Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-10T02:34:48.602Z Has data issue: false hasContentIssue false

14 - From classical to quantum statistical mechanics

Published online by Cambridge University Press:  14 January 2010

Giampiero Esposito
Affiliation:
INFN, Università di Napoli Federico II
Giuseppe Marmo
Affiliation:
INFN, Università di Napoli Federico II
George Sudarshan
Affiliation:
University of Texas, Austin
Get access

Summary

Classical statistical mechanics tries to derive the macroscopic properties of matter starting from the mechanical laws that rule the behaviour of single particles. To describe equilibrium states, only observables accounting for correlations among states are considered, and only systems consisting of a large number of particles are taken into account. The observables are described by continuous functions on phase space, and the states are represented by linear assignments of a number to each observable. Within the framework of the canonical ensemble, one deals with mechanical systems in thermal equilibrium with a thermal reservoir, and the equilibrium state is reached as a result of the interaction with the external world. The external world may be really external, or equally well, the unrecognized internal degrees of freedom, like in the calculation of viscosity or thermal conductivity. If really only the external world is the cause we may expect some surface dependence while an internal unrecognized degree of freedom would have a volume effect, unless the interactions are long range. The microcanonical ensemble is instead introduced to study isolated mechanical systems, and the equilibrium is viewed as a temporal average, rather than as a limit. Attention is then focused on partition functions, the theorem of equipartition of energy and an elementary theory of specific heats.

In the second part, the Planck derivation of the law of black-body radiation is analysed, presenting in chronological order the Kirchhoff theorem, the Stefan law, the Wien displacement law, the Rayleigh–Jeans formula and the Planck hypothesis. Further topics discussed are the Einstein and Debye quantum models for specific heats of solids. These topics prepare the ground for the introduction of quantum statistical mechanics.

The third part is, in fact, devoted to the analysis of identical particles in quantum mechanics.

Type
Chapter
Information
From Classical to Quantum Mechanics
An Introduction to the Formalism, Foundations and Applications
, pp. 479 - 525
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×