Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T04:07:17.118Z Has data issue: false hasContentIssue false

28B - Glomerulonephritis and Ischemia Reperfusion Injury

from PART VI - ANIMAL MODELS OF INFLAMMATION

Published online by Cambridge University Press:  05 April 2014

Jagdeep Obhrai
Affiliation:
University of Edinburgh Medical School
Jeremy S. Duffield
Affiliation:
Brigham and Women's Hospital
Charles N. Serhan
Affiliation:
Harvard Medical School
Peter A. Ward
Affiliation:
University of Michigan, Ann Arbor
Derek W. Gilroy
Affiliation:
University College London
Get access

Summary

INTRODUCTION

The kidney receives disproportionately high blood flow, Blood flows to each renal filtering unit, known as the nephron, through a specialized vascular bed called the glomerulus, which is by design uniquely leaky to solutes and plasma proteins (Figure 28B.1). Human glomeruli filter 144 liters of plasma filtrate a day from the bloodstream (Figure 28B.2). Disruption of the glomerulus interferes with blood flow to the downstream segments of the nephron due to the presence of a second capillary network deriving from the glomerular capillaries, frequently culminating in ischemia of the nephron, with consequent chronic inflammatory responses to ischemic injury of parenchymal cells. Furthermore, the unique regulation of vascular tone in the kidney paradoxically can worsen ischemic insults by triggering vasoconstriction. Physiologically, compromised blood flow in the medulla of the kidney is a prerequisite for effective reabsorption of ≈142 liters a day of filtered solute back into the blood compartment, but renders the high-energy-requiring components of the medulla especially susceptible to ischemic injury.

The glomerulus is particularly prone to inflammatory injury, perhaps due to the tendency of immune complexes and other abnormal proteins to become lodged in the specialized filtering basement membranes, which then trigger immune responses not seen in other regions of the vasculature. Rarely autoimmunity directed at unique proteins within the specialized glomerular filtering membranes also triggers stereotyped responses in the glomerulus, which we now recognize as immune cell and parenchymal cell responses to injury.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cameron, J.S. 1999. Lupus nephritis. J Am Soc Nephrol 10:413–424.Google ScholarPubMed
2. Shlomchik, M.J., Craft, J.E., and Mamula, M.J. 2001. From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol 1: 147–153.CrossRefGoogle Scholar
2a. Majeti, R., Xu, Z., Parslow, T.G., Olson, J.L., Daikh, D.I., Killeen, N., Weiss, A. 2000. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103:1059–1070.CrossRefGoogle ScholarPubMed
2b. Salvador, J.M., Hollander, M.C., Nguyen, A.T., Kopp, J.B., Barisoni, L., Moore, J.K., Ashwell, J.D., Fornace, A.J. 2002. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 16:499–508.CrossRefGoogle ScholarPubMed
2c. Hibbs, M.L., Tarlinton, D.M., Armes, J., Grail, D., Hodgson, G., Maglitto, R., Stacker, S.A., Dunn, A.R. 1995. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83:301–311.CrossRefGoogle ScholarPubMed
2d. Mackay, F., Woodcock, S.A., Lawton, P., Ambrose, C., Baetscher, M., Schneider, P., Tschopp, J., Browning, J.L. 1999. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190:1697–1710.CrossRefGoogle ScholarPubMed
2e. Higuchi, T., Aiba, Y., Nomura, T., Matsuda, J., Mochida, K., Suzuki, M., Kikutani, H., Honjo, T., Nishioka, K., Tsubata, T. 2002. Cutting edge: ectopic expression of CD40 ligand on B cells induces lupus-like autoimmune disease. J Immunol 168:9.CrossRefGoogle Scholar
2f. Zhu, J., Liu, X., Xie, C., Yan, M., Yu, Y., Sobel, E.S., Wakeland, E.K., Mohan, C. 2005. T cell hyperactivity in lupus as a consequence of hyperstimulatory antigen-presenting cells. J Clin Invest 115:1869–1878.CrossRefGoogle ScholarPubMed
