., Heiblum, M., Umansky, V., Stern, A., and Mahalu, D. 2008. Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall statejournal. Nature, 452, 829.CrossRefGoogle Scholar
Dombre, T., and Kotliar, G. 1989. Instability of the long-range resonating-valence-bond state in the mean-field approach. Phys. Rev. B, 39, 855.CrossRefGoogle Scholar
Dombre, T., and Read, N. 1988. Absence of the Hopf invariant in the long-wavelength action of two-dimensional antiferromagnets. Phys. Rev. B, 38, 7181.CrossRefGoogle Scholar
Dong, S., Fradkin, E., Leigh, R. G., and Nowling, S. 2008. Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids. JHEP J. High Energy Phys., 05, 016.CrossRefGoogle Scholar
Doniach, S., and Sondheimer, E. H. 1974. Green’s Functions for Solid State Physicists. New York, NY: Benjamin.Google Scholar
Dotsenko, V. S. 1984. Critical behaviour and associated conformal algebra of the ℤ3 Potts model. Nucl. Phys. B, 235, 54.CrossRefGoogle Scholar
Dyson, F. J. 1956a. General theory of spin-wave interactions. Phys. Rev., 102, 1217.CrossRefGoogle Scholar
Dyson, F. J. 1956b. Thermodynamic behavior of an ideal ferromagnet. Phys. Rev., 102, 1230.CrossRefGoogle Scholar
Dzyaloshinskii, I., Polyakov, A. M., and Wiegmann, P. B. 1988. Neutral fermions in paramagnetic insulators. Phys. Lett. A, 127, 112.CrossRefGoogle Scholar
Eguchi, T., Gilkey, P. B., and Hanson, A. J. 1980. Gravitation, gauge theories and differential geometry. Phys. Rep., 66, 213.CrossRefGoogle Scholar
Einarsson, T., Sondhi, S. L., Girvin, S. M., and Arovas, D. P. 1995. Fractional spin for quantum Hall effect quasiparticles. Nucl. Phys. B, 441, 515.CrossRefGoogle Scholar
Einstein, A., Podolsky, P., and Rosen, N. 1935. Can quantum-mechanical description of physical reality be considered complete?Phys. Rev., 47, 777.CrossRefGoogle Scholar
Eisenstein, J. P., and MacDonald, A. H. 2004. Bose-Einstein condensation of excitons in bilayer electron systems. Nature, 432, 691.CrossRefGoogle ScholarPubMed
Eisenstein, J. P., Störmer, H. L., Pfeiffer, L. N., and West, K. W. 1990. Evidence for a spin transition in the ν = 2/3 fractional quantum Hall effect. Phys. Rev. B, 41, 7910.CrossRefGoogle ScholarPubMed
Eisenstein, J. P., Boebinger, G. S., Pfeiffer, L. N., West, K. W., and He, S 1992. New fractional quantum Hall state in double-layer two-dimensional electron systems. Phys. Rev. Lett., 68.CrossRefGoogle Scholar
Eliezer, D., and Semenoff, G. W. 1992a. Anyonization of lattice Chern-Simons theory. Ann. Phys., 217, 66.CrossRefGoogle Scholar
Eliezer, D., and Semenoff, G. W. 1992b. Intersection forms and the geometry of lattice Chern-Simons theory. Phys. Lett. B, 286, 118.CrossRefGoogle Scholar
Elitzur, S. 1975. Impossibility of spontaneous breaking of local symmetries. Phys. Rev. D, 12, 3978.CrossRefGoogle Scholar
Elitzur, S., Moore, G., Schwimmer, A., and Seiberg, N. 1989. Remarks on the canonical quantization of the Chern-Simons-Witten theory. Nucl. Phys. B, 326, 108.CrossRefGoogle Scholar
Elstner, N., Singh, R. P. P., and Young, A. P. 1993. Finite temperature properties of the spin-1/2 Heisenberg antiferromagnet on the triangular lattice. Phys. Rev. Lett., 71, 1629.CrossRefGoogle ScholarPubMed
Emery, V. J. 1979. Theory of the one-dimensional electron gas, in Highly Conducting One-Dimensional Solids. Devreese, J. T., Evrard, R. P., and van Doren, V. E. (eds.). New York, NY: Plenum.Google Scholar
Erdélyi, A. (ed). 1953. Higher Transcendental Functions. New York, NY: McGraw-Hill.
Essin, A. M., Moore, J. E., and Vanderbilt, D. 2009. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett., 102, 146805.CrossRefGoogle ScholarPubMed
Essler, F. H. L., Frahm, H., Gohmann, F., Klumper, A., and Korepin, V. E. 2005. The One-Dimensional Hubbard Model. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Evenbly, G., and Vidal, G. 2009. Entanglement renormalization in two spatial dimensions. Phys. Rev. Lett., 102, 180406.CrossRefGoogle ScholarPubMed
Faddeev, L. D. 1976. Introduction to functional methods, in Methods of Field Theory. Proceedings of the Les Houches Summer School 1975, Session XXVIII, Stora, R. and Zinn-Justin, J. (eds.). Amsterdam: North-Holland.Google Scholar
Faddeev, L. D. 1984. Integrable models in (1 + 1)-dimensional quantum field theory, in Recent Advances in Field Theory and Statistical Mechanics. Proceedings of the 1982 Les Houches Summer School, Session XXXIX, Zuber, J.-B. and Stora, R. (eds.). Amsterdam: North-Holland.Google Scholar
Fagotti, M., Calabrese, P., and Moore, J. E. 2011. Entanglement spectrum of randomsinglet quantum critical points. Phys. Rev. B, 83, 045110.CrossRefGoogle Scholar
Feenberg, E. 1969. Theory of Quantum Fluids. New York, NY: Academic Press.Google Scholar
Fendley, P., and Fradkin, E. 2005. Realizing non-abelian statistics in time-reversal-invariant systems. Phys. Rev. B, 72, 024412.CrossRefGoogle Scholar
Fendley, P., Saleur, H., and Warner, N. P. 1994. Exact solution of a massless scalar field with a relevant boundary interaction. Nucl. Phys. B, 430, 577.CrossRefGoogle Scholar
Fendley, P., Ludwig, A. W. W., and Saleur, H. 1995a. Exact conductance through point contacts in the ν = 1/3 fractional quantum Hall effect. Phys. Rev. Lett., 74, 3005.CrossRefGoogle ScholarPubMed
Fendley, P., Ludwig, A. W. W., and Saleur, H. 1995b. Exact nonequilibrium transport through point contacts in quantum wires and fractional quantum Hall devices. Phys. Rev. B, 52, 8934.CrossRefGoogle ScholarPubMed
Fendley, P., Moessner, R., and Sondhi, S. L. 2002. Classical dimers on the triangular lattice. Phys. Rev. B, 66, 214513.CrossRefGoogle Scholar
Fendley, P., Fisher, M. P. A., and Nayak, C. 2006. Dynamical disentanglement across a point contact in a non-Abelian quantum Hall state. Phys. Rev. Lett., 97, 036801.CrossRefGoogle Scholar
Fetter, A. L., and Walecka, J. D. 1971. Quantum Theory of Many-Particle Systems. New York, NY: McGraw-Hill.Google Scholar
Fetter, A. L., Hanna, C. B., and Laughlin, R. B. 1989. Random-phase approximation in the fractional-statistics gas. Phys. Rev. B, 39, 9679.CrossRefGoogle ScholarPubMed
Feynman, R. P. 1972. Statistical Mechanics, A Set of Lectures. Reading, MA: W. A. Benjamin Inc.Google Scholar
Feynman, R. P., and Hibbs, A. R. 1965. Path Integrals and Quantum Mechanics. New York, NY: McGraw-Hill.Google Scholar
Fidkowski, L., Freedman, M., Nayak, C., Walker, K., and Wang, Z. 2009. From string nets to nonabelions. Commun. Math. Phys., 287, 805.CrossRefGoogle Scholar
Fisher, D. S. 1994. Random antiferromagnetic quantum spin chains. Phys. Rev. B, 50, 3799.CrossRefGoogle ScholarPubMed
Fisher, D. S. 1995. Critical behavior of random transverse-field Ising spin chains. Phys. Rev. B, 51, 6411.CrossRefGoogle ScholarPubMed
Fisher, M. E., and Stephenson, J. 1963. Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers. Phys. Rev, 132, 1411.CrossRefGoogle Scholar
Fradkin, E. 1989. Jordan-Wigner transformation for quantum-spin systems in two dimensions and fractional statistics. Phys. Rev. Lett., 63, 322.CrossRefGoogle ScholarPubMed
Fradkin, E. 1990a. Superfluidity of the lattice anyon gas and topological invariance. Phys. Rev. B, 42, 570.CrossRefGoogle ScholarPubMed
Fradkin, E. 1990b. The spectrum of short range resonating valence bond theories, in Field Theories in Condensed Matter Physics, A Workshop. Proceedings of the Johns Hopkins Workshop on Field Theories in Condensed Matter Physics, Baltimore 1988, Tešanović, Z. (ed.). Redwood City, CA: Addison-Wesley, p. 73.Google Scholar
Fradkin, E. 2009. Scaling of entanglement entropy at 2D quantum Lifshitz fixed points and topological fluids. J. Phys. A: Math. Theor., 42, 504011.CrossRefGoogle Scholar
Fradkin, E., and Hirsch, J. E. 1983. Phase diagram of one-dimensional electron-phonon systems. I. The Su-Schrieffer-Heeger model. Phys. Rev. B, 27, 1680.CrossRefGoogle Scholar
Fradkin, E., and Kadanoff, L. P. 1980. Disorder variables and para-fermions in two-dimensional statistical mechanics. Nucl. Phys. B, 170, 1.CrossRefGoogle Scholar
Fradkin, E., and Kivelson, S. A. 1990. Short range resonating valence bond theories and superconductivity. Mod. Phys. Lett. B, 4, 225.CrossRefGoogle Scholar
Fradkin, E., and Kohmoto, M. 1987. Quantized Hall effect and geometric localization of electrons on lattices. Phys. Rev. B, 35, 6017.CrossRefGoogle ScholarPubMed
Fradkin, E., and Moore, J. E. 2006. Entanglement entropy of 2D conformal quantum critical points: Hearing the shape of a quantum drum. Phys. Rev. Lett., 97, 050404.CrossRefGoogle ScholarPubMed
Fradkin, E., and Schaposnik, F. A. 1991. Chern-Simons gauge theories, confinement, and the chiral spin liquid. Phys. Rev. Lett., 66, 276.CrossRefGoogle ScholarPubMed
Fradkin, E., and Shenker, S. H. 1979. Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D, 19, 3682.CrossRefGoogle Scholar
Fradkin, E., and Stone, M. 1988. Topological terms in one- and two-dimensional quantum Heisenberg antiferromagnets. Phys. Rev. B, 38, 7215(R).CrossRefGoogle ScholarPubMed
Fradkin, E., and Susskind, L. 1978. Order and disorder in gauge systems and magnets. Phys. Rev. D, 17, 2637.CrossRefGoogle Scholar
Fradkin, E., Dagotto, E., and Boyanovsky, D. 1986. Physical realization of the parity anomaly in condensed matter physics. Phys. Rev. Lett., 57, 2967. Erratum: Ibid. 58, 961 (1987).CrossRefGoogle ScholarPubMed
Fradkin, E., Moreno, E., and Schaposnik, F. A. 1993. Ground state wave functions for 1+1 dimensional fermion field theories. Nucl. Phys. B, 392, 667.CrossRefGoogle Scholar
