Skip to main content Accessibility help
×
Hostname: page-component-6d856f89d9-72csx Total loading time: 0 Render date: 2024-07-16T05:42:46.575Z Has data issue: false hasContentIssue false

15 - Deep Life

Published online by Cambridge University Press:  19 December 2020

Simon Mitton
Affiliation:
University of Cambridge
Get access

Summary

This chapter on deep carbon subsurface life opens at the 2018 Fall Meeting of the American Geophysical Union (AGU) in Washington, DC, where Deep Carbon Observatory (DCO) scientists showcased stupendous discoveries about deep life.1 Earth’s most pristine ecosystem, the deep biosphere, is home to members of all three domains of life: Archaea, Bacteria and Eukarya.2,3 Archaea and Bacteria are microbes, and the Eukarya include fungi, algae, unicellar organisms with organelles, as well as plants and animals. Unicellular organisms exist everywhere on Earth’s surface, from the thermophiles in the hot springs of Yellowstone National Park to the microbes living in your refrigerator or below the ice sheets of Siberia and Antarctica. The huge surprise that captivated the public following the press releases at AGU was the immense mass of carbon directly associated with subsurface bacterial life. Researchers estimated that this reservoir holds 15–23 billion tonnes of organic deep carbon.

Type
Chapter
Information
From Crust to Core
A Chronicle of Deep Carbon Science
, pp. 303 - 332
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Magnabosco, C. et al. The biomass and diversity of the continental subsurface. Nature Geoscience 11, 707717 (2018).CrossRefGoogle Scholar
Woese, C. R. and Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences 74, 50885090 (1977).CrossRefGoogle ScholarPubMed
Woese, C. R., Kandler, O. and Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences 87, 45764579 (1990).Google Scholar
von Humboldt, A. Florae Fribergensis specimen plantas cryptogramicus praesertim subterraneas exhibens (Berolini, H.A. Rottmann, 1793).CrossRefGoogle Scholar
Béchamp, A. Lettre de M. A. Béchamp à M. Dumas. Annales de chimie et de physique 13, 103111 (1868).Google Scholar
Béchamp, A. Du rôle de la craie dans les fermentations butyrique et lactique, et des organismes actuellement vivants qu’elle contient. Comptes Rendus 63, 451455 (1866).Google Scholar
Manchester, K. L. Antoine Béchamp: père de la biologie. Oui ou non. Endeavour 25, 6873 (2001).CrossRefGoogle Scholar
Onstott, T. C. Deep Life: The Hunt for the Hidden Biology of Earth, Mars, and Beyond. 1 (Princeton University Press, 2017).CrossRefGoogle Scholar
Buswell, A. M. and Larson, T. E. Methane in ground waters. Journal (American Water Works Association) 29, 19781982 (1937).CrossRefGoogle Scholar
Wickham, J. T. Glacial Geology of North-Central and Western Champaign County, Illinois (llinois Institute of Natural Resources, 1979).Google Scholar
Bastin, E. S. The presence of sulphate reducing bacteria in oil field waters. Science 63, 2124 (1926).Google Scholar
Russell, B. F., Phelps, T. J., Griffin, W. T. and Sargent, K. A. Procedures for sampling deep subsurface microbial communities in unconsolidated sediments. Groundwater Monitoring & Remediation 12, 96104 (1992).CrossRefGoogle Scholar
Ghiorse, W. and Wobber, F. J. Special issue on deep subsurface microbiology – introduction. Geomicrobiology Journal 7, 12 (1989).Google Scholar
Sargent, K. A. and Fliermans, C. B. Geology and hydrology of the deep subsurface microbiology sampling sites at the Savannah River Plant, South Carolina. Geomicrobiology Journal 7, 313 (1989).CrossRefGoogle Scholar
Monastersky, R. Deep dwellers: microbes thrive far below ground. Science News 151, 192193 (1997).Google Scholar
Gold, T. Taking the Back Off the Watch: A Personal Memoir. 381 (Springer Science & Business Media, 2012).Google Scholar
Takai, K. E. N., Moser, D. P., DeFlaun, M., Onstott, T. C. and Fredrickson, J. K. Archaeal diversity in waters from deep South African gold mines. Applied Environmental Microbiology 67, 57505760 (2001).CrossRefGoogle ScholarPubMed
Lollar, B. S. et al. Abiogenic methanogenesis in crystalline rocks. Geochimica et Cosmochimica Acta 57, 50875097 (1993).Google Scholar
Lollar, B. S., Westgate, T. D., Ward, J. A., Slater, G. F. and Lacrampe-Couloume, G. Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416, 522524 (2002).CrossRefGoogle Scholar
Lin, L. H. et al. Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479482 (2006).CrossRefGoogle ScholarPubMed
These bacteria use radiated water as food. Indiana University Press Release (2006).Google Scholar
Stevens, T. O. and McKinley, J. P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450455 (1995).CrossRefGoogle Scholar
Anderson, R. T., Chapelle, F. H. and Lovley, D. R. Evidence against hydrogen-based microbial ecosystems in basalt aquifers. Science 281, 976977 (1998).Google Scholar
Stevens, T. O. and McKinley, J. P. Abiotic controls on H2 production from basalt–water reactions and implications for aquifer biogeochemistry. Environmental Science & Technology 34, 826831 (2000).CrossRefGoogle Scholar
Fry, N. K., Fredrickson, J. K., Fishbain, S., Wagner, M. and Stahl, D. A. Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Applied Environmental Microbiology 63, 14981504 (1997).Google Scholar