2g. Bickerstaff, M.C., Botto, M., Hutchinson, W.L., Herbert, J., Tennent, G.A., Bybee, A., Mitchell, D.A., Cook, H.T., Butler, P.J., Walport, M.J., Pepys, M.B. 1999. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 5: 694–697.CrossRefGoogle ScholarPubMed
2h. Santiago-Raber, M.L., Baccala, R., Haraldsson, K.M., Choubey, D., Stewart, T.A., Kono, D.H. 2003. Theofilopoulos AN: Type-I interferon receptor deficiency reduces lupuslike disease in NZB mice. J Exp Med 197:777–788.CrossRefGoogle Scholar
2i. Peng, S.L., Moslehi, J., Craft, J. 1997. Roles of interferon-gamma and interleukin-4 in murine lupus. J Clin Invest 99:1936.CrossRefGoogle ScholarPubMed
3. Satoh, M., Kumar, A., Kanwar, Y.S., and Reeves, W.H. 1995. Anti-nuclear antibody production and immune-complex glomerulonephritis in BALB/c mice treated with pristane. Proc Natl Acad Sci USA 92:10934–10938.CrossRefGoogle ScholarPubMed
4. Mendlovic, S., Brocke, S., Shoenfeld, Y., et al. 1988. Induction of a systemic lupus erythematosus-like disease in mice by a common human anti-DNA idiotype. Proc Natl Acad Sci USA 85:2260–2264.CrossRefGoogle ScholarPubMed
5. Andrews, B.S., Eisenberg, R.A., Theofilopoulos, A.N., et al. 1978. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148:1198–1215.CrossRefGoogle ScholarPubMed
6. Borchers, A., Ansari, A.A., Hsu, T., Kono, D.H., and Gershwin, M.E. 2000. The pathogenesis of autoimmunity in New Zealand mice. Semin Arthritis Rheum 29:385–399.CrossRefGoogle ScholarPubMed
7. Mellors, R.C. 1966. Autoimmune disease in NZB/BL mice. 3. Induction of membranous glomerulonephritis in young mice by the transplantation of spleen cells from old mice. J Exp Med 123:1025–1034.CrossRefGoogle ScholarPubMed
8. Hurd, E.R., and Ziff, M. 1978. Association of interstitial nephritis with tubule cell injury and proliferation in NZB/NZW mice. Clin Exp Immunol 32:1–11.Google ScholarPubMed
9. Schiffer, L., Sinha, J., Wang, X., et al. 2003. Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J Immunol 171:489–497.CrossRefGoogle Scholar
10. Reilly, C.M., and Gilkeson, G.S. 2002. Use of genetic knockouts to modulate disease expression in a murine model of lupus, MRL/lpr mice. Immunol Res 25:143–153.CrossRefGoogle Scholar
11. Chan, O.T., Hannum, L.G., Haberman, A.M., Madaio, M.P., and Shlomchik, M.J. 1999. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 189:1639–1648.CrossRefGoogle ScholarPubMed
12. Murphy, E.D., and Roths, J.B. 1979. A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation. Arthritis Rheum 22:1188–1194.CrossRefGoogle Scholar
13. Wofsy, D., Kerger, C.E., and Seaman, W.E. 1984. Monocytosis in the BXSB model for systemic lupus erythematosus. J Exp Med 159:629–634.CrossRefGoogle ScholarPubMed
14. Mohan, C., Yu, Y., Morel, L., Yang, P., and Wakeland, E.K. 1999. Genetic dissection of Sle pathogenesis: Sle3 on murine chromosome 7 impacts T cell activation, differentiation, and cell death. J Immunol 162:6492–6502.Google Scholar
15. Subramanian, S., Yim, Y.S., Liu, K., Tus, K., Zhou, X.J., and Wakeland, E.K. 2005. Epistatic suppression of systemic lupus erythematosus: fine mapping of Sles1 to less than 1 mb. J Immunol 175:1062–1072.CrossRefGoogle ScholarPubMed
16. Vyse, T.J., Halterman, R.K., Rozzo, S.J., Izui, S., and Kotzin, B.L. 1999. Control of separate pathogenic autoantibody responses marks MHC gene contributions to murine lupus. Proc Natl Acad Sci USA 96:8098–8103.CrossRefGoogle ScholarPubMed
17. Zhang, D., Fujio, K., Jiang, Y., et al. 2004. Dissection of the role of MHC class II A and E genes in autoimmune susceptibility in murine lupus models with intragenic recombination. Proc Natl Acad Sci USA 101:13838–13843.CrossRefGoogle Scholar
18. Merino, R., Fossati, L., Lacour, M., Lemoine, R., Higaki, M., and Izui, S. 1992. H-2-linked control of the Yaa gene-induced acceleration of lupus-like autoimmune disease in BXSB mice. Eur J Immunol 22:295–299.CrossRefGoogle ScholarPubMed
19. Mohan, C., Morel, L., Yang, P., et al. 1999. Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. J Clin Invest 103:1685–1695.CrossRefGoogle ScholarPubMed