Fradkin, E., Nayak, C., Tsvelik, A., and Wilczek, F. 1998. A Chern-Simons effective field theory for the Pfaffian quantum Hall state. Nucl. Phys. B, 516, 704.CrossRefGoogle Scholar
Fradkin, E., Nayak, C., and Schoutens, K. 1999. Landau-Ginzburg theories for non-Abelian quantum Hall states. Nucl. Phys. B, 546, 711.CrossRefGoogle Scholar
Fradkin, E., Huse, D., Moessner, R., Oganesyan, V., and Sondhi, S. L. 2004. On bipartite Rokhsar-Kivelson points and Cantor deconfinement. Phys. Rev. B, 69, 224415.CrossRefGoogle Scholar
Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P., and Mackenzie, A. P. 2010. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys., 1, 7.1.CrossRefGoogle Scholar
Freedman, M., Nayak, C., Shtengel, K., and Walker, K. 2004. A class of P, T -invariant topological phases of interacting electrons. Ann. Phys., 310, 428.CrossRefGoogle Scholar
Freedman, M. H. 2001. Quantum computation and the localization of modular functors. Found. Comput. Math., 1, 183.CrossRefGoogle Scholar
Freedman, M. H. 2003. A magnetic model with a possible Chern-Simons phase. Commun. Math. Phys., 234, 129.CrossRefGoogle Scholar
Freedman, M. H., Kitaev, A., and Wang, Z. 2002a. Simulation of topological field theories by quantum computers. Commun. Math. Phys., 227, 587.CrossRefGoogle Scholar
Freedman, M. H., Kitaev, A., Larsen, M. J., and Wang, Z. 2002b. Topological quantum computation. Commun. Math. Phys., 227, 605.CrossRefGoogle Scholar
Friedan, D. 1982. A proof of the Nielsen-Ninomiya theorem. Commun. Math. Phys., 85, 481.CrossRefGoogle Scholar
Friedan, D., and Shenker, S. 1987. The analytic geometry of two-dimensional conformal field theory. Nucl. Phys. B, 281, 509.CrossRefGoogle Scholar
Friedan, D. H. 1984. Introduction to Polyakov’s string theory, in Recent Advances in Field Theory and Statistical Mechanics. Proceedings of the Les Houches Summer School 1982, Session XXXIX, Zuber, J.-B. and Stora, R. (eds.). Amsterdam: North-Holland.Google Scholar
Friedan, D. H. 1985. Nonlinear models in 2 + dimensions. Ann. Phys., 163, 318.CrossRefGoogle Scholar
Friedan, D. H., Qiu, Z., and Shenker, S. H. 1984. Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett., 52, 1575.CrossRefGoogle Scholar
Fröhlich, J., and Kerler, T. 1991. Universality in quantum Hall systems. Nucl. Phys. B, 354, 369.CrossRefGoogle Scholar
Fröhlich, J., and Marchetti, P. A. 1988. Quantum field theory of anyons. Lett. Math. Phys., 16, 347.CrossRefGoogle Scholar
Fröhlich, J., and Zee, A. 1991. Large-scale physics of the quantum Hall fluid. Nucl. Phys. B, 364, 517.CrossRefGoogle Scholar
Fu, L., and Kane, C. L. 2006. Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B, 74, 195312.CrossRefGoogle Scholar
Fu, L., and Kane, C. L. 2007. Topological insulators with inversion symmetry. Phys. Rev. B, 76, 045302.CrossRefGoogle Scholar
Fu, L., and Kane, C. L. 2008. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett., 100, 096407.CrossRefGoogle ScholarPubMed
Fu, L., Kane, C. L., and Mele, E. J. 2007. Topological insulators in three dimensions. Phys. Rev. Lett., 98, 106803.CrossRefGoogle ScholarPubMed
Fuchs, J. 1992. Affine Lie Algebras and Quantum Groups. Cambridge: Cambridge University Press.Google Scholar
Fursaev, D. V. 2006. Entanglement entropy in critical phenomena and analog models of quantum gravity. Phys. Rev. D, 73, 124025.CrossRefGoogle Scholar
Furukawa, S., and Misguich, G. 2007. Topological entanglement entropy in the quantum dimer model on the triangular lattice. Phys. Rev. B, 75, 214407.CrossRefGoogle Scholar
Georgi, H. 1982. Lie Algebras in Particle Physics. New York, NY: Benjamin/Cummings.Google Scholar
Gepner, D. 1987. New conformal field theories associated with Lie algebras and their partition functions. Nucl. Phys. B, 290, 10.CrossRefGoogle Scholar
Ginsparg, P. 1989. Applied conformal field theory, in Fields, Strings and Critical Phenomena. Proceedings of the Les Houches Summer School 1988, Session XLIX, Brézin, E. and Zinn-Justin, J. (eds.). Amsterdam: North-Holland.Google Scholar
Gioev, D., and Klich, I. 2006. Entanglement entropy of fermions in any dimension and the Widom conjecture. Phys. Rev. Lett., 96, 100503.CrossRefGoogle ScholarPubMed
Girvin, S. M., and Jach, T. 1984. Formalism for the quantum Hall effect: Hilbert space of analytic functions. Phys. Rev. B, 29, 5617.CrossRefGoogle Scholar
Girvin, S. M., and MacDonald, A. H. 1987. Off-diagonal long-range order, oblique confinement, and the fractional quantum Hall effect. Phys. Rev. Lett., 58, 1252.CrossRefGoogle ScholarPubMed
Girvin, S. M., MacDonald, A. H., and Platzman, P. M. 1986. Magneto-roton theory of collective excitations in the fractional quantum Hall effect. Phys. Rev. B, 33, 2481.CrossRefGoogle ScholarPubMed
Gogolin, A. O., Nersesyan, A. A., and Tsvelik, A. M. 1998. Bosonization and Strongly Correlated Systems. Cambridge: Cambridge University Press.Google Scholar
Goldenfeld, N. 1992. Lectures on Phase Transitions and the Renormalization Group. Reading, MA: Addison-Wesley.Google Scholar
Goldhaber, A. S. 1998. Hairs on the unicorn: Fine structure of monopoles and other solitons, in Proceedings of the CRM-FIELDS-CAP Workshop “Solitons,” Queen’s University, Kingston (Ontario, Canada), July 1997. New York: Springer-Verlag. arXiv:9712190.Google Scholar
Goldstone, J., and Wilczek, F. 1981. Fractional quantum numbers on solitons. Phys. Rev. Lett., 47, 986.CrossRefGoogle Scholar
Golterman, M. F. L., Jansen, K., and Kaplan, D. B. 1993. Chern-Simons currents and chiral fermions on the lattice. Phys. Lett. B, 301, 219.CrossRefGoogle Scholar
Greiter, M., Wen, X. G., and Wilczek, F. 1991. Paired Hall state at half-filling. Phys. Rev. Lett., 66, 3205.CrossRefGoogle ScholarPubMed
Greiter, M., Wen, X. G., and Wilczek, F. 1992. Paired Hall states. Nucl. Phys. B, 374, 567.CrossRefGoogle Scholar
Grinstein, G. 1981. Anisotropic sine-Gordon model and infinite-order phase transitions in three dimensions. Phys. Rev. B, 23, 4615.CrossRefGoogle Scholar
Grinstein, G., and Pelcovits, R. A. 1982. Nonlinear elastic theory of smectic liquid crystals. Phys. Rev. A, 26, 915.CrossRefGoogle Scholar
Gross, D. J., and Neveu, A. 1974. Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev. D, 10, 3235.CrossRefGoogle Scholar
Gubser, S. S., Klebanov, I. R., and Polyakov, A. M. 1998. Gauge theory correlators from non-critical string theory. Phys. Lett. B, 428, 105.CrossRefGoogle Scholar
Haldane, F. D. M. 1981. Luttinger liquid theory of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C: Solid State Phys., 14, 2585.CrossRefGoogle Scholar
Haldane, F. D. M. 1982. Spontaneous dimerization in the S = 1/2 Heisenberg antiferromagnetic chain with competing interactions. Phys. Rev. B, 25, 4925.CrossRefGoogle Scholar
Haldane, F. D. M. 1983a. Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. Phys. Lett. A, 93, 464.CrossRefGoogle Scholar
Haldane, F. D. M. 1983b. Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states. Phys. Rev. Lett., 51, 605.CrossRefGoogle Scholar
Haldane, F. D. M. 1983c. Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett., 50, 1153.CrossRefGoogle Scholar
Haldane, F. D. M. 1985a. Many-particle translational symmetries of two-dimensional electrons at rational Landau-level filling. Phys. Rev. Lett., 55, 2095.CrossRefGoogle ScholarPubMed
Haldane, F. D. M. 1985b. “θ Physics” and quantum spin chains. J. Appl. Phys., 57, 3359.CrossRefGoogle Scholar
Haldane, F. D. M. 1988a. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly.”Phys. Rev. Lett., 61, 2015.CrossRefGoogle ScholarPubMed
Haldane, F. D. M. 1988b. O(3) non-linear σ model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions. Phys. Rev. Lett., 61, 1029.CrossRefGoogle Scholar
Haldane, F. D. M. 2011. Geometrical description of the fractional quantum Hall effect. Phys. Rev. Lett., 107, 116801.CrossRefGoogle ScholarPubMed
Haldane, F. D. M., and Rezayi, E. H. 1985. Periodic Laughlin-Jastrow wave functions for the fractional quantized Hall effect. Phys. Rev. B, 31, 2529.CrossRefGoogle ScholarPubMed
Hallberg, K. 2006. New trends in density matrix renormalization. Adv. Phys., 55, 477.CrossRefGoogle Scholar
Halperin, B. I. 1982. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B, 25, 2185.CrossRefGoogle Scholar
Halperin, B. I. 1983. Theory of the quantized Hall conductance. Helv. Phys. Acta, 56, 75.Google Scholar
Halperin, B. I. 1984. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett., 52, 1583.CrossRefGoogle Scholar
Halperin, B. I., Lee, P. A., and Read, N. 1993. Theory of the half-filled Landau level. Phys. Rev. B, 47, 7312.CrossRefGoogle ScholarPubMed
Halperin, B. I., Stern, A., Neder, I., and Rosenow, B. 2011. Theory of the Fabry-Pérot quantum Hall interferometer. Phys. Rev. B, 83, 155440.CrossRefGoogle Scholar
Hamma, A., Ionicioiu, R., and Zanardi, P. 2005a. Bipartite entanglement and entropic boundary law in lattice spin systems. Phys. Rev. A, 71, 022315.CrossRefGoogle Scholar
Hamma, A., Ionicioiu, R., and Zanardi, P. 2005b. Ground state entanglement and geometric entropy in the Kitaev model. Phys. Lett. A, 337, 22.CrossRefGoogle Scholar
Hansson, T. H., Oganesyan, V., and Sondhi, S. L. 2004. Superconductors are topologically ordered. Ann. Phys., 313, 497.CrossRefGoogle Scholar
Hartnoll, S. A. 2012. Horizons, holography and condensed matter, in Black Holes in Higher Dimensions, Horowitz, G. (ed.). Cambridge: Cambridge University Press. pp. 387–419.CrossRefGoogle Scholar