Chapelle, F. H. et al. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312315 (2002).Google Scholar
Henrici, A. T. A direct microscopic technique. Journal of Bacteriology 25, 277287 (1933).Google Scholar
ZoBell, C. E. and Allen, E. C. The significance of marine bacteria in the fouling of submerged surface. Journal of Bacteriology 29, 239251 (1935).CrossRefGoogle Scholar
Report of the Scripps Institution of Oceanography (Scripps Institution, 1934).Google Scholar
Davey, M. E. and O'Toole, G. A. Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews 6, 847867 (2000).CrossRefGoogle Scholar
Revelle, R. Director’s Report on the Mid-Pacific Expedition of the University of California and the U. S. Navy Electronics Laboratory. UC San Diego Library, Special Collections. Scripps Institution of Oceanography Letters, Clippings and Ships’ Logs (University of California San Diego, 1950).Google Scholar
Morita, R. Y. and ZoBell, C. E. Occurrence of bacteria in pelagic sediments collected during the mid-Pacific expedition. Deep Sea Research 3, 6673 (1953).Google Scholar
ZoBell, C. E. and Morita, R. Y. Barophilic bacteria in some deep sea sediments. Journal of Bacteriology 73, 563568 (1957).CrossRefGoogle ScholarPubMed
McKenzie, D. P. and Morgan, W. J. Evolution of triple junctions. Nature 224, 125133 (1969).Google Scholar
Sclater, J. G. and Klitgord, K. D. A detailed heat flow, topographic, and magnetic survey across the Galápagos Spreading Centre. Journal of Geophysical Research 78, 69516975 (1973).CrossRefGoogle Scholar
Ballard, R. D. Notes on a major oceanographic find (marine animals near hot-water vents at ocean bottom). Oceanus 20, 3544 (1977).Google Scholar
Corliss, J. B. et al. Submarine thermal springs on the Galápagos Rift. Science 203, 10731083 (1979).Google Scholar
Perlman, D. Astounding undersea discoveries. San Francisco Chronicle (1977).Google Scholar
Grassle, J. F. Biologists’ first look at vent communities – Galápagos Rift. Oceanus 41, 15 (1979).Google Scholar
Jannasch, H. W. Small is powerful: recollections of a microbiologist and oceanographer. Annual Review of Microbiology 51, 145 (1997).CrossRefGoogle Scholar
Ballard, R. D. The history of Woods Hole’s Deep Submergence Program. In 50 Years of Ocean Discovery (National Academy Press, 2000), pp. 6784.Google Scholar
Rothschild, L. J. and Mancinelli, R. L. Life in extreme environments. Nature 409, 10921101 (2001).Google Scholar
Beal, H. Life in Extremely Hot Environments. Microbial Life Educational Resources. Available at: https://serc.carleton.edu/microbelife/extreme/extremeheat/index.html (accessed June 24, 2019).Google Scholar
Basgall, M. Descent to the Mid-Atlantic Ridge: Expedition Journals (Regents of the University of California, 2000).Google Scholar
Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Lost City Hydrothermal Field. Science 307, 14281434 (2005).CrossRefGoogle ScholarPubMed
Früh-Green, G. L. et al. 30,000 years of hydrothermal activity at the Lost City vent field. Science 301, 495498 (2003).CrossRefGoogle Scholar
Gold, T. The deep, hot biosphere. Proceedings of the National Academy of Sciences 89, 60456049 (1992).CrossRefGoogle ScholarPubMed
Parkes, R. J. et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371, 410413 (1994).CrossRefGoogle Scholar
Jørgensen, B. B. Shrinking majority of the deep biosphere. Proceedings of the National Academy of Sciences 109, 1597615977 (2012).Google Scholar
Whitman, W. B., Coleman, D. C. and Wiebe, W. J. Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences 95, 65786583 (1998).Google Scholar
Jørgensen, B. B. and D’Hondt, S. A starving majority deep beneath the seafloor. Science 314, 932934 (2006).Google Scholar
D’Hondt, S. et al. Distributions of microbial activities in deep subseafloor sediments. Science 306, 22162221 (2004).CrossRefGoogle ScholarPubMed
Colman, D. R., Proudel, S., Stamps, B. W., Boyd, E. S. and Spear, J. R. The deep, hot biosphere: twenty-five years of retrospection. Proceedings of the National Academy of Sciences 114, 68956903 (2017).CrossRefGoogle ScholarPubMed
D'Hondt, S. et al. Subseafloor sedimentary life in the South Pacific Gyre. Proceedings of the National Academy of Sciences 106, 1165111656 (2009).Google Scholar
Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. and D’Hondt, S. Global distribution of microbial abundance and biomass in seafloor sediment. Proceedings of the National Academy of Sciences 109, 1621316216 (2012).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Deep Life
  • Simon Mitton, University of Cambridge
  • Book: From Crust to Core
  • Online publication: 19 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781316997475.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Deep Life
  • Simon Mitton, University of Cambridge
  • Book: From Crust to Core
  • Online publication: 19 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781316997475.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Deep Life
  • Simon Mitton, University of Cambridge
  • Book: From Crust to Core
  • Online publication: 19 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781316997475.017
Available formats
×