Skip to main content Accessibility help
×
  • Cited by 2
Publisher:
Cambridge University Press
Online publication date:
February 2024
Print publication year:
2024
Online ISBN:
9781009217347

Book description

The Element reconstructs, analyses and compares different derivational routes to a grounding of the Arrow of Time in entropy. It also evaluates the link between entropy and visible disorder, and the related claim of an alignment of the Arrow of Time with a development from order to visible disorder. The Element identifies three different entropy-groundings for the Arrow of Time: (i) the Empirical Arrow of Time, (ii) the Universal Statistical Arrow of Time, and (iii) the Local Statistical Arrow of Time. The Element will also demonstrate that it is unlikely that high entropy states will always coincide with visible disorder. Therefore, it will dispute that there is a strong link between the Arrow of Time and visible disorder.

References

Albert, D. Z. (2000). Time and Chance. Cambridge, MA: Harvard University Press.
Aoki, I. (2012). Entropy Principle for the Development of Complex Biotic Systems: Organisms, Ecosystems, the Earth. London: Elsevier.
Bennett, C. H. (1973). Local Reversibility of Computation. IBM Journal of Research and Development 17, pp. 525–32.
Bennett, C. H. (1982). The Thermodynamics of Computation: A Review. International Journal of Theoretical Physics 21, pp. 334–7.
Boltzmann, L. (1872). Weitere Studien ueber Waermegleichgewicht unter Gasmolekuelen. Wiener Berichte 96, pp. 275370.
Boltzmann, L. (1896/1964). Lectures on Gas Theory. New York: Dover.
Brillouin, L. (1951). Maxwell’s Demon Cannot Operate: Information and Entropy I. Journal of Applied Physics 22, pp. 334–7.
Brown, H. R. & Uffink, J. (2001). The Origins of Time-Asymmetry in Thermodynamics: The Minus-First Law. Studies in History and Philosophy of Modern Physics 32, pp. 525–38.
Brown, H. R., Myrvold, W., & Uffink, J. (2009). Boltzmann’s H-Theorem, Its Discontents, and the Birth of Statistical Mechanics. Studies in History and Philosophy of Modern Physics 40, pp. 174–91.
Bub, J. (2001). Maxwell’s Demon and the Thermodynamics of Computation. Studies in History and Philosophy of Modern Physics 4, pp. 569–79.
Burgers, J. M. (1970). Entropy and Disorder. British Journal for the Philosophy of Science 5, pp. 70–1.
Callender, C. (1999). Reducing Thermodynamics to Statistical Mechanics: The Case of Entropy. The Journal of Philosophy 96, pp. 348–73.
Church, A. (1940). On the Concept of a Random Sequence. Bulletin of the American Mathematical Society 46, pp. 130–5.
Coffa, J. A. (1972). Randomness and Knowledge. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1972, pp. 103–15.
Correia, F. & Schnieder, B. (2012, Eds.). Metaphysical Grounding: Understanding the Structure of Reality. Cambridge: Cambridge University Press.
Copeland, B. J. & Proudfoot, D. (2005). Turing and the Computer. In Copeland, B. J. (Ed.), Alan Turing’s Automatic Computing Engine: The Master Codebreaker’s Struggle to Build the Modern Computer. Oxford: Oxford University Press, pp. 107–48.
DeMol, L. (2021). Turing Machines. In Zalta, E. (Ed.). The Stanford Encyclopedia of Philosophy (Winter 2021 Edition), https://plato.stanford.edu/archives/win2021/entries/turing-machine.
Denbigh, K. G. (1989). Note on Entropy, Disorder and Disorganisation. British Journal for the Philosophy of Science 40, pp. 323–32.
Eagle, A. (2005). Randomness Is Unpredictability. British Journal for the Philosophy of Science 56, pp. 749–90.
Earman, J. & Norton, J. D. (1998). Exorcist XIV: The Wrath of Maxwell’s Demon. Part I. From Maxwell to Szilard. Studies in History and Philosophy of Modern Physics 29, pp. 435–71.