Hartnoll, S. A., Polchinski, J., Silverstein, E., and Tong, D. 2010. Towards strange metal holography. J. High Energy Phys. JHEP, 2010, 120.CrossRefGoogle Scholar
Hasan, M. Z., and Kane, C. L. 2010. Colloquium: Topological insulators. Rev. Mod. Phys., 82, 3045.CrossRefGoogle Scholar
Hasan, M. Z., and Moore, J. E. 2011. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys., 2, 55.CrossRefGoogle Scholar
Hastings, M., and Koma, T. 2006. Spectral gap and exponential decay of correlations. Commun. Math. Phys., 265, 781.CrossRefGoogle Scholar
Hawking, S. W. 1975. Particle creation by black holes. Commun. Math. Phys., 43, 199.CrossRefGoogle Scholar
Heeger, A. J., Kivelson, S., Schrieffer, J. R., and Su, W. P. 1988. Solitons in conducting polymers. Rev. Mod. Phys., 60, 781.CrossRefGoogle Scholar
Heemskerk, I., and Polchinski, J. 2011. Holographic and Wilsonian renormalization groups. J. High Energy Phys. JHEP, 2011, 031.CrossRefGoogle Scholar
Heinonen, O. (ed.). 1998. Composite Fermions: A Unified View of the Quantum Hall Regime. Singapore: World-Scientific Publishing Co.CrossRef
Hirsch, J. E. 1990. Spin-split states in metals. Phys. Rev. B, 41, 6820.CrossRefGoogle ScholarPubMed
Hirsch, J. E. 1999. Spin Hall effect. Phys. Rev. Lett., 83, 1834.CrossRefGoogle Scholar
Ho, T. L. 1995. Broken symmetry of two-component ν = 1/2 quantum Hall states. Phys. Rev. Lett., 75, 1186.CrossRefGoogle ScholarPubMed
Hofstadter, D. R. 1976. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 14, 2239.CrossRefGoogle Scholar
Hohenadler, M., Lang, T. C., and Assaad, F. F. 2011. Correlation effects in quantum spin-Hall insulators: A quantum Monte Carlo study. Phys. Rev. Lett., 106, 100403.CrossRefGoogle ScholarPubMed
Hohenadler, M., Meng, Z. Y., Lang, T. C. et al. 2012. Quantum phase transitions in the Kane-Mele-Hubbard model. Phys. Rev. B, 85, 115132.CrossRefGoogle Scholar
Holstein, T., and Primakoff, H. 1940. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev., 58, 1098.CrossRefGoogle Scholar
Holzhey, C., Larsen, F., and Wilczek, F. 1994. Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B, 424, 443.CrossRefGoogle Scholar
Hosotani, Y., and Chakravarty, S. 1990. Superconductivity in the anyon model. Phys. Rev. B, 42, 342.CrossRefGoogle ScholarPubMed
Hoyos, C., and Son, D. T. 2012. Hall viscosity and electromagnetic response. Phys. Rev. Lett., 108, 066805.CrossRefGoogle ScholarPubMed
Hsu, B., and Fradkin, E. 2010. Universal behavior of entanglement in 2D quantum critical dimer models. JSTAT J. Statist. Mech.: Theor. Exp., 2010, P09004.Google Scholar
Hsu, B., Grosfeld, E., and Fradkin, E. 2009a. Quantum noise and entanglement generated by a local quantum quench. Phys. Rev. B, 80, 235412.CrossRefGoogle Scholar
Hsu, B., Mulligan, M., Fradkin, E., and Kim, E.-A. 2009b. Universal behavior of the entanglement entropy in 2D conformal quantum critical points. Phys. Rev. B, 79, 115421.CrossRefGoogle Scholar
Ioffe, L. B., and Larkin, A. I. 1988. Effective action of a two-dimensional antiferromagnet. Int. J. Mod. Phys. B, 2, 203.CrossRefGoogle Scholar
Itzykson, C., and Zuber, J. B. 1980. Quantum Field Theory, 1st edn. New York, NY: McGraw-Hill.Google Scholar
Ivanov, D. A. 2001. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett., 86, 268.CrossRefGoogle ScholarPubMed
Jackiw, R., and Rebbi, C. 1976. Solitons with fermion number 1/2. Phys. Rev. D, 13, 3398.CrossRefGoogle Scholar
Jackiw, R., and Rossi, P. 1981. Zero modes of the vortex-fermion system. Nucl. Phys. B, 190, 681.CrossRefGoogle Scholar
Jackiw, R., and Schrieffer, J. R. 1981. Solitons with fermion number 1/2 in condensed matter and relativistic field theories. Nucl. Phys. B, 190, 253.CrossRefGoogle Scholar
Jain, J. K. 1989a. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett., 63, 199.CrossRefGoogle ScholarPubMed
Jain, J. K. 1989b. Incompressible quantum Hall states. Phys. Rev. B, 40, 8079.CrossRefGoogle ScholarPubMed
Jain, J. K. 1990. Theory of the fractional quantum Hall effect. Phys. Rev. B, 41, 7653.CrossRefGoogle ScholarPubMed
Jain, J. K. 2007. Composite Fermions, 1st edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Jalabert, R. A., and Sachdev, S. 1991. Spontaneous alignment of frustrated bonds in an anisotropic, three-dimensional Ising model. Phys. Rev. B, 44, 686.CrossRefGoogle Scholar
Jang, J., Ferguson, D. G., Vakaryuk, V. et al. 2011. Observation of half-height magnetization steps in Sr2RuO4. Science, 331, 186.CrossRefGoogle ScholarPubMed
Jansen, K. 1996. Domain wall fermions and chiral gauge theories. Phys. Rep., 273, 1.CrossRefGoogle Scholar
Jia, X., Subramanian, A. R., Gruzberg, I. A., and Chakravarty, S. 2008. Entanglement entropy and multifractality at the localization transition. Phys. Rev. B, 77, 014208.CrossRefGoogle Scholar
Jiang, H. C., Yao, H., and Balents, L. 2012. Spin liquid ground state of the spin-1/2 square J1-J2 Heisenberg model. Phys. Rev. B, 86, 024424.CrossRefGoogle Scholar
Jongeward, G. A., Stack, J. D., and Jayaprakash, C. 1980. Monte Carlo calculations on Z 2 gauge-Higgs theories. Phys. Rev. D, 21, 3360.CrossRefGoogle Scholar
Jordan, P., and Wigner, E. P. 1928. Pauli’s equivalence prohibition. Z. Phys., 47, 631.CrossRefGoogle Scholar
José, J. V., Kadanoff, L. P., Kirkpatrick, S., and Nelson, D. R. 1977. Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B, 16, 1217.CrossRefGoogle Scholar
Ju, H., Kallin, A. B., Fendley, P., Hastings, M. B., and Melko, R. G. 2012. Universal largescale entanglement in two-dimensional gapless systems. Phys. Rev. B, 85, 165121.CrossRefGoogle Scholar
Kac, M. 1966. Can you hear the shape of a drum?Amer. Math. Monthly, 73, 1.CrossRefGoogle Scholar
Kadanoff, L. P. 1969. Operator algebra and the determination of critical indices. Phys. Rev. Lett., 23, 1430.CrossRefGoogle Scholar
Kadanoff, L. P. 1977. The application of renormalization group techniques to quarks and strings. Rev. Mod. Phys., 49, 267.CrossRefGoogle Scholar
Kadanoff, L. P. 1979. Multicritical behavior at the Kosterlitz-Thouless critical point. Ann. Phys., 120, 39.CrossRefGoogle Scholar
Kadanoff, L. P., and Baym, G. 1962. Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Non-Equilibrium Problems. New York, NY: Benjamin.Google Scholar
Kadanoff, L. P., and Brown, A. C. 1979. Correlation functions on the critical lines of the Baxter and Ashkin-Teller models. Ann. Phys., 121, 318.CrossRefGoogle Scholar
Kadanoff, L. P., and Ceva, H. 1971. Determination of an operator algebra for the two-dimensional Ising model. Phys. Rev. B, 3, 3918.CrossRefGoogle Scholar
Kadanoff, L. P., and Martin, P. C. 1961. Theory of many-particle systems. II. Superconductivity. Phys. Rev., 124, 670.CrossRefGoogle Scholar
Kalmeyer, V., and Laughlin, R. B. 1987. Equivalence of the resonating-valence-bond and fractional quantum Hall states. Phys. Rev. Lett., 59, 2095.CrossRefGoogle ScholarPubMed
Kane, C. L., and Fisher, M. P. A. 1992. Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. Phys. Rev. B, 46, 15233.CrossRefGoogle Scholar
Kane, C. L., and Fisher, M. P. A. 1994. Nonequilibrium noise and fractional charge in the quantum Hall effect. Phys. Rev. Lett., 72, 724.CrossRefGoogle ScholarPubMed
Kane, C. L., and Mele, E. J. 2005a. Quantum spin Hall effect in graphene. Phys. Rev. Lett., 95, 226801.CrossRefGoogle ScholarPubMed
Kane, C. L., and Mele, E. J. 2005b. Z2 Topological order and the quantum spin Hall effect. Phys. Rev. Lett., 95, 146802.CrossRefGoogle ScholarPubMed
Kane, C. L., Lee, P. A., Ng, T. K., Chakraborty, B., and Read, N. 1990. Mean-field theory of the spiral phases of a doped antiferromagnet. Phys. Rev. B, 41, 2653.CrossRefGoogle ScholarPubMed
Kane, C. L., Fisher, M. P. A., and Polchinski, J. 1994. Randomness at the edge: Theory of quantum Hall transport at filling ν = 2/3. Phys. Rev. Lett., 72, 4129.CrossRefGoogle ScholarPubMed
Kaplan, D. B. 1992. A method for simulating chiral fermions on the lattice. Phys. Lett. B, 288, 342.CrossRefGoogle Scholar
Kennedy, T., and King, C. 1985. Symmetry breaking in the lattice Abelian Higgs model. Phys. Rev. Lett., 55, 776.CrossRefGoogle ScholarPubMed
Kennedy, T., Lieb, E., and Shastri, S. 1988. The XY model has long-range order for all spins and all dimensions greater than one. Phys. Rev. Lett., 61, 2582.CrossRefGoogle ScholarPubMed
King-Smith, R. D., and Vanderbilt, D. 1993. Theory of polarization of crystalline solids. Phys. Rev. B, 47, 1651.CrossRefGoogle ScholarPubMed
Kitaev, A. 2009. Periodic table for topological insulators and superconductors, in Advances in Theoretical Physics: Landau Memorial Conference, Feigelman, M. (ed.). College Park, MA: AIP Conference Proceedings, for the American Institute of Physics, p. 22.Google Scholar
Kitaev, A., and Preskill, J. 2006. Topological entanglement entropy. Phys. Rev. Lett., 96, 110404.CrossRefGoogle ScholarPubMed
Kitaev, A. 2001. Unpaired Majorana fermions in quantum wires. Physics - Uspekhi, 44, 131. (Proceedings of the Mesoscopic and Strongly Correlated Electron Systems Conference (9–16 July 2000, Chernogolovka, Moscow Oblast).)CrossRefGoogle Scholar
Kitaev, A. 2003. Fault-tolerant quantum computation by anyons. Ann. Phys., 303, 2. arXiv:quant-ph/9707021.CrossRefGoogle Scholar
Kitazawa, Y., and Murayama, H. 1990. Topological phase transition of anyon systems. Nucl. Phys. B, 338, 777.CrossRefGoogle Scholar