20. Sobel, E.S., Mohan, C., Morel, L., Schiffenbauer, J., and Wakeland, E.K. 1999. Genetic dissection of SLE pathogenesis: adoptive transfer of Sle1 mediates the loss of tolerance by bone marrow-derived B cells. J Immunol 162:2415–2421.Google ScholarPubMed
21. Morel, L., Blenman, K.R., Croker, B.P., and Wakeland, E.K. 2001. The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci USA 98: 1787–1792.CrossRefGoogle ScholarPubMed
22. Kumar, K.R., Li, L., Yan, M., et al. 2006. Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science 312:1665–1669.CrossRefGoogle ScholarPubMed
23. Giles, B.M., Tchepeleva, S.N., Kachinski, J.J., et al. 2007. Augmentation of NZB autoimmune phenotypes by the Sle1c murine lupus susceptibility interval. J Immunol 178:4667–4675.CrossRefGoogle ScholarPubMed
24. Namjou, B., Kilpatrick, J., and Harley, J.B. 2007. Genetics of clinical expression in SLE. Autoimmunity 40:602–612.CrossRefGoogle ScholarPubMed
25. Morel, L., Tian, X.H., Croker, B.P., and Wakeland, E.K. 1999. Epistatic modifiers of autoimmunity in a murine model of lupus nephritis. Immunity 11:131–139.CrossRefGoogle Scholar
26. Waters, S.T., McDuffie, M., Bagavant, H., et al. 2004. Breaking tolerance to double stranded DNA, nucleosome, and other nuclear antigens is not required for the pathogenesis of lupus glomerulonephritis. J Exp Med 199: 255–264.CrossRefGoogle Scholar
27. Haywood, M.E., Rogers, N.J., Rose, S.J., et al. 2004. Dissection of BXSB lupus phenotype using mice congenic for chromosome 1 demonstrates that separate intervals direct different aspects of disease. J Immunol 173:4277–4285.CrossRefGoogle Scholar
28. Prokunina, L., Castillejo-Lopez, C., Oberg, F., et al. 2002. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669.CrossRefGoogle ScholarPubMed
29. Santiago-Raber, M.L., Baccala, R., Haraldsson, K.M., et al. 2003. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J Exp Med 197: 777–788.CrossRefGoogle ScholarPubMed
30. Rozzo, S.J., Allard, J.D., Choubey, D., et al. 2001. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 15:435–443.CrossRefGoogle ScholarPubMed
31. Shlomchik, M.J., Madaio, M.P., Ni, D., Trounstein, M., and Huszar, D. 1994. The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med 180:1295–1306.CrossRefGoogle ScholarPubMed
32. Shlomchik, M.J. 2008. Sites and stages of autoreactive B cell activation and regulation. Immunity 28:18–28.CrossRefGoogle ScholarPubMed
33. Klinman, D.M. 1990. Polyclonal B cell activation in lupus-prone mice precedes and predicts the development of autoimmune disease. J Clin Invest 86:1249–1254.CrossRefGoogle ScholarPubMed
34. Madaio, M.P., Carlson, J., Cataldo, J., Ucci, A., Migliorini, P., and Pankewycz, O. 1987. Murine monoclonal anti-DNA antibodies bind directly to glomerular antigens and form immune deposits. J Immunol 138:2883–2889.Google ScholarPubMed
35. Ehrenstein, M.R., Katz, D.R., Griffiths, M.H., et al. 1995. Human IgG anti-DNA antibodies deposit in kidneys and induce proteinuria in SCID mice. Kidney Int 48:705–711.CrossRefGoogle ScholarPubMed
36. Clynes, R., Dumitru, C., and Ravetch, J.V. 1998. Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279:1052–1054.CrossRefGoogle ScholarPubMed
37. Yan, J., Harvey, B.P., Gee, R.J., Shlomchik, M.J., and Mamula, M.J. 2006. B cells drive early T cell autoimmunity in vivo prior to dendritic cell-mediated autoantigen presentation. J Immunol 177:4481–4487.CrossRefGoogle Scholar
38. Harris, D.P., Haynes, L., Sayles, P.C., et al. 2000. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 1:475–482.CrossRefGoogle ScholarPubMed
39. Yin, Z., Bahtiyar, G., Zhang, N., et al. 2002. IL-10 regulates murine lupus. J Immunol 169:2148–2155.CrossRefGoogle ScholarPubMed
40. Ishida, H., Muchamuel, T., Sakaguchi, S., Andrade, S., Menon, S., and Howard, M. 1994. Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J Exp Med 179:305–310.CrossRefGoogle ScholarPubMed
41. Wofsy, D., Ledbetter, J.A., Hendler, P.L., and Seaman, W.E. 1985. Treatment of murine lupus with monoclonal anti-T cell antibody. J Immunol 134:852–857.Google ScholarPubMed