Earman, J. & Norton, J. D. (1999). Exorcist XIV: The Wrath of Maxwell’s Demon. Part II. From Szilard to Landauer and Beyond. Studies in History and Philosophy of Modern Physics 30, pp. 140.
Ehrenfest, P. & Ehrenfest, T. (1907). Ueber Zwei Bekannte Einwende Gegen das Boltzmannsche H-Theorem. Physikalische Zeitung 8, pp. 311–14.
Ehrenfest, P. & Ehrenfest, T. (1909). Begriffliche Grundlagen der Statistischen Auffassung in der Mechanik. Leipzig: Teubner.
Frenkel, D. (1999). Entropy-Driven Phase Transitions. Physica A 263, pp. 2638.
Frigg, R., & Werndl, C. (2011). Entropy: A Guide for the Perplexed. In Beisbart, C., & Hartmann, S. (Ed.). Probabilities in Physics. Oxford: Oxford University Press.
Frisch, M. (2006). A Tale of Two Arrows. Studies in the History and Philosophy of Modern Physics 37, pp. 542–58.
Georgii, H.-O. & Zagrebnov, V. (2011). Entropy-Driven Phase Transitions in Multitype Lattice Gas Models. Journal of Statistical Physics 102, pp. 3567.
Gibbs, J. W. (1902/1960). Elementary Principles in Statistical Mechanics. New York: Dover.
Gobbo, D., Ballone, P., & Garabato, B. D. (2020). Coarse-Grained Model of Entropy-Driven Demixing. The Journal of Physical Chemistry B 124, pp. 9267–74.
Golosz, J. (2017). Weak Interactions: Asymmetry of Time or Asymmetry in Time? Journal for General Philosophy of Science 48, pp. 1933.
Goodman, N. (1955/1983). Fact, Fiction and Forecast. Cambridge, MA: Harvard University Press.
Haglund, J. (2017). Good Use of a Bad Metaphor: Entropy as Disorder. Science & Education 26, pp. 205–14.
Hempel, C. G. (1945). Studies in the Logic of Confirmation. Mind 54, pp. 126, 97121.
Hershey, D. (2009). Entropy Theory of Aging Systems: Humans, Corporations and the Universe. London: Imperial College Press.
Kalman, R. E. (1994). Randomness Reexamined. Modelling, Identification and Control 15, pp. 141–51.
Kolmogorov, A. N. & Uspenskii, V. A. (1988). Algorithms and Randomness. SIAM Theory and Probability of Applications 32, pp. 389412.
Landsman, K. (2020). Randomness? What Randomness? Foundations of Physics 50, pp. 61104.
Laplace, P.-S. (1826/1851). Philosophical Essay on Probabilities. New York: Dover.
Lavis, D. A. (2005). Boltzmann and Gibbs: An Attempted Reconciliation. Studies in History and Philosophy of Modern Physics 36, pp. 245–73.
Le Poidevin, R., & MacBeath, M. (1993, Eds.). The Philosophy of Time. Oxford: Oxford University Press.
Leff, H. S. (2007). Entropy, Its Language and Interpretation. Foundations of Physics 37, pp. 1744–66.
Lineweaver, C. H., Davies, P. C. W., & Ruse, M. (2013, Eds.). Complexity and the Arrow of Time. Cambridge: Cambridge University Press.
Loschmidt, J. (1876). Ueber den Zustand des Waermegleichgewichts eines Systemes von Koerpern mit Ruecksicht auf die Schwerkraft. Sitzungs-berichte der Akademie der Wissenschaften zu Wien, Mathematisch-Naturwissenschaftlichle Klasse 73, pp. 128–42.
Margenstern, M. (2000). Frontier between Decidability and Undecidability: A Survey. Theoretical Computer Science 231, pp. 217–51.
Martin-Loef, P. (1966). The Definition of a Random Sequence. Information and Control 9, pp. 602–19.
Maxwell, J. C. (1867). Letter to Tait, P. G., 11/12/1867. In Knott, C. G. (1911). Life and Scientific Work of Peter Guthrie Tait. Cambridge: Cambridge University Press, p. 214.