Kivelson, S., and Roček, M. 1985. Consequences of gauge invariance for fractionally charged quasi-particles. Phys. Lett. B, 156, 85.CrossRefGoogle Scholar
Kivelson, S. A., and Rokhsar, D. S. 1990. Bogoliubov quasiparticles, spinons, and spin- charge decoupling in superconductors. Phys. Rev. B, 41, 11693(R).CrossRefGoogle ScholarPubMed
Kivelson, S. A., Kallin, C., Arovas, D. P., and Schrieffer, J. R. 1986. Cooperative ring exchange theory of the fractional quantized Hall effect. Phys. Rev. Lett., 56, 873.CrossRefGoogle ScholarPubMed
Kivelson, S. A., Rokhsar, D., and Sethna, J. P. 1987. Topology of the resonating valence-bond state: Solitons and high Tc superconductivity. Phys. Rev. B, 35, 865.CrossRefGoogle ScholarPubMed
Kivelson, S. A., Fradkin, E., and Emery, V. J. 1998. Electronic liquid-crystal phases of a doped Mott insulator. Nature, 393, 550.CrossRefGoogle Scholar
Kivelson, S. A., Fradkin, E., and Geballe, T. H. 2004. Quasi-1D dynamics and the nematic phase of the 2D Emery model. Phys. Rev. B, 69, 144505.CrossRefGoogle Scholar
Klauder, J. 1979. Path integrals and stationary phase approximations. Phys. Rev. D, 19, 2349.CrossRefGoogle Scholar
Klich, I., and Levitov, L. 2009. Quantum noise and an entanglement meter. Phys. Rev. Lett., 102, 100502.CrossRefGoogle ScholarPubMed
Knizhnik, V. G., and Zamolodchikov, A. B. 1984. Current algebra and Wess-Zumino model in two dimensions. Nucl. Phys. B, 247, 83.CrossRefGoogle Scholar
Kogut, J., and Susskind, L. 1975. Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D, 11, 395.CrossRefGoogle Scholar
Kogut, J. B. 1979. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys., 51, 659.CrossRefGoogle Scholar
Kogut, J. B. 1983. The lattice gauge theory approach to quantum chromodynamics. Rev. Mod. Phys., 55, 775.CrossRefGoogle Scholar
Kogut, J. B. 1984. A review of the lattice gauge theory approach to quantum chromodynamics, 1982, in Recent Advances in Field Theory and Statistical Mechanics. Proceedings of the Les Houches Summer School in Theoretical Physics, 1982, Session XXXIX, Zuber, L. B. and Stora, R. (eds.). Amsterdam: North-Holland.Google Scholar
Kohmoto, M. 1983. Metal-insulator transition and scaling for incommensurate systems. Phys. Rev. Lett., 51, 1198.CrossRefGoogle Scholar
Kohmoto, M. 1985. Topological invariant and the quantization of the Hall conductance. Ann. Phys., 160, 343.CrossRefGoogle Scholar
Kohmoto, M., and Shapir, Y. 1988. Antiferromagnetic correlations of the resonating-valence-bond state. Phys. Rev. B, 37, 9439.CrossRefGoogle ScholarPubMed
Kohn, W. 1961. Cyclotron resonance and de Haas-van Alphen oscillations of an interacting electron gas. Phys. Rev., 123, 1242.CrossRefGoogle Scholar
Kohn, W., and Luttinger, J. M. 1965. New mechanism for superconductivity. Phys. Rev. Lett., 15, 524.CrossRefGoogle Scholar
Kondev, J. 1997. Liouville field theory of fluctuating loops. Phys. Rev. Lett., 78, 4320.CrossRefGoogle Scholar
Kondev, J., and Henley, C. L. 1996. Kac-Moody symmetries of critical ground states. Nucl. Phys. B, 464, 540.CrossRefGoogle Scholar
König, M., Steffen, S., Brüne, C. et al. 2007. Quantum spin Hall insulator state in HgTe quantum wells. Science, 318, 766.CrossRefGoogle Scholar
König, M., Buhmann, H., Molenkamp, L. W. et al. 2008. The quantum spin Hall effect: Theory and experiment. J. Phys. Soc. Japan, 77, 031007.CrossRefGoogle Scholar
Kopp, A., Jia, X., and Chakravarty, S. 2007. Non-analyticity of von Neumann entropy as a criterion for quantum phase transitions. Ann. Phys. (N.Y.), 322, 1466.CrossRefGoogle Scholar
Kosterlitz, J. M. 1974. The critical properties of the two-dimensional XY model. J. Phys. C: Solid State Phys., 7, 1046.CrossRefGoogle Scholar
Kosterlitz, J. M. 1977. The d-dimensional Coulomb gas and the roughening transition. J. Phys. C: Solid State Phys., 10, 3753.CrossRefGoogle Scholar
Kosterlitz, J. M., and Thouless, D. J. 1973. Order, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys., 6, 1181.CrossRefGoogle Scholar
Kotliar, G. 1988. Resonating valence bonds and d-wave superconductivity. Phys. Rev. B, 37, 3664.CrossRefGoogle ScholarPubMed
Kramers, H. A., and Wannier, G. H. 1941. Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev., 60, 252.CrossRefGoogle Scholar
Krauss, L. M., and Wilczek, F. 1989. Discrete gauge symmetry in continuum theories. Phys. Rev. Lett., 62, 1221.CrossRefGoogle ScholarPubMed
Kuklov, A. B., Matsumoto, M., Prokof’ev, N. V., Svistunov, B. V., and Troyer, M. 2008. Deconfined criticality: Generic first-order transition in the SU(2) symmetry case. Phys. Rev. Lett., 101, 050405.CrossRefGoogle ScholarPubMed
Kwon, H. J., Houghton, A., and Marston, J. B. 1994. Gauge interactions and bosonized fermion liquids. Phys. Rev. Lett., 73, 284.CrossRefGoogle ScholarPubMed
Laflorencie, N., Sørensen, E. S., Chang, M.-S., and Affleck, I. 2006. Boundary effects in the critical scaling of entanglement entropy in 1D systems. Phys. Rev. Lett., 96, 100603.CrossRefGoogle ScholarPubMed
Landau, L. D., and Lifshitz, E. M. 1975a. Statistical Physics, 3rd edn. Oxford: Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1975b. The Classical Theory of Fields, 3rd edn. Oxford: Pergamon Press.Google Scholar
Laughlin, R. B. 1983. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett., 50, 1395.CrossRefGoogle Scholar
Laughlin, R. B. 1987. Elementary theory: The incompressible quantum fluid, in The Quantum Hall Effect, Prange, R. and Girvin, S. M. (eds.). New York, NY: Springer-Verlag, p. 233.CrossRefGoogle Scholar
Laughlin, R. B. 1988a. Superconducting ground state of noninteracting particles obeying fractional statistics. Phys. Rev. Lett., 60, 2677.CrossRefGoogle ScholarPubMed
Laughlin, R. B. 1988b. The relationship between high-temperature superconductivity and the fractional quantum Hall effect. Science, 242, 525.CrossRefGoogle ScholarPubMed
Lee, D.-H., and Fisher, M. P. A. 1989. Anyon superconductivity and the fractional quantum Hall effect. Phys. Rev. Lett., 63, 903.CrossRefGoogle ScholarPubMed
Lee, S. S. 2008. Stability of the U(1) spin liquid with a spinon Fermi surface in 2 + 1 dimensions. Phys. Rev. B, 78, 085129.CrossRefGoogle Scholar
Lee, S. S. 2010. Holographic description of quantum field theory. Nucl. Phys. B, 832, 567.CrossRefGoogle Scholar
Lee, S. S. 2011. Holographic description of large N gauge theory. Nucl. Phys. B, 851, 143.CrossRefGoogle Scholar
Leggett, A. J. 1975. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys., 47, 331.CrossRefGoogle Scholar
Leinaas, J. M., and Myrheim, J. 1977. On the theory of identical particles. Il Nuovo Cimento, 37B, 1.Google Scholar
Leung, P. W., and Elser, V. 1993. Numerical studies of a 36-site kagome antiferromagnet. Phys. Rev. B, 47, 5459.CrossRefGoogle Scholar
Leung, P. W., Chiu, K. C., and Runge, K. J. 1996. Columnar dimer and plaquette resonating-valence-bond orders in the quantum dimer model. Phys. Rev. B, 54, 12938.CrossRefGoogle ScholarPubMed
Levin, M., and Stern, A. 2009. Fractional topological insulators. Phys. Rev. Lett., 103, 196803.CrossRefGoogle ScholarPubMed
Levin, M., and Wen, X.-G. 2005. String-net condensation: A physical mechanism for topological phases. Phys. Rev. B, 71, 045110.CrossRefGoogle Scholar
Levin, M., and Wen, X.-G. 2006. Detecting topological order in a ground state wave function. Phys. Rev. Lett., 96, 110405.CrossRefGoogle Scholar
Levin, M., Burnell, F. J., Koch-Janusz, M., and Stern, A. 2011. Exactly soluble models for fractional topological insulators in two and three dimensions. Phys. Rev. B, 84, 235145.CrossRefGoogle Scholar
Levine, H., Libby, S. B., and Pruisken, A. M. M. 1983. Electron delocalization by a magnetic field in two dimensions. Phys. Rev. Lett., 51, 1915.CrossRefGoogle Scholar
Li, H., and Haldane, F. D. M. 2008. Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-Abelian fractional quantum Hall effect states. Phys. Rev. Lett., 101, 010504.CrossRefGoogle ScholarPubMed
Liang, S. 1990a. Existence of Néel order at T = 0 in the spin-1/2 antiferromagnetic Heisenberg model on a square lattice. Phys. Rev. B, 42, 6555.CrossRefGoogle Scholar
Liang, S. 1990b. Monte Carlo simulations of the correlation functions for Heisenberg spin chains at T = 0. Phys. Rev. Lett., 64, 1597.CrossRefGoogle Scholar
Liang, S. D., Douçot, B., and Anderson, P. W. 1988. Some new variational resonating-valence-bond-type wave functions for the spin-1/2 antiferromagnetic Heisenberg model on a square lattice. Phys. Rev. B, 61, 365.Google ScholarPubMed
Lieb, E., and Mattis, D. C. 1965. Exact solution of a many fermion system and its associated boson field. J. Math. Phys., 6, 304.Google Scholar
Lieb, E., Schultz, T., and Mattis, D. C. 1961. Two soluble models of an antiferromagnetic chain. Ann. Phys. (N.Y.), 16, 407.CrossRefGoogle Scholar
Lieb, E. H., and Ruskai, M. B. 1973. Proof of the strong subadditivity of quantum mechanical entropy. J. Math. Phys., 14, 1938.CrossRefGoogle Scholar
Lieb, E. H., and Wu, F. Y. 1968. Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett., 20, 1445.CrossRefGoogle Scholar
Lilly, M. P., Cooper, K. B., Eisenstein, J. P., Pfeiffer, L. N., and West, K. W. 1999. Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett., 82, 394.CrossRefGoogle Scholar
Liu, H., McGreevy, J., and Vegh, D. 2011. Non-Fermi liquids from holography. Phys. Rev. D, 83, 065029.CrossRefGoogle Scholar
López, A., and Fradkin, E. 1991. Fractional quantum Hall effect and Chern-Simons gauge theories. Phys. Rev. B, 44, 5246.CrossRefGoogle ScholarPubMed