42. Wofsy, D., and Seaman, W.E. 1985. Successful treatment of autoimmunity in NZB/NZW F1 mice with monoclonal antibody to L3T4. J Exp Med 161:378–391.CrossRefGoogle ScholarPubMed
43. Lawson, B.R., Koundouris, S.I., Barnhouse, M., et al. 2001. The role of alpha beta+ T cells and homeostatic T cell proliferation in Y-chromosome-associated murine lupus. J Immunol 167:2354–2360.CrossRefGoogle Scholar
44. Peng, S.L., Madaio, M.P., Hughes, D.P., et al. 1996. Murine lupus in the absence of alpha beta T cells. J Immunol 156:4041–4049.Google ScholarPubMed
45. Anderson, B.E., McNiff, J., Yan, J., et al. 2003. Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest 112:101–108.CrossRefGoogle Scholar
46. Bagavant, H., Deshmukh, U.S., Wang, H., Ly, T., and Fu, S.M. 2006. Role for nephritogenic T cells in lupus glomerulonephritis: progression to renal failure is accompanied by T cell activation and expansion in regional lymph nodes. J Immunol 177:8258–8265.CrossRefGoogle Scholar
47. Scalapino, K.J., Tang, Q., Bluestone, J.A., Bonyhadi, M.L., and Daikh, D.I. 2006. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J Immunol 177:1451–1459.CrossRefGoogle ScholarPubMed
48. Bagavant, H., and Tung, K.S. 2005. Failure of CD25+ T cells from lupus-prone mice to suppress lupus glomerulonephritis and sialoadenitis. J Immunol 175:944–950.CrossRefGoogle ScholarPubMed
49. Monk, C.R., Spachidou, M., Rovis, F., et al. 2005. MRL/Mp CD4+,CD25- T cells show reduced sensitivity to suppression by CD4+,CD25+ regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus erythematosus. Arthritis Rheum 52:1180–1184.CrossRefGoogle ScholarPubMed
50. Cuda, C.M., Wan, S., Sobel, E.S., Croker, B.P., and Morel, L. 2007. Murine lupus susceptibility locus Sle1a controls regulatory T cell number and function through multiple mechanisms. J Immunol 179:7439–7447.CrossRefGoogle ScholarPubMed
51. Zeng, D., Liu, Y., Sidobre, S., Kronenberg, M., and Strober, S. 2003. Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J Clin Invest 112:1211–1222.CrossRefGoogle ScholarPubMed
52. Yang, J.Q., Saxena, V., Xu, H., Van Kaer, L., Wang, C.R., and Singh, R.R. 2003. Repeated alpha-galactosylceramide administration results in expansion of NK T cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J Immunol 171:4439–4446.CrossRefGoogle Scholar
53. Peng, S.L., Madaio, M.P., Hayday, A.C., and Craft, J. 1996. Propagation and regulation of systemic autoimmunity by gammadelta T cells. J Immunol 157:5689–5698.Google ScholarPubMed
54. Bergtold, A., Gavhane, A., D'Agati, V., Madaio, M., and Clynes, R. 2006. FcR-bearing myeloid cells are responsible for triggering murine lupus nephritis. J Immunol 177:7287–7295.CrossRefGoogle ScholarPubMed
55. Schiffer, L., Bethunaickan, R., Ramanujam, M., et al. 2008. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J Immunol 180:1938–1947.CrossRefGoogle ScholarPubMed
56. Banchereau, J., and Pascual, V. 2006. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25:383–392.CrossRefGoogle ScholarPubMed
57. Graham, R.R., Kozyrev, S.V., Baechler, E.C., et al. 2006. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythemato-sus. Nat Genet 38:550–555.CrossRefGoogle Scholar
58. Bloom, R.D., Florquin, S., Singer, G.G., Brennan, D.C., and Kelley, V.R. 1993. Colony stimulating factor-1 in the induction of lupus nephritis. Kidney Int 43: 1000–1009.CrossRefGoogle ScholarPubMed
59. Banchereau, J., Pascual, V., and Palucka, A.K. 2004. Autoimmunity through cytokine-induced dendritic cell activation. Immunity 20:539–550.CrossRefGoogle ScholarPubMed
60. Groom, J.R., Fletcher, C.A., Walters, S.N., et al. 2007. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J Exp Med 204:1959–1971.CrossRefGoogle ScholarPubMed
61. Lin, Q., Xiu, Y., Jiang, Y., et al. 2006. Genetic dissection of the effects of stimulatory and inhibitory IgG Fc receptors on murine lupus. J Immunol 177:1646–1654.CrossRefGoogle ScholarPubMed
