Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-13T13:22:27.246Z Has data issue: false hasContentIssue false

11 - Gas Lubrication

Published online by Cambridge University Press:  12 January 2010

Andras Z. Szeri
Affiliation:
University of Delaware
Get access

Summary

The qualitative difference in performance between liquids and gases, in general, vanishes as M → 0, where the Mach number, M, is the ratio of the fluid velocity to the local velocity of sound. This general conclusion also holds for bearings, and at low speeds the behavior of gas film lubricated bearings is similar to liquid-lubricated bearings – in fact, many of the liquid film bearings could also be operated with a gas lubricant. This similarity between liquid and gas films no longer holds at high speeds, however, the main additional phenomenon for gas bearings being the compressibility of the lubricant.

Perhaps the earliest mention of air as a lubricant was made by Him in 1854. Kingsbury (1897) was the first to construct an air-lubricated journal bearing. But the scientific theory of gas lubrication can be considered as an extension of the Reynolds lubrication theory. This extension was made soon after Reynolds' pioneering work: Harrison in 1913 published solutions for “long” slider and journal bearings lubricated with a gas. Nevertheless, the study of gas lubrication remained dormant until the late 1950s, when impetus for the development of gas bearings came mainly from the precision instruments and the aerospace industries.

In self-acting bearings, whether lubricated by liquid or gas, lubrication action is produced in a converging narrow clearance space by virtue of the viscosity of the lubricant. As the viscosity of gases is orders of magnitude smaller than that of commonly used liquid lubricants, gas bearings generally must have smaller clearances and will produce smaller load capacities than their liquid-lubricated counterparts.

Type
Chapter
Information
Fluid Film Lubrication
Theory and Design
, pp. 392 - 408
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Gas Lubrication
  • Andras Z. Szeri, University of Delaware
  • Book: Fluid Film Lubrication
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626401.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Gas Lubrication
  • Andras Z. Szeri, University of Delaware
  • Book: Fluid Film Lubrication
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626401.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Gas Lubrication
  • Andras Z. Szeri, University of Delaware
  • Book: Fluid Film Lubrication
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626401.012
Available formats
×