López, A., and Fradkin, E. 1993. Response functions and spectrum of collective excitations of fractional quantum Hall effect systems. Phys. Rev. B, 47, 7080.CrossRefGoogle ScholarPubMed
López, A., and Fradkin, E. 1995. Fermionic Chern-Simons theory for the fractional quantum Hall effect in bilayers. Phys. Rev. B, 51, 4347.CrossRefGoogle ScholarPubMed
López, A., and Fradkin, E. 1999. Universal structure of the edge states of the fractional quantum Hall states. Phys. Rev. B, 59, 15323.CrossRefGoogle Scholar
López, A., and Fradkin, E. 2001. Effective field theory for the bulk and edge states of quantum Hall states in unpolarized single layer and bilayer systems. Phys. Rev. B, 63, 085306.CrossRefGoogle Scholar
López, A., Rojo, A. G., and Fradkin, E. 1994. Chern-Simons theory of the anisotropic quantum Heisenberg antiferromagnet on a square lattice. Phys. Rev. B, 49, 15139.CrossRefGoogle ScholarPubMed
Lowenstein, J. 1984. Introduction to the Bethe-Ansatz approach in (1 + 1)-dimensional models, in Recent Advances in Field Theory and Statistical Mechanics. Proceedings of the 1982 Les Houches Summer School, Session XXXIX, Zuber, J.-B. and Stora, R. (eds.). Amsterdam: North Holland.Google Scholar
Luther, A., and Peschel, I. 1975. Calculation of critical exponents in two dimensions from quantum field theory in one dimension. Phys. Rev. B, 12, 3908.CrossRefGoogle Scholar
Maciejko, J., Hughes, T. L., and Zhang, S. C. 2011. The quantum spin Hall effect. Annu. Rev. Condens. Matter Phys., 2, 31.CrossRefGoogle Scholar
Mackenzie, A. P., and Maeno, Y. 2003. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys., 75, 657.CrossRefGoogle Scholar
Mahan, G. 1990. Many-Particle Physics, 2nd edn. New York, NY: Plenum Press.CrossRefGoogle Scholar
Maldacena, J. M. 1998. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2, 231.CrossRefGoogle Scholar
Maldacena, J. M. 2012. The gauge/gravity duality, in Black Holes in Higher Dimensions, Horowitz, G. (ed.). Cambridge: Cambridge University Press.Google Scholar
Maldacena, J. M., and Strominger, A. 1996. Statistical entropy of four-dimensional extremal black holes. Phys. Rev. Lett., 77, 428.CrossRefGoogle ScholarPubMed
Maleev, S. V. 1957. Scattering of slow neutrons in ferromagnetics (in Russian). Zh. Éksp. Teor. Fiz., 33, 1010; English translation JETP 6, 776 (1958).Google Scholar
Mandelstam, S. 1975. Soliton operators for the quantized sine-Gordon equation. Phys. Rev. D, 11, 3026.CrossRefGoogle Scholar
Manousakis, E. 1991. The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides. Rev. Mod. Phys., 63, 1.CrossRefGoogle Scholar
Marshall, W. 1955. Antiferromagnetism. Proc. Roy. Soc. A, 232, 48.CrossRefGoogle Scholar
Marston, J. B., and Affleck, I. 1989. Large-N limit of the Hubbard-Heisenberg model. Phys. Rev. B, 39, 11538.CrossRefGoogle ScholarPubMed
Martin, P. C. 1967. Measurements and Correlation Functions. New York, NY: Gordon & Breach.Google Scholar
Mattis, D. C. 1965. The Theory of Magnetism. New York, NY: Harper & Row.Google Scholar
McCoy, B., and Wu, T. T. 1973. The Two-Dimensional Ising Model, 1st edn. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
McGreevy, J. 2010. Holographic duality with a view toward many-body physics. Adv. High Energy Phys., 2010, 723105.CrossRefGoogle Scholar
Melik-Alaverdian, K.Park, V., Bonesteel, N. E., and Jain, J. K. 1998. Possibility of p-wave pairing of composite fermions at ν = 12. Phys. Rev. B, 58, R10167.Google Scholar
Meng, Z. Y., Lang, T. C., Wessel, S., Assaad, F. F., and Muramatsu, A. 2010. Quantum spin liquid emerging in two-dimensional correlated Dirac fermions. Nature, 464, 847.CrossRefGoogle ScholarPubMed
Mermin, N. D. 1979. The topological theory of defects in ordered media. Rev. Mod. Phys., 51, 591.CrossRefGoogle Scholar
Metlitski, M., Hermele, M., Senthil, T., and Fisher, M. P. A. 2008. Monopoles in C P N−1 model via the state-operator correspondence. Phys. Rev. B, 78, 214418.CrossRefGoogle Scholar
Metlitski, M. A., and Grover, T. 2011. Entanglement entropy in systems with spontaneously broken continuous symmetry. arXiv:1112.5166 (unpublished).
Metlitski, M. A., and Sachdev, S. 2010. Quantum phase transitions of metals in two spatial dimensions. I. Ising-nematic order. Phys. Rev. B, 82, 075127.CrossRefGoogle Scholar
Metlitski, M. A., Fuertes, C. A., and Sachdev, S. 2009. Entanglement entropy in the O(N ) model. Phys. Rev. B, 80, 115122.CrossRefGoogle Scholar
Miller, J. B., Radu, I. P., Zumbühl, D. Z. et al. 2007. Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2. Nature Phys., 3, 561.CrossRefGoogle Scholar
Milliken, F. P., Umbach, C. P., and Webb, R. A. 1996. Indications of a Luttinger liquid in the fractional quantum Hall regime. Solid State Commun., 97, 309.CrossRefGoogle Scholar
Milovanović, M., and Read, N. 1996. Edge excitations of paired fractional quantum Hall states. Phys. Rev. B, 53, 13559.CrossRefGoogle ScholarPubMed
Misguich, G., Jolicoeur, Th., and Girvin, S. M. 2001. Magnetization plateaus of SrCu2(BO3)2 from a Chern-Simons theory. Phys. Rev. Lett., 87, 097203.CrossRefGoogle Scholar
Moessner, R., and Sondhi, S. L. 2001a. Ising models of quantum frustration. Phys. Rev. B, 63, 224401.CrossRefGoogle Scholar
Moessner, R., and Sondhi, S. L. 2001b. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett., 86, 1881.CrossRefGoogle ScholarPubMed
Moessner, R., Sondhi, S. L., and Chandra, P. 2000. Two-dimensional periodic frustrated Ising models in a transverse field. Phys. Rev. Lett., 84, 4457.CrossRefGoogle Scholar
Moessner, R., Sondhi, S. L., and Fradkin, E. 2001. Short-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theories. Phys. Rev. B, 65, 024504.CrossRefGoogle Scholar
Moore, G., and Read, N. 1991. Non-abelions in the fractional quantum Hall effect. Nucl. Phys. B, 360, 362.CrossRefGoogle Scholar
Moore, G., and Seiberg, N. 1989. Classical and quantum conformal field theory. Commun. Math. Phys., 123, 177.CrossRefGoogle Scholar
Moore, J. E., and Balents, L. 2007. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B, 75, 121306.CrossRefGoogle Scholar
Moreo, A. 1987. Conformal anomaly and critical exponents of Heisenberg spin models with half-integer spin. Phys. Rev. B, 36, 8582.CrossRefGoogle ScholarPubMed
Morf, R. H. 1998. Transition from quantum Hall to compressible states in the second Landau level: New light on the ν = 5/2 enigma. Phys. Rev. Lett., 80, 1505.CrossRefGoogle Scholar
Mudry, C., and Fradkin, E. 1994. Separation of spin and charge quantum numbers in strongly correlated systems. Phys. Rev. B, 49, 5200.CrossRefGoogle ScholarPubMed
Murthy, G., and Shankar, R. 2003. Hamiltonian theories of the fractional quantum Hall effect. Rev. Mod. Phys., 75, 1101.CrossRefGoogle Scholar
Myers, R. C., and Singh, A. 2012. Comments on holographic entanglement entropy and RG flows. JHEP J. High Energy Phys., 2012, 122.CrossRefGoogle Scholar
Nandkishore, R., and Levitov, L. 2010. Quantum anomalous Hall state in bilayer graphene. Phys. Rev. B, 82, 115124.CrossRefGoogle Scholar
Nash, C., and Sen, S. 1983. Topology and Geometry for Physicists. New York, NY: Academic Press.Google Scholar
Nayak, C., and Wilczek, F. 1994. Non-Fermi liquid fixed point in 2 + 1 dimensions. Nucl. Phys. B, 417, 359.CrossRefGoogle Scholar
Nayak, C., and Wilczek, F. 1996. 2n Quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states. Nucl. Phys. B, 479, 529.CrossRefGoogle Scholar
Nayak, C., Shtengel, K., Orgad, D., Fisher, M. P. A., and Girvin, S. M. 2001. Electrical current carried by neutral quasiparticles. Phys. Rev. B, 64, 235113.CrossRefGoogle Scholar
Negele, J. W., and Orland, H. 1988. Quantum Many-Particle Systems. New York, NY: Addison-Wesley.Google Scholar
Neupert, T., Santos, L., Chamon, C., and Mudry, C. 2011. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett., 106, 236804.CrossRefGoogle ScholarPubMed
Nielsen, H. B., and Ninomiya, M. 1981. Absence of neutrinos on a lattice: (I). Proof by homotopy theory. Nucl. Phys. B, 185, 20.CrossRefGoogle Scholar
Nienhuis, B. 1987. Two dimensional critical phenomena and the Coulomb gas, in Phase Transitions and Critical Phenomena, vol. 11, Domb, C., Green, M., and Lebowitz, J. L. (eds.). London: Academic Press.Google Scholar
Nishida, Y., Santos, L., and Chamon, C. 2010. Topological superconductors as nonrelativistic limits of Jackiw-Rossi and Jackiw-Rebbi models. Phys. Rev. B, 82, 144513.CrossRefGoogle Scholar
Nishioka, T., Ryu, S., and Takayanagi, T. 2009. Holographic entanglement entropy: An overview. J. Phys. A: Math. Theor., 42, 504008.CrossRefGoogle Scholar
Niu, Q., Thouless, D. J., and Wu, Y.-S. 1985. Quantized Hall conductance as a topological invariant. Phys. Rev. B, 31, 3372.CrossRefGoogle ScholarPubMed
Novoselov, K. S., Geim, A. K., Morozov, S. V. et al. 2004. Electric field effect in atomically thin carbon films. Science, 306, 666.CrossRefGoogle ScholarPubMed
Oganesyan, V., Kivelson, S. A., and Fradkin, E. 2001. Quantum theory of a nematic Fermi fluid. Phys. Rev. B, 64, 195109.CrossRefGoogle Scholar
Onsager, L. 1944. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev., 65, 117.CrossRefGoogle Scholar
Ortiz, G., and Martin, R. M. 1994. Macroscopic polarization as a geometric quantum phase: Many-body formulation. Phys. Rev. B, 49, 14202.CrossRefGoogle ScholarPubMed
Oshikawa, M. 2010. Boundary conformal field theory and entanglement entropy in two-dimensional quantum Lifshitz critical point. arXiv:1007.3739v1.