62. Bolland, S., and Ravetch, J.V. 2000. Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 13:277–285.CrossRefGoogle ScholarPubMed
63. Pisitkun, P., Deane, J.A., Difilippantonio, M.J., Tarasenko, T., Satterthwaite, A.B., and Bolland, S. 2006. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312:1669–1672.CrossRefGoogle ScholarPubMed
64. Christensen, S.R., Kashgarian, M., Alexopoulou, L., Flavell, R.A., Akira, S., and Shlomchik, M.J. 2005. Tolllike receptor 9 controls anti-DNA autoantibody production in murine lupus. J Exp Med 202:321–331.CrossRefGoogle Scholar
65. Lartigue, A., Courville, P., Auquit, I., et al. 2006. Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced murine lupus. J Immunol 177:1349–1354.CrossRefGoogle ScholarPubMed
66. Christensen, S.R., Shupe, J., Nickerson, K., Kashgarian, M., Flavell, R.A., and Shlomchik, M.J. 2006. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25:417–428.CrossRefGoogle Scholar
67. Viglianti, G.A., Lau, C.M., Hanley, T.M., Miko, B.A., Shlomchik, M.J., and Marshak-Rothstein, A. 2003. Activation of autoreactive B cells by CpG dsDNA. Immunity 19:837–847.CrossRefGoogle ScholarPubMed
68. Lau, C.M., Broughton, C., Tabor, A.S., et al. 2005. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 202:1171–1177.CrossRefGoogle ScholarPubMed
69. Walport, M.J. 2001. Complement. Second of two parts. N Engl J Med 344:1140–1144.Google ScholarPubMed
70. Paul, E., Pozdnyakova, O.O., Mitchell, E., and Carroll, M.C. 2002. Anti-DNA autoreactivity in C4-deficient mice. Eur J Immunol 32:2672–2679.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
71. Botto, M., Dell'Agnola, C., Bygrave, A.E., et al. 1998. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56–59.Google ScholarPubMed
72. Wang, Y., Hu, Q., Madri, J.A., Rollins, S.A., Chodera, A., and Matis, L.A. 1996. Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc Natl Acad Sci USA 93:8563–8568.Google ScholarPubMed
73. Carroll, M.C. 2004. A protective role for innate immunity in systemic lupus erythematosus. Nat Rev Immunol 4:825–831.CrossRefGoogle ScholarPubMed
74. Braun, D., Geraldes, P., and Demengeot, J. 2003. Type I Interferon controls the onset and severity of autoimmune manifestations in lpr mice. J Autoimmun 20: 15–25.CrossRefGoogle ScholarPubMed
75. Mathian, A., Weinberg, A., Gallegos, M., Banchereau, J., and Koutouzov, S. 2005. IFN-alpha induces early lethal lupus in preautoimmune (New Zealand Black x New Zealand White) F1 but not in BALB/c mice. J Immunol 174:2499–2506.CrossRefGoogle Scholar
76. Balomenos, D., Rumold, R., and Theofilopoulos, A.N. 1998. I nterferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J Clin Invest 101:364–371.CrossRefGoogle ScholarPubMed
77. Smadel, J.E., and Swift, H.F. 1939. The effect of prolonged administration of sulfanilamide on rats with nephrotoxic nephritis. J Clin Invest 18:757–762.CrossRefGoogle ScholarPubMed
78. Cunningham, M.A., Kitching, A.R., Tipping, P.G., and Holdsworth, S.R. 2004. Fibrin independent proinflammatory effects of tissue factor in experimental crescentic glomerulonephritis. Kidney Int 66:647–654.CrossRefGoogle ScholarPubMed
79. Kitching, A.R., Kong, Y.Z., Huang, X.R., et al. 2003. Plasminogen activator inhibitor-1 is a significant determinant of renal injury in experimental crescentic glomerulonephritis. J Am Soc Nephrol 14:1487–1495.CrossRefGoogle ScholarPubMed
80. Kitching, A.R., Holdsworth, S.R., Ploplis, V.A., et al. 1997. Plasminogen and plasminogen activators protect against renal injury in crescentic glomerulonephritis. J Exp Med 185:963–968.CrossRefGoogle ScholarPubMed
81. Kitching, A.R., Holdsworth, S.R., and Tipping, P.G. 1999. IFN-gamma mediates crescent formation and cellmediated immune injury in murine glomerulonephritis. J Am Soc Nephrol 10:752–759.Google Scholar
82. Ring, G.H., Dai, Z., Saleem, S., Baddoura, F.K., and Lakkis, F.G. 1999. Increased susceptibility to immuno-logically mediated glomerulonephritis in IFN-gamma-deficient mice. J Immunol 163:2243–2248.Google Scholar