McTaggart, J. M. E. (1908). The Unreality of Time. Mind 17, pp. 457–74.
Mellor, D. H. (1998). Real Time II. London: Routledge.
North, J. (2011). Time in Thermodynamics. In Callender, C. (Ed.). The Oxford Handbook of Time. Oxford: Oxford University Press, pp. 146.
Norton, J. D. (2005). Eater of the Lotus: Landauer’s Principle and the Return of Maxwell’s Demon. Studies in History and Philosophy of Modern Physics 36, pp. 375411.
Norton, J. D. (2013). All Shook Up: Fluctuations, Maxwell’s Demon and the Thermodynamics of Computation. Entropy 2013, pp. 4432–83.
Poincaré, H. (1890). Sur le Probleme des Trois Corps et les Equations de la Dyanmiqué. Acta Mathematica 13, pp. 1270.
Popper, K. R. (1959/2002). The Logic of Scientific Discovery. London: Routledge.
Price, H. (1997). Time’s Arrow and Archimedes’ Point: New Directions for the Physics of Time. Oxford: Oxford University Press.
Prior, A. N. (1967). Past, Present, Future. Oxford: Oxford University Press.
Rickles, D. (2016). The Philosophy of Physics. Cambridge: Polity
Roberts, W. B. (2022). Reversing the Arrow of Time. Cambridge: Cambridge University Press.
Robertson, K. (2020). In Search of the Holy Grail: How to Reduce the Second Law of Thermodynamics. Forthcoming in The British Journal for the Philosophy of Science.
Sklar, L. (1993). Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics. Cambridge: Cambridge University Press.
Smoluchowski, M. (1912). Experimentell nachweisbare, der ueblichen Thermodynamik wiedersprechende Molekularphenomaene, Physikalische Zeitschrift 13, pp. 1069–80.
Smoluchowski, M. (1914). Gueltigkeitsgrenzen des Zweiten Hauptsatzes der Waermetheorie. In Vortraege ueber die Kinetische Theorie der Materie und der Elektrizitaet. Leibzig: Teuber.
Szilard, L. (1929/1972). On the Decrease of Entropy in a Thermodynamic System by Intervention of Intelligent Beings. In The Collected Works of Leo Szilard: Scientific Papers. Boston: Massachusetts Institute of Technology Press.
Turing, A. M. (1936). On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42, pp. 230–65.
Uffink, J. (2003). Irreversibility and the Second Law of Thermodynamics. In Greven, A., Keller, G., & Warnecke, G. (Eds.). Entropy. Princeton, NJ: Princeton University Press, pp. 121–46.
Van Rield, R. & van Gulick, R. (2019). Scientific Reduction. In Zalta, E. (Ed.). The Stanford Encyclopedia of Philosophy (Spring 2019 Edition), https://plato.stanford.edu/archives/spr2019/entries/scientific-reduction/.
Von Mises, R. (1957). Probability, Statistics and Truth. New York: Dover.
Wald, R. M. (2006). The Arrow of Time and the Initial Conditions of the Universe. Studies in History and Philosophy of Modern Physics 37, pp. 394–8.
Weinberg, S. (2008). Cosmology. Oxford: Oxford University Press.
Werndl, C. (2009a). Are Deterministic Descriptions and Indeterministic Descriptions Observationally Equivalent? Studies in History and Philosophy of Modern Physics 40, pp. 232–42.
Werndl, C. (2009b). What Are the New Implications of Chaos for Unpredictability? British Journal for the Philosophy of Science 60, pp. 195220.
Werndl, C. (2011). On the Observational Equivalence of Continuous-Time Deterministic and Indeterministic Descriptions. European Journal for Philosophy of Science 1, pp. 193225.
Zuchowski, L. C. (2012). Disentangling Complexity from Randomness and Chaos. Entropy 14, pp. 177212.
Zuchowski, L. C. (2017). A Philosophical Analysis of Chaos Theory. London. Palgrave Macmillan.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.