Pan, W., Xia, J. S., Shvarts, V. et al. 1999. Exact quantization of the even-denominator fractional quantum Hall state at ν = 5/2 Landau level filling factor. Phys. Rev. Lett., 83, 3530.CrossRefGoogle Scholar
Pan, W., Störmer, H. L., Tsui, D. C. et al. 2003. Fractional quantum Hall effect of composite fermions. Phys. Rev. Lett., 90, 016801.CrossRefGoogle ScholarPubMed
Pan, W., Xia, J. S., Störmer, H. L. et al. 2008. Experimental studies of the fractional quantum Hall effect in the first excited Landau level. Phys. Rev. B, 77, 075307.CrossRefGoogle Scholar
Papanikolaou, S., Raman, K. S., and Fradkin, E. 2007a. Devil’s staircases, quantum dimer models, and stripe formation in strong coupling models of quantum frustration. Phys. Rev. B, 75, 094406.CrossRefGoogle Scholar
Papanikolaou, S., Luijten, E., and Fradkin, E. 2007b. Quantum criticality, lines of fixed points, and phase separation in doped two-dimensional quantum dimer models. Phys. Rev. B, 76, 134514.CrossRefGoogle Scholar
Papanikolaou, S., Raman, K. S., and Fradkin, E. 2007c. Topological phases and topological entropy of two-dimensional systems with finite correlation length. Phys. Rev. B, 76, 224421.CrossRefGoogle Scholar
Pasquier, V., and Haldane, F. D. M. 1998. A dipole interpretation of the ν = 1/2 state. Nucl. Phys. B, 516, 719.CrossRefGoogle Scholar
Perelomov, A. 1986. Generalized Coherent States and Their Applications. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Peskin, M. E. 1980. Critical point behavior of the Wilson loop. Phys. Lett. B, 94, 161.CrossRefGoogle Scholar
Pines, D., and Nozières, P. 1966. The Theory of Quantum Liquids. New York, NY: Benjamin.Google Scholar
Polchinski, J. 1984. Renormalization and effective Lagrangians. Nucl. Phys. B, 231, 269.CrossRefGoogle Scholar
Polchinski, J. 1993. Effective field theory and the Fermi surface, in Recent Directions in Particle Theory: From Superstrings and Black Holes to the Standard Model (TASI - 92), Harvey, J. and Polchinski, J. (eds.). Singapore: World Scientific, for the Theoretical Advanced Study Institute in High Elementary Particle Physics, Boulder, CO.Google Scholar
Polchinski, J. 1994. Low-energy dynamics of the spinon-gauge system. Nucl. Phys. B, 422, 617.CrossRefGoogle Scholar
Polchinski, J. 1998. String Theory. Cambridge: Cambridge University Press.Google Scholar
Pollmann, F., and Moore, J. E. 2010. Entanglement spectra of critical and near-critical systems in one dimension. New J. Phys., 12, 025006.CrossRefGoogle Scholar
Pollmann, F., Mukerjee, S., Turner, A. M., and Moore, J. E. 2009. Theory of finiteentanglement scaling at one-dimensional quantum critical points. Phys. Rev. Lett., 102, 255701.CrossRefGoogle ScholarPubMed
Pollmann, F., Turner, A. M., Berg, E., and Oshikawa, M. 2010. Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B, 81, 064439.CrossRefGoogle Scholar
Polyakov, A. M. 1975. Interaction of Goldstone particles in two dimensions. Applications to ferromagnets and massive Yang-Mills fields. Phys. Lett. B, 59, 79.CrossRefGoogle Scholar
Polyakov, A. M. 1977. Quark confinement and topology of gauge theories. Nucl. Phys. B, 120, 429.CrossRefGoogle Scholar
Polyakov, A. M. 1981. Quantum geometry of bosonic strings. Phys. Lett. B, 103, 211.CrossRefGoogle Scholar
Polyakov, A. M. 1987. Gauge Fields and Strings. London: Harwood Academic Publishers.Google Scholar
Polyakov, A. M. 1988. Fermi-Bose transmutations induced by gauge fields. Mod. Phys. Lett. A, 3, 325.CrossRefGoogle Scholar
Polyakov, A. M., and Wiegmann, P. B. 1983. Theory of non-Abelian Goldstone bosons in 2 dimensions. Phys. Lett. B, 131, 121.CrossRefGoogle Scholar
Polyakov, A. M., and Wiegmann, P. B. 1984. Goldstone fields in two dimensions with multivalued actions. Phys. Lett. B, 141, 223.CrossRefGoogle Scholar
Prange, R., and Girvin, S. M. 1990. The Quantum Hall Effect, 2nd edn. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Preskill, J. 2004. Topological quantum computation, in Lecture Notes for Physics 219: Quantum Computation, Chapter 9; Caltech (unpublished).
Preskill, J., and Krauss, P. 1990. Local discrete symmetry and quantum-mechanical hair. Nucl. Phys. B, 341, 50.CrossRefGoogle Scholar
Privman, V. 1988. Universal size dependence of the free energy of finite systems near criticality. Phys. Rev. B, 38, 9261.CrossRefGoogle ScholarPubMed
Privman, V., and Fisher, M. E. 1984. Universal critical amplitudes in finite-size scaling. Phys. Rev. B, 30, 322.CrossRefGoogle Scholar
Pruisken, A. M. M. 1984. On localization in the theory of the quantized Hall effect: A two-dimensional realization of the θ-vacuum. Nucl. Phys. B, 235, 277.CrossRefGoogle Scholar
Qi, X. L. 2011. Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators. Phys. Rev. Lett., 107, 126803.CrossRefGoogle ScholarPubMed
Qi, X. L., and Zhang, S. C. 2011. Topological insulators and superconductors. Rev. Mod. Phys., 83, 1057.CrossRefGoogle Scholar
Qi, X. L., Wu, Y. S., and Zhang, S. C. 2006a. General theorem relating the bulk topological number to edge states in two-dimensional insulators. Phys. Rev. B, 74, 045125.CrossRefGoogle Scholar
Qi, X. L., Wu, Y. S., and Zhang, S. C. 2006b. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B, 74, 085308.CrossRefGoogle Scholar
Qi, X. L., Hughes, T. L., and Zhang, S. C. 2008. Topological field theory of time-reversal invariant insulators. Phys. Rev. B, 78, 195424.CrossRefGoogle Scholar
Radu, I., Miller, J. B., Marcus, C. M. et al. 2008. Quasi-particle properties from tunneling in the ν = 5/2 fractional quantum Hall state. Science, 320, 899.CrossRefGoogle Scholar
Raghu, S., and Kivelson, S. A. 2011. Superconductivity from repulsive interactions in the two-dimensional electron gas. Phys. Rev. B, 83, 094518.CrossRefGoogle Scholar
Raghu, S., Qi, X.-L., Honerkamp, C., and Zhang, S. C. 2008. Topological Mott insulators. Phys. Rev. Lett., 100, 156401.CrossRefGoogle ScholarPubMed
Rajaraman, R. 1985. Solitons and Instantons. Amsterdam: North-Holland.
Randjbar-Daemi, S., Salam, A., and Strathdee, J. 1990. Chern-Simons superconductivity at finite temperature. Nucl. Phys. B, 340, 403.CrossRefGoogle Scholar
Read, N. 1989. Order parameter and Ginzburg-Landau theory for the fractional quantum Hall effect. Phys. Rev. Lett., 62, 86.CrossRefGoogle ScholarPubMed
Read, N. 1998. Lowest-Landau-level theory of the quantum Hall effect: The Fermi-liquidlike state of bosons at filling factor one. Phys. Rev. B, 58, 16262.CrossRefGoogle Scholar
Read, N. 2009. Non-abelian adiabatic statistics and Hall viscosity in quantum Hall states and px + i py paired superfluids. Phys. Rev. B, 79, 045308.CrossRefGoogle Scholar
Read, N., and Green, D. 2000. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B, 61, 10267.CrossRefGoogle Scholar
Read, N., and Newns, D. M. 1983. On the solution of the Coqblin-Schreiffer Hamiltonian by the large-N expansion technique. J. Phys. C: Solid State Phys., 16, 3273.CrossRefGoogle Scholar
Read, N., and Rezayi, E. 1999. Beyond paired quantum Hall states: Parafermions and incompressible states in the first excited Landau level. Phys. Rev. B, 59, 8084.CrossRefGoogle Scholar
Read, N., and Sachdev, S. 1989. Some features of the phase diagram of the square lattice SU(N ) antiferromagnet. Nucl. Phys. B, 316, 609.CrossRefGoogle Scholar
Read, N., and Sachdev, S. 1991. Large-N expansion for frustrated quantum antiferromagnets. Phys. Rev. Lett., 66, 1773.CrossRefGoogle ScholarPubMed
Redlich, A. N. 1984. Parity violation and gauge noninvariance of the effective gauge field action in three dimensions. Phys. Rev. D, 29, 2366.CrossRefGoogle Scholar
Refael, G., and Moore, J. E. 2004. Entanglement entropy of random quantum critical points in one dimension. Phys. Rev. Lett., 93, 260602.CrossRefGoogle ScholarPubMed
Refael, G., and Moore, J. E. 2009. Criticality and entanglement in random quantum systems. J. Phys. A: Math. Theor., 42, 504010.CrossRefGoogle Scholar
Rezayi, E. H., and Haldane, F. D. M. 1988. Off-diagonal long-range order in fractional quantum-Hall-effect states. Phys. Rev. Lett., 61, 1985.CrossRefGoogle ScholarPubMed
Rezayi, E. H., and Haldane, F. D. M. 2000. Incompressible paired Hall state, stripe order, and the composite fermion liquid phase in half-filled Landau levels. Phys. Rev. Lett., 84, 4685.CrossRefGoogle ScholarPubMed
Rieger, H., and Kawashima, N. 1999. Application of a continuous time cluster algorithm to the two-dimensional random quantum Ising ferromagnet. Eur. Phys. J. B - Condens. Matter Complex Systems, 9, 233.CrossRefGoogle Scholar
Roddaro, S., Pellegrini, V., Beltram, F., Biasiol, G., and Sorba, L. 2004. Interedge strongto-weak scattering evolution at a constriction in the fractional quantum Hall regime. Phys. Rev. Lett., 93, 046801.CrossRefGoogle Scholar
Rokhsar, D., and Kivelson, S. A. 1988. Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett., 61, 2376.CrossRefGoogle ScholarPubMed
Roy, R. 2009. Z2 classification of quantum spin Hall systems: An approach using time-reversal invariance. Phys. Rev. B, 79, 195321.CrossRefGoogle Scholar
Roy, R. 2010. Topological Majorana and Dirac zero modes in superconducting vortex cores. Phys. Rev. Lett., 105, 186401.CrossRefGoogle ScholarPubMed
Ruckenstein, A. E., Hirschfeld, P. J., and Appel, J. 1987. Mean-field theory of high-T c superconductivity: The superexchange mechanism. Phys. Rev. B, 36, 857.CrossRefGoogle Scholar
Ryu, S., and Takayanagi, T. 2006a. Aspects of holographic entanglement entropy. JHEP J. High Energy Phys., 08, 045.CrossRefGoogle Scholar
Ryu, S., and Takayanagi, T. 2006b. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett., 96, 181602.CrossRefGoogle Scholar
Ryu, S., Schnyder, A. P., Furusaki, A., and Ludwig, A. W. W. 2010. Topological insulators and superconductors: Tenfold way and dimensional hierarchy. New J. Phys., 12, 065010.CrossRefGoogle Scholar
Sachdev, S. 1999. Quantum Phase Transitions. Cambridge: Cambridge University Press.Google Scholar
Sachdev, S., and Read, N. 1991. Large N expansion for frustrated and doped quantum antiferromagnets. Int. J. Mod. Phys. B, 5, 219.CrossRefGoogle Scholar
Saminadayar, L., Glattli, D. C., Jin, Y., and Etienne, B. 1997. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett., 79, 2526.CrossRefGoogle Scholar