83. Mulligan, M.S., Johnson, K.J., Todd, R.F. 3rd et al. 1993. Requirements for leukocyte adhesion molecules in nephrotoxic nephritis. J Clin Invest 91:577–587.CrossRefGoogle ScholarPubMed
84. Wu, X., Pippin, J., and Lefkowith, J.B. 1993. Attenuation of immune-mediated glomerulonephritis with an anti-CD11b monoclonal antibody. Am J Physiol 264:F715–721.Google ScholarPubMed
85. Wu, X., Pippin, J., and Lefkowith, J.B. 1993. Platelets and neutrophils are critical to the enhanced glomerular arachidonate metabolism in acute nephrotoxic nephritis in rats. J Clin Invest 91:766–773.CrossRefGoogle ScholarPubMed
86. Hughes, J., Nangaku, M., Alpers, C.E., Shankland, S.J., Couser, W.G., and Johnson, R.J. 2000. C5b-9 membrane attack complex mediates endothelial cell apoptosis in experimental glomerulonephritis. Am J Physiol Renal Physiol 278:F747–F757.CrossRefGoogle ScholarPubMed
87. Savige, J.A., Dash, A.C., and Rees, A.J. 1989. Exaggerated glomerular albuminuria after cobra venom factor in anti-glomerular basement membrane disease. Nephron 52:29–35.CrossRefGoogle ScholarPubMed
88. Hebert, M.J., Takano, T., Papayianni, A., et al. 1998. Acute nephrotoxic serum nephritis in complement knockout mice: relative roles of the classical and alternate pathways in neutrophil recruitment and proteinuria. Nephrol Dial Transplant 13:2799–2803.CrossRefGoogle ScholarPubMed
89. Anders, H.J., Vielhauer, V., Kretzler, M., et al. 2001. Chemokine and chemokine receptor expression during initiation and resolution of immune complex glomerulonephritis. J Am Soc Nephrol 12:919–931.Google ScholarPubMed
90. Nangaku, M., Alpers, C.E., Pippin, J., et al. 1997. Renal microvascular injury induced by antibody to glomerular endothelial cells is mediated by C5b-9. Kidney Int 52:1570–1578.CrossRefGoogle ScholarPubMed
91. Iruela-Arispe, L., Gordon, K., Hugo, C., et al. 1995. Participation of glomerular endothelial cells in the capillary repair of glomerulonephritis. Am J Pathol 147:1715–1727.Google ScholarPubMed
92. Holdsworth, S.R., and Bellomo, R. 1984. Differential effects of steroids on leukocyte-mediated glomerulonephritis in the rabbit. Kidney Int 26:162–169.CrossRefGoogle ScholarPubMed
93. Karkar, A.M., Tam, F.W., Proudfoot, A.E., Meager, A., and Rees, A.J. 1993. Modulation of antibody-mediated glomerular injury in vivo by interleukin-6. Kidney Int 44:967–973.CrossRefGoogle ScholarPubMed
94. Tipping, P.G., Worthington, L.A., and Holdsworth, S.R. 1987. Quantitation and characterization of glomerular procoagulant activity in experimental glomerulonephritis. Lab Invest 56:155–159.Google ScholarPubMed
95. Duffield, J.S., Erwig, L.P., Wei, X., Liew, F.Y., Rees, A.J., and Savill, J.S. 2000. Activated macrophages direct apoptosis and suppress mitosis of mesangial cells. J Immunol 164:2110–2119.CrossRefGoogle ScholarPubMed
96. Rodgers, K.D., Rao, V., Meehan, D.T., et al. 2003. Monocytes may promote myofibroblast accumulation and apoptosis in Alport's renal fibrosis. Kidney Int 63:1338–1355.Google Scholar
97. Neugarten, J., Feith, G.W., Assmann, K.J., Shan, Z., Stanley, E.R., and Schlondorff, D. 1995. Role of macrophages and colony-stimulating factor-1 in murine antiglomerular basement membrane glomerulonephritis. J Am Soc Nephrol 5:1903–1909.Google ScholarPubMed
98. Huang, X.R., Holdsworth, S.R., and Tipping, P.G. 1997. Th2 responses induce humorally mediated injury in experimental anti-glomerular basement membrane glomerulonephritis. J Am Soc Nephrol 8:1101–1108.Google ScholarPubMed
99. Huang, X.R., Kitching, A.R., Tipping, P.G., and Holdsworth, S.R. 2000. Interleukin-10 inhibits macrophage-induced glomerular injury. J Am Soc Nephrol 11:262–269.Google ScholarPubMed
100. Kitching, A.R., Tipping, P.G., and Holdsworth, S.R. 1999. IL-12 directs severe renal injury, crescent formation and Th1 responses in murine glomerulonephritis. Eur J Immunol 29:1–10.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
