Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-28T21:19:22.092Z Has data issue: false hasContentIssue false

2 - Filtering a stochastic complex scalar: The prototype test problem

from Part I - Fundamentals

Published online by Cambridge University Press:  05 March 2012

Andrew J. Majda
Affiliation:
New York University
John Harlim
Affiliation:
North Carolina State University
Get access

Summary

As discussed in the introductory chapter, the scientific issue in real-time prediction problems is to provide a statistical estimate of a true state given that the nature of the physical process is chaotic and given the fact that the measurements (observations) are inaccurate or sometimes even unavailable. Essentially, at every time when observations become available, one chooses the best estimate of the true state by accounting for the prior forecasts and these observations. There are two challenges for improving the real-time prediction of a turbulent signal with multiple scales: the first is to improve the model which suffers from model error since we don't yet understand the underlying physical processes. Even if we do, we cannot realize these processes at every temporal or spatial scale with our limited computing power. Thus, the second challenge is to provide efficient and accurate strategies that meet this practical constraint.

In this chapter, we derive the one-dimensional Kalman filter formula which is a specific analytical solution of the Bayesian update in a simplified setting. As mentioned in the introductory chapter, this is an important test problem for filtering multi-scale turbulent systems and this point of view is emphasized here. We show the numerical results of filtering a one-dimensional complex Ornstein–Uhlenbeck process. We then discuss the conditions for filtering stability and compute the asymptotic off-line variables in closed form for the one-dimensional Kalman filter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×