Sandvik, A. W. 2007. Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions. Phys. Rev. Lett., 98, 227202.CrossRefGoogle Scholar
Sandvik, A. W. 2010. Continuous quantum phase transition between an antiferromagnet and a valence-bond solid in two dimensions: Evidence for logarithmic corrections to scaling. Phys. Rev. Lett., 104, 177201.CrossRefGoogle Scholar
Santos, L., Neupert, T., Ryu, S., Chamon, C., and Mudry, C. 2011. Time-reversal symmetric hierarchy of fractional incompressible liquids. Phys. Rev. B, 84, 165138.CrossRefGoogle Scholar
Schnyder, A. P., Ryu, S., Furusaki, A., and Ludwig, A. W. W. 2008. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B, 78, 195125.CrossRefGoogle Scholar
Schollwöck, U. 2005. The density-matrix renormalization group. Rev. Mod. Phys., 77, 259.CrossRefGoogle Scholar
Schonfeld, J. F. 1981. A mass term for three-dimensional gauge fields. Nucl. Phys. B, 185, 157.CrossRefGoogle Scholar
Schrieffer, J. R. 1964. Theory of Superconductivity. New York, NY: Addison-Wesley.Google Scholar
Schulman, L. S. 1981. Techniques and Applications of Path Integration. New York, NY: Wiley & Sons.Google Scholar
Schultz, T. D., Mattis., D. C., and Lieb, E. H. 1964. Two-dimensional Ising model as a soluble problem of many fermions. Rev. Mod. Phys., 36, 856.CrossRefGoogle Scholar
Semenoff, G. W. 1984. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett., 53, 2449.CrossRefGoogle Scholar
Semenoff, G. W. 1988. Canonical quantum field theory with exotic statistics. Phys. Rev. Lett., 61, 517.CrossRefGoogle ScholarPubMed
Semenoff, G. W., Sodano, P., and Wu, Y. S. 1989. Renormalization of the statistics parameter in three-dimensional electrodynamics. Phys. Rev. Lett., 62, 715.CrossRefGoogle ScholarPubMed
Senthil, T., Vishwanath, A., Balents, L., Sachdev, S., and Fisher, M. P. A.. 2004a. Deconfined quantum critical points. Science, 303, 1490.CrossRefGoogle ScholarPubMed
Senthil, T., Balents, L., Sachdev, S., Vishwanath, A., and Fisher, M. P. A.. 2004b. Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm. Phys. Rev. B, 70, 144407.CrossRefGoogle Scholar
Shankar, R. 1994. Renormalization-group approach to interacting fermions. Rev. Mod. Phys., 66, 129.CrossRefGoogle Scholar
Sheng, D. N., Gu, Z. C., Sun, K., and Sheng, L. 2011. Fractional quantum Hall effect in the absence of Landau levels. Nature Commun., 2, 389.CrossRefGoogle ScholarPubMed
Shenker, S. H., and Tobochnik, J. 1980. Monte Carlo renormalization group analysis of the classical Heisenberg model in two dimensions. Phys. Rev. B, 22, 4462.CrossRefGoogle Scholar
Shirane, G., Endoh, Y., Birgeneau, R., and Kastner, M. 1987. Two-dimensional antiferromagnetic quantum spin-fluid state in La2CuO4. Phys. Rev. Lett., 59, 1613.CrossRefGoogle Scholar
Shraiman, B. I., and Siggia, E. D. 1989. Spiral phase of a doped quantum antiferromagnet. Phys. Rev. Lett., 62, 1564.CrossRefGoogle ScholarPubMed
Simon, B. 1983. Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett., 51, 2167.CrossRefGoogle Scholar
Singh, R. R. P., and Huse, D. A. 1992. Three-sublattice order in triangular- and kagomélattice spin-half antiferromagnets. Phys. Rev. Lett., 68, 1766.CrossRefGoogle ScholarPubMed
Sondhi, S. L., Karlhede, A., Kivelson, S. A., and Rezayi, E. H. 1993. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B, 47, 16419.CrossRefGoogle ScholarPubMed
Sørensen, E. S., Chang, M.-S., Laflorencie, N., and Affleck, I. 2007a. Impurity entanglement entropy and the Kondo screening cloud. JSTAT J. Statist. Mech.: Theor. Exp., 07, L01001.Google Scholar
Sørensen, E. S., Chang, M.-S., Laflorencie, N., and Affleck, I. 2007b. Quantum impurity entanglement. JSTAT J. Statist. Mech.: Theor. Exp., 07, P08003.Google Scholar
Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N., and West, K. W. 2000. Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet. Phys. Rev. Lett., 84, 5808.CrossRefGoogle Scholar
Srednicki, M. 1993. Entropy and area. Phys. Rev. Lett., 71, 666.CrossRefGoogle ScholarPubMed
Stefano, S., Pellegrini, V., and Beltram, F. 2004. Quasi-particle tunneling at a constriction in a fractional quantum Hall state. Solid State Commun., 131, 565.Google Scholar
Stell, G. 1964. Cluster expansions for classical systems in equilibrium, in The Equilibrium Theory of Classical Fluids, Frisch, H. L. and Lebowitz, J. L. (eds.). New York, NY: W. A. Benjamin Inc, pp. 171–267.Google Scholar
Stéphan, J. M., Furukawa, S., Misguich, G., and Pasquier, V. 2009. Shannon and entanglement entropies of one- and two-dimensional critical wave functions. Phys. Rev. B, 80, 184421.CrossRef
Stéphan, J. M., Misguich, G., and Pasquier, V. 2010. Rényi entropy of a line in two-dimensional Ising models. Phys. Rev. B, 82, 125455.CrossRefGoogle Scholar
Stéphan, J. M., Misguich, G., and Pasquier, V. 2011. Phase transition in the Rényi-Shannon entropy of Luttinger liquids. Phys. Rev. B, 84, 195128.CrossRefGoogle Scholar
Stern, A., and Halperin, B. I. 2006. Proposed experiments to probe the non-Abelian ν = 5/2 quantum Hall state. Phys. Rev. Lett., 96, 016802.CrossRefGoogle ScholarPubMed
Stone, M. 1986. Born-Oppenheimer approximation and the origin of Wess-Zumino terms: Some quantum-mechanical examples. Phys. Rev. D, 33, 1191.CrossRefGoogle ScholarPubMed
Stone, M. 1991. Vertex operators in the quantum Hall effect. Int. J. Mod. Phys. B, 5, 509.CrossRefGoogle Scholar
Su, W. P., and Schrieffer, J. R. 1981. Fractionally charged excitations in charge-densitywave systems with commensurability 3. Phys. Rev. Lett., 46, 738.CrossRefGoogle Scholar
Su, W. P., Schrieffer, J. R., and Heeger, A. J. 1979. Solitons in polyacetylene. Phys. Rev. Lett., 42, 1698.CrossRefGoogle Scholar
Sun, K., and Fradkin, E. 2008. Time-reversal symmetry breaking and spontaneous anomalous Hall effect in Fermi fluids. Phys. Rev. B, 78, 245122.CrossRefGoogle Scholar
Sun, K., Yao, H., Fradkin, E., and Kivelson, S. A. 2009. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi systems with a quadratic band crossing. Phys. Rev. Lett., 103, 046811.CrossRefGoogle ScholarPubMed
Susskind, L. 1977. Lattice fermions. Phys. Rev. D, 16, 3031.CrossRefGoogle Scholar
Susskind, L. 1995. The world as a hologram. J. Math. Phys., 36, 6377.CrossRefGoogle Scholar
Susskind, L. 2008. The Black Hole War. New York, NY: Back Bay Books, Little Brown & Co.Google Scholar
Susskind, L., and Witten, E. 1998. The holographic bound in anti-de Sitter space. arXiv:hep-th/9805114 (unpublished).
Sutherland, B. 1988. Systems with resonating-valence-bond ground states: Correlations and excitations. Phys. Rev. B, 37, 3786.CrossRefGoogle ScholarPubMed
’t Hooft, G. 1978. On the phase transition towards permanent quark confinement. Nucl. Phys. B, 138, 1.CrossRefGoogle Scholar
’t Hooft, G. 1979. A property of electric and magnetic flux in non-Abelian gauge theories. Nucl. Phys. B, 153, 141.CrossRefGoogle Scholar
’t Hooft, G. 1993. Dimensional reduction in quantum gravity. arXiv:gr-gc/9310026v2 (unpublished).
Tang, E., Mei, J. W., and Wen, X. G. 2011a. High-temperature fractional quantum Hall states. Phys. Rev. Lett., 106, 236802.CrossRefGoogle ScholarPubMed
Tang, Y., Sandvik, A. W., and Henley, C. L. 2011b. Properties of resonating-valence-bond spin liquids and critical dimer models. Phys. Rev. B, 84, 174427.CrossRefGoogle Scholar
Thouless, D. J. 1983. Quantization of particle transport. Phys. Rev. B, 27, 6083.CrossRefGoogle Scholar
Thouless, D. J., Kohmoto, M., Nightingale, M. P., and den Nijs, M. P. M. 1982. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49, 405.CrossRefGoogle Scholar
Tomonaga, S. 1950. Remarks on Bloch’s method of sound waves applied to many-fermion problems. Prog. Theor. Phys., 5, 544.CrossRefGoogle Scholar
Trebst, S., Werner, P., Troyer, M., Shtengel, K., and Nayak, C. 2007. Breakdown of a topological phase: Quantum phase transition in a loop gas model with tension. Phys. Rev. Lett., 98, 070602.CrossRefGoogle Scholar
Trugman, S. A. 1983. Localization, percolation, and the quantum Hall effect. Phys. Rev. B, 27, 7539.CrossRefGoogle Scholar
Trugman, S. A., and Kivelson, S. 1985. Exact results for the fractional quantum Hall effect with general interactions. Phys. Rev. B, 31, 5280.CrossRefGoogle ScholarPubMed
Tsui, D. C., Stormer, H. L., and Gossard, A. C. 1982. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 48, 1559.CrossRefGoogle Scholar
Tupitsyn, I. S., Kitaev, A., Prokof’ev, N. V., and Stamp, P. C. E. 2010. Topological multicritical point in the phase diagram of the toric code model and three-dimensional lattice gauge Higgs model. Phys. Rev. B, 82, 085114.CrossRefGoogle Scholar
Vafek, O. 2010. Interacting fermions on the honeycomb bilayer: From weak to strong coupling. Phys. Rev. B, 82, 205106.CrossRefGoogle Scholar
Vafek, O., and Yang, K. 2010. Many-body instability of Coulomb interacting bilayer graphene: Renormalization group approach. Phys. Rev. B, 81, 041401(R).CrossRefGoogle Scholar
Vakaryuk, V., and Leggett, A. J. 2009. Spin polarization of half-quantum vortex in systems with equal spin pairing. Phys. Rev. Lett., 103, 057003.CrossRefGoogle ScholarPubMed
Varney, C. N., Sun, K., Rigol, M., and Galitski, V. 2010. Interaction effects and quantum phase transitions in topological insulators. Phys. Rev. B, 82, 115125.CrossRefGoogle Scholar
Verlinde, E. 1988. Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B, 300, 360.CrossRefGoogle Scholar
Verstraete, F., Wolf, M. M., Perez-García, D., and Cirac, J. I. 2006. Criticality, the area law, and the computational power of PEPS. Phys. Rev. Lett., 96, 220601.CrossRefGoogle Scholar
Vishwanath, A., Balents, L., and Senthil, T. 2004. Quantum criticality and deconfinement in phase transitions between valence bond solids. Phys. Rev. B, 69, 224416.CrossRefGoogle Scholar
Vollhardt, D., and Wölfle, P. 1990. The Superfluid Phases of Helium 3. London: Taylor & Francis.Google Scholar
Volovik, G. E. 1988. An analog of the quantum Hall effect in a superfluid 3He film. Sov. Phys. JETP, 67, 1804.Google Scholar
von Klitzing, K., Dorda, G., and Pepper, M. 1980. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett., 45, 494.CrossRefGoogle Scholar
Wang, L., Gu, Z. C., Wen, X. G., and Verstraete, F. 2011. Possible spin liquid state in the spin 1/2 J 1-J 2 antiferromagnetic Heisenberg model on square lattice: A tensor product state approach. arXiv:1112.3331.
