Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T11:37:32.078Z Has data issue: false hasContentIssue false

Non-monotonic reasoning versus logic programming: a new perspective

Published online by Cambridge University Press:  03 May 2010

Derek Partridge
Affiliation:
University of Exeter
Get access

Summary

Introduction

The area of non-monotonic reasoning and the area of logic programming are of crucial and growing significance to artificial intelligence and to the whole field of computer science. It is therefore important to achieve a better understanding of the relationship existing between these two fields.

The major goal in the area of non-monotonic reasoning is to find adequate and sufficiently powerful formalizations of various types of non-monotonic reasoning – including common-sense reasoning – and to develop efficient ways of their implementation. Most of the currently existing formalizations are based on mathematical logic.

Logic programming introduced to computer science the important concept of declarative – as opposed to procedural – programming, based on mathematical logic. Logic programs, however, do not use logical negation, but instead rely on a non-monotonic operator – often referred to as negation as failure – which represents a procedural form of negation.

Non-monotonic reasoning and logic programming are closely related. The importance of logic programming to the area of non-monotontic reasoning follows from the fact that, as observed by several researchers (see e.g. Reiter, [to appear]) the non-monotonic character of procedural negation used in logic programming often makes it possible to efficiently implement other non-monotonic formalisms in Prolog or in other logic programming languages. Logic programming can also be used to provide formalizations for special forms of non-monotonic reasoning. For example, Kowalski and Sergot's calculus of events (1986) uses Prolog's negation-asfailure operator to formalize the temporal persistence problem in AI.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×