Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T07:12:42.066Z Has data issue: false hasContentIssue false

11 - Complex functions

Published online by Cambridge University Press:  05 June 2012

R. J. Beerends
Affiliation:
Ministry of Defence, The Hague
H. G. ter Morsche
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
J. C. van den Berg
Affiliation:
Agricultural University, Wageningen, The Netherlands
E. M. van de Vrie
Affiliation:
Open Universiteit
Get access

Summary

INTRODUCTION

In this chapter we give a brief introduction to the theory of complex functions. In section 11.1 some well-known examples of complex functions are treated, in particular functions that play a role in the Laplace transform. In sections 11.2 and 11.3 continuity and differentiability of complex functions are examined. It will turn out that both the definition and the rules for continuity and differentiability are almost exactly the same as for real functions. Still, complex differentiability is surprisingly different from real differentiability. In the final section we will briefly go into this matter and treat the so-called Cauchy–Riemann equations. The more profound properties of complex functions cannot be treated in the context of this book.

LEARNING OBJECTIVES

After studying this chapter it is expected that you

  1. - know the definition of a complex function and know the standard functions zn, ez, sin z and cos z

  2. - can split complex functions into a real and an imaginary part

  3. - know the concepts of continuity and differentiability for complex functions

  4. - know the concept of analytic function

  5. - can determine the derivative of a complex function.

Definition and examples

The previous parts of this book dealt almost exclusively with functions that were defined on ℝ and could have values in ℂ. In this part we will be considering functions that are defined on ℂ (and can have values in ℂ).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×