Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-26T06:35:35.943Z Has data issue: false hasContentIssue false

5 - Term Structure of Interest Rates

Published online by Cambridge University Press:  19 September 2009

Yuh-Dauh Lyuu
Affiliation:
National Taiwan University
Get access

Summary

He pays least […] who pays latest.

Charles de Montesquieu (1689–1755), The Spirit of Laws

The term structure of interest rates is concerned with how the interest rates change with maturity and how they may evolve in time. It is fundamental to the valuation of fixed-income securities. This subject is important also because the term structure is the starting point of any stochastic theory of interest rate movements. Interest rates in this chapter are period based unless stated otherwise. This simplifies the presentation by eliminating references to the compounding frequency per annum.

Introduction

The set of yields to maturity for bonds of equal quality and differing solely in their terms to maturity forms the term structure. This term often refers exclusively to the yields of zero-coupon bonds. Term to maturity is the time period during which the issuer has promised to meet the conditions of the obligation. A yield curve plots yields to maturity against maturity and represents the prevailing interest rates for various terms. See Fig. 5.1 for a sample Treasury yield curve. A par yield curve is constructed from bonds trading near their par value.

At least four yield-curve shapes can be identified. A normal yield curve is upward sloping, an inverted yield curve is downward sloping, a flat yield curve is flat (see Fig. 5.2), and a humped yield curve is upward sloping at first but then turns downward sloping. We will survey the theories advanced to explain the shapes of the yield curve in Section 5.1.

The U.S. Treasury yield curve is the most widely followed yield curve for the following reasons.

Type
Chapter
Information
Financial Engineering and Computation
Principles, Mathematics, Algorithms
, pp. 45 - 63
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×