101. Kitching, A.R., Tipping, P.G., Mutch, D.A., Huang, X.R., and Holdsworth, S.R. 1998. Interleukin-4 deficiency enhances Th1 responses and crescentic glomeru-lonephritis in mice. Kidney Int 53:112–118.CrossRefGoogle Scholar
102. Segerer, S., Banas, B., Wornle, M., et al. 2004. CXCR3 is involved in tubulointerstitial injury in human glomerulonephritis. Am J Pathol 164:635–649.CrossRefGoogle ScholarPubMed
103. Aitman, T.J., Dong, R., Vyse, T.J., et al. 2006. Copy number polymorphism in Fcgr3 predisposes to glomerulo-nephritis in rats and humans. Nature 439:851–855.CrossRefGoogle Scholar
104. Wakayama, H., Hasegawa, Y., Kawabe, T., et al. 2000. Abolition of anti-glomerular basement membrane antibody-mediated glomerulonephritis in FcRgamma-deficient mice. Eur J Immunol 30:1182–1190.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
105. Suzuki, Y., Shirato, I., Okumura, K., et al. 1998. Distinct contribution of Fc receptors and angiotensin II-dependent pathways in anti-GBM glomerulonephritis. Kidney Int 54:1166–1174.CrossRefGoogle ScholarPubMed
106. Park, S.Y., Ueda, S., Ohno, H., et al. 1998. Resistance of Fc receptor- deficient mice to fatal glomerulonephritis. J Clin Invest 102:1229–1238.CrossRefGoogle ScholarPubMed
107. Rosenkranz, A.R., Knight, S., Sethi, S., Alexander, S.I., Cotran, R.S., and Mayadas, T.N. 2000. Regulatory interactions of alphabeta and gammadelta T cells in glomerulonephritis. Kidney Int 58:1055–1066.CrossRefGoogle ScholarPubMed
108. Tipping, P.G., and Holdsworth, S.R. 2006. T cells in crescentic glomerulonephritis. J Am Soc Nephrol 17:1253–1263.CrossRefGoogle ScholarPubMed
109. Li, S., Holdsworth, S.R., and Tipping, P.G. 2000. B7.1 and B7.2 co-stimulatory molecules regulate crescentic glomerulonephritis. Eur J Immunol 30:1394–1401.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
110. Huang, X.R., Tipping, P.G., Apostolopoulos, J., et al. 1997. Mechanisms of T cell-induced glomerular injury in anti-glomerular basement membrane (GBM) glomerulonephritis in rats. Clin Exp Immunol 109:134–142.CrossRefGoogle Scholar
111. Kuroda, T., Kawasaki, K., Oite, T., Arakawa, M., and Shimizu, F. 1994. Nephrotoxic serum nephritis in nude rats: the role of cell-mediated immunity. Nephron 68:360–365.CrossRefGoogle ScholarPubMed
112. Kusuyama, Y., Nishihara, T., and Saito, K. 1981. Nephrotoxic nephritis in nude mice. Clin Exp Immunol 46:20–26.Google ScholarPubMed
113. Huang, X.R., Holdsworth, S.R., and Tipping, P.G. 1994. Evidence for delayed-type hypersensitivity mechanisms in glomerular crescent formation. Kidney Int 46:69–78.CrossRefGoogle ScholarPubMed
114. Tam, F.W., Karkar, A.M., Smith, J., et al. 1996. Differential expression of macrophage inflammatory protein-2 and monocyte chemoattractant protein-1 in experimental glomerulonephritis. Kidney Int 49: 715–721.CrossRefGoogle ScholarPubMed
115. Tang, T., Rosenkranz, A., Assmann, K.J., et al. 1997. A role for Mac-1 (CDIIb/CD18) in immune complex-stimulated neutrophil function in vivo: Mac-1 deficiency abrogates sustained Fcgamma receptor-dependent neutrophil adhesion and complement-dependent proteinuria in acute glomerulonephritis. J Exp Med 186:1853–1863.CrossRefGoogle ScholarPubMed
116. Wilson, H.M., Chettibi, S., Jobin, C., Walbaum, D., Rees, A.J., and Kluth, D.C. 2005. Inhibition of macrophage nuclear factor-kappaB leads to a dominant anti-inflammatory phenotype that attenuates glomerular inflammation in vivo. Am J Pathol 167:27–37.CrossRefGoogle ScholarPubMed
117. Duffield, J.S., Tipping, P.G., Kipari, T., et al. 2005. Conditional ablation of macrophages halts progression of crescentic glomerulonephritis. Am J Pathol 167:1207–1219.CrossRefGoogle ScholarPubMed
118. Erwig, L.P., Kluth, D.C., and Rees, A.J. 2003. Macrophage heterogeneity in renal inflammation. Nephrol Dial Transplant 18:1962–1965.CrossRefGoogle ScholarPubMed
119. Segerer, S., Cui, Y., Hudkins, K.L., et al. 2000. Expression of the chemokine monocyte chemoattractant protein-1 and its receptor chemokine receptor 2 in human crescentic glomerulonephritis. J Am Soc Nephrol 11:2231–2242.Google ScholarPubMed