Wegner, F. 1979. The mobility edge problem: Continuous symmetry and a conjecture. Z. Phys. B Condens. Matter, 35, 207.Google Scholar
Wegner, F. J. 1971. Duality in generalized Ising models and phase transitions without local order parameters. J. Math. Phys., 12, 2259.CrossRefGoogle Scholar
Wen, X. G. 1989. Vacuum degeneracy of chiral spin states in compactified space. Phys. Rev. B, 40, 7387.CrossRefGoogle ScholarPubMed
Wen, X. G. 1990a. Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B, 41, 12838.CrossRefGoogle ScholarPubMed
Wen, X. G. 1990b. Electrodynamical properties of gapless edge excitations in the fractional quantum Hall states. Phys. Rev. Lett., 64, 2206.CrossRefGoogle ScholarPubMed
Wen, X. G. 1990c. Topological orders in rigid states. Int. J. Mod. Phys. B, 4, 239.CrossRefGoogle Scholar
Wen, X. G. 1991a. Edge excitations in the fractional quantum Hall states at general filling fractions. Mod. Phys. Lett. B, 5, 39.CrossRefGoogle Scholar
Wen, X. G. 1991b. Gapless boundary excitations in the quantum Hall states and in the chiral spin states. Phys. Rev. B, 43, 11025.CrossRefGoogle ScholarPubMed
Wen, X. G. 1991c. Mean-field theory of spin-liquid states with finite energy gap and topological orders. Phys. Rev. B, 44, 2664.CrossRefGoogle ScholarPubMed
Wen, X. G. 1995. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys., 44, 405.CrossRefGoogle Scholar
Wen, X. G. 1999. Projective construction of non-Abelian quantum Hall liquids. Phys. Rev. B, 60, 8827.CrossRefGoogle Scholar
Wen, X.-G. 2002. Quantum orders and symmetric spin liquids. Phys. Rev. B, 65, 165113.CrossRefGoogle Scholar
Wen, X. G., and Niu, Q. 1990. Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. Phys. Rev. B, 41, 9377.CrossRefGoogle ScholarPubMed
Wen, X. G., and Zee, A. 1988. Spin waves and topological terms in the mean-field theory of two-dimensional ferromagnets and antiferromagnets. Phys. Rev. Lett., 61(1025).CrossRefGoogle ScholarPubMed
Wen, X. G., and Zee, A. 1989. Winding number, family index theorem, and electron hopping in a magnetic field. Nucl. Phys. B, 316, 641.CrossRefGoogle Scholar
Wen, X. G., and Zee, A. 1990. Compressibility and superfluidity in the fractional-statistics liquid. Phys. Rev. B, 41, 240.CrossRefGoogle ScholarPubMed
Wen, X.-G., and Zee, A. 1992. Classification of Abelian quantum Hall states and matrix formulation of topological fluids. Phys. Rev. B, 46, 2290.CrossRefGoogle ScholarPubMed
Wen, X. G., Wilczek, F., and Zee, A. 1989. Chiral spin states and superconductivity. Phys. Rev. B, 39, 11413.CrossRefGoogle ScholarPubMed
Wen, X. G., Dagotto, E., and Fradkin, E. 1990. Anyons on a torus. Phys. Rev. B, 42, 6110.CrossRefGoogle ScholarPubMed
Wesolowski, D., Hosotani, Y., and Ho, C. L. 1994. Multiple Chern-Simons fields on a torus. Int. J. Mod. Phys., A9, 969.CrossRefGoogle Scholar
White, S. R. 1992. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69, 2863.CrossRefGoogle ScholarPubMed
Wiegmann, P. B. 1988. Superconductivity in strongly correlated electronic systems and confinement versus deconfinement phenomenon. Phys. Rev. Lett., 60, 821.CrossRefGoogle ScholarPubMed
Wiegmann, P. B. 1989. Multivalued functionals and geometrical approach for quantization of relativistic particles and strings. Nucl. Phys. B, 323, 311.CrossRefGoogle Scholar
Wilczek, F. 1982. Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett., 48, 1144.CrossRefGoogle Scholar
Wilczek, F., and Zee, A. 1983. Linking numbers, spin, and statistics of solitons. Phys. Rev. Lett., 51, 2250.CrossRefGoogle Scholar
Willett, R., Eisenstein, J. P., Störmer, H. L. et al. 1987. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett., 59, 1776.CrossRefGoogle ScholarPubMed
Willett, R. L., Pfeiffer, l. N., and West, K. W. 2010. Alternation and interchange of e/4 and e/2 period interference oscillations consistent with filling factor 5/2 non-Abelian quasiparticles. Phys. Rev. B, 82, 205301.CrossRefGoogle Scholar
Williams, J. R., Bestwick, A. J., Gallagher, P. et al. 2012. Signatures of Majorana fermions in hybrid superconductor-topological insulator devices. Phys. Rev. Lett., 109, 056803.CrossRefGoogle Scholar
Wilson, K. G. 1969. Non-Lagrangian models of current algebra. Phys. Rev., 179, 1499.CrossRefGoogle Scholar
Wilson, K. G. 1973. Quantum field theory models in less than 4 dimensions. Phys. Rev. D, 7, 2911.CrossRefGoogle Scholar
Wilson, K. G. 1974. Confinement of quarks. Phys. Rev. D, 10, 2445.CrossRefGoogle Scholar
Wilson, K. G. 1975. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys., 47, 773.CrossRefGoogle Scholar
Wilson, K. G. 1983. The renormalization group and critical phenomena. Rev. Mod. Phys., 55, 583.CrossRefGoogle Scholar
Wilson, K. G., and Kogut, J. B. 1974. The renormalization group and the expansion. Physics Reports C, 12, 75.CrossRefGoogle Scholar
Witten, E. 1979. Dyons of charge eθ/2π. Phys. Lett. B, 86, 283.CrossRefGoogle Scholar
Witten, E. 1983. Current algebra, baryons, and quark confinement. Nucl. Phys. B, 223, 422.CrossRefGoogle Scholar
Witten, E. 1984. Non-Abelian bosonization in two dimensions. Commun. Math. Phys., 92, 455.CrossRefGoogle Scholar
Witten, E. 1989. Quantum field theory and the Jones polynomial. Commun. Math. Phys., 121, 351.CrossRefGoogle Scholar
Witten, E. 1992. On holomorphic factorization of WZW and coset models. Commun. Math. Phys., 144, 189.CrossRefGoogle Scholar
Witten, E. 1998. Anti de Sitter space and holography. Adv. Theor. Math. Phys., 2, 253.CrossRefGoogle Scholar
Wolf, M. M. 2006. Violation of the entropic area law for fermions. Phys. Rev. Lett., 96, 010404.CrossRefGoogle ScholarPubMed
Wu, C., Sun, K., Fradkin, E., and Zhang, S. C. 2007. Fermi liquid instabilities in the spin channel. Phys. Rev. B, 75, 115103.CrossRefGoogle Scholar
Wu, T. T., and Yang, C. N. 1975. Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D, 12, 3845.CrossRefGoogle Scholar
Wu, T. T., and Yang, C. N. 1976. Dirac monopole without strings: Monopole harmonics. Nucl. Phys. B, 107, 365.CrossRefGoogle Scholar
Wu, Y. S., and Zee, A. 1984. Comments on the Hopf Lagrangian and fractional statistics of solitons. Phys. Lett. B, 147, 325.CrossRefGoogle Scholar
Xia, J. S., Pan, W., Vicente, C. L. et al. 2004. Electron correlation in the second Landau level: A competition between many nearly degenerate quantum phases. Phys. Rev. Lett., 93, 176809.CrossRefGoogle ScholarPubMed
Yakovenko, V. M. 1990. Chern-Simons terms and n field in Haldane’s model for the quantum Hall effect without Landau levels. Phys. Rev. Lett., 65(Jul), 251.CrossRefGoogle Scholar
Yang, C. N., and Yang, C. P. 1969. Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys., 10, 1115.CrossRef
Yang, K., Warman, L. K., and Girvin, S. M. 1993. Possible spin-liquid states on the triangular and kagomé lattices. Phys. Rev. Lett., 70, 2641.CrossRefGoogle ScholarPubMed
Yang, K., Moon, K., Zheng, L. et al. 1994. Quantum ferromagnetism and phase transitions in double-layer quantum Hall systems. Phys. Rev. Lett., 72, 732.CrossRefGoogle ScholarPubMed
Youngblood, R., Axe, J., and McCoy, B. M. 1980. Correlations in ice-rule ferroelectrics. Phys. Rev. B, 21, 5212.CrossRefGoogle Scholar
Zak, J. 1964. Magnetic translation group. Phys. Rev., 134, A1602.CrossRefGoogle Scholar
Zamolodchikov, A. B. 1986. “Irreversibility” of the flux of the renormalization group in a 2D field theory. Pis’ma Zh. Éksp. Teor. Fiz., 43, 565; JETP Lett. 43, 730 (1986).Google Scholar
Zamolodchikov, A. B., and Zamolodchikov, A. B. 1979. Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Phys., 120, 253.CrossRefGoogle Scholar
Zhang, H., Liu, C. X., Qi, X. L. et al. 2009. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys., 5, 438.CrossRefGoogle Scholar
Zhang, S. C., Hansson, T. H., and Kivelson, S. 1989. Effective-field-theory model for the fractional quantum Hall effect. Phys. Rev. Lett., 62, 82.CrossRefGoogle ScholarPubMed
Zheng, D., Zhang, G. M., and Wu, C. 2011. Particle-hole symmetry and interaction effects in the Kane-Mele-Hubbard model. Phys. Rev. B, 84, 205121.CrossRefGoogle Scholar
Ziman, T., and Schulz, H. J. 1987. Are antiferromagnetic spin chains representations of the higher Wess-Zumino models?Phys. Rev. Lett., 59, 140.CrossRefGoogle ScholarPubMed
Zinn-Justin, J. 2002. Quantum Field Theory and Critical Phenomena, 4th edn. Oxford: Oxford University Press.CrossRefGoogle Scholar
Zozulya, O. S., Haque, M., and Regnault, N. 2009. Entanglement signatures of quantum Hall phase transitions. Phys. Rev. B, 79, 045409.CrossRefGoogle Scholar
Zuber, J. B., and Itzykson, C. 1977. Quantum field theory and the two-dimensional Ising model. Phys. Rev. D, 15, 2875.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Eduardo Fradkin, University of Illinois, Urbana-Champaign
  • Book: Field Theories of Condensed Matter Physics
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139015509.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Eduardo Fradkin, University of Illinois, Urbana-Champaign
  • Book: Field Theories of Condensed Matter Physics
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139015509.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Eduardo Fradkin, University of Illinois, Urbana-Champaign
  • Book: Field Theories of Condensed Matter Physics
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139015509.020
Available formats
×