120. Erwig, L.P., and Rees, A.J. 1999. Macrophage activation and programming and its role for macrophage function in glomerular inflammation. Kidney Blood Press Res 22:21–25.CrossRefGoogle ScholarPubMed
121. Karkar, A.M., Smith, J., Tam, F.W., Pusey, C.D., and Rees, A.J. 1997. Abrogation of glomerular injury in nephrotoxic nephritis by continuous infusion of interleukin-6. Kidney Int 52:1313–1320.CrossRefGoogle ScholarPubMed
122. Tipping, P.G., and Holdsworth, S.R. 1988. Isolation and characterization of glomerular macrophages in experimental glomerulonephritis. Immunol Cell Biol 66 (Pt 2):147–151.CrossRefGoogle ScholarPubMed
123. Holdsworth, S.R., Tipping, P.G., Hooke, D.H., and Atkins, R.C. 1985. Role of the macrophage in immunologically induced glomerulonephritis. Contrib Nephrol 45:105–114.Google ScholarPubMed
124. Holdsworth, S.R., and Tipping, P.G. 1985. Macrophage-induced glomerular fibrin deposition in experimental glomerulonephritis in the rabbit. J Clin Invest 76:1367–1374.CrossRefGoogle ScholarPubMed
125. Kaneko, Y., Nimmerjahn, F., Madaio, M.P., and Ravetch, J.V. 2006. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J Exp Med 203:789–797.CrossRefGoogle ScholarPubMed
126. Coxon, A., Cullere, X., Knight, S., et al. 2001. Fc gamma RIII mediates neutrophil recruitment to immune complexes. a mechanism for neutrophil accumulation in immunemediated inflammation. Immunity 14:693–704.CrossRefGoogle Scholar
127. Pruchno, C.J., Burns, M.M., Schulze, M., et al. 1991. Urinary excretion of the C5b-9 membrane attack complex of complement is a marker of immune disease activity in autologous immune complex nephritis. Am J Pathol 138:203–211.Google ScholarPubMed
128. Van Zyl Smit, R., Rees, A.J., and Peters, D.K. 1983. Factors affecting severity of injury during nephrotoxic nephritis in rabbits. Clin Exp Immunol 54:366–372.Google ScholarPubMed
129. Brown, H.J., Sacks, S.H., and Robson, M.G. 2006. Tolllike receptor 2 agonists exacerbate accelerated nephrotoxic nephritis. J Am Soc Nephrol 17:1931–1939.CrossRefGoogle Scholar
130. Obhrai, J., and Goldstein, D.R. 2006. The role of toll-like receptors in solid organ transplantation. Transplantation 81:497–502.CrossRefGoogle ScholarPubMed
131. Shishido, T., Nozaki, N., Yamaguchi, S., et al. 2003. Tolllike receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation 108:2905–2910.CrossRefGoogle Scholar
132. Gerber, J.S., and Mosser, D.M. 2001. Reversing lipopoly-saccharide toxicity by ligating the macrophage Fc gamma receptors. J Immunol 166:6861–6868.CrossRefGoogle Scholar
133. Topham, P.S., Csizmadia, V., Soler, D., et al. 1999. Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. J Clin Invest 104:1549–1557.CrossRefGoogle ScholarPubMed
134. Tesch, G.H., Schwarting, A., Kinoshita, K., Lan, H.Y., Rollins, B.J., and Kelley, V.R. 1999. Monocyte chemoat-tractant protein-1 promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis. J Clin Invest 103:73–80.CrossRefGoogle Scholar
135. Anders, H.J., Frink, M., Linde, Y., et al. 2003. CC chemokine ligand 5/RANTES chemokine antagonists aggravate glomerulonephritis despite reduction of glomerular leukocyte infiltration. J Immunol 170:5658–5666.CrossRefGoogle ScholarPubMed
136. Kitching, A.R., Turner, A.L., Wilson, G.R., Edgtton, K.L., Tipping, P.G., and Holdsworth, S.R. 2004. Endogenous IL-13 limits humoral responses and injury in experimental glomerulonephritis but does not regulate Th1 cell-mediated crescentic glomerulonephritis. J Am Soc Nephrol 15:2373–2382.CrossRefGoogle Scholar
137. Kitching, A.R., Katerelos, M., Mudge, S.J., Tipping, P.G., Power, D.A., and Holdsworth, S.R. 2002. Interleukin-10 inhibits experimental mesangial proliferative glomerulonephritis. Clin Exp Immunol 128:36–43.CrossRefGoogle ScholarPubMed
138. Kitching, A.R., Tipping, P.G., Huang, X.R., Mutch, D.A., and Holdsworth, S.R. 1997. Interleukin-4 and interleukin-10 attenuate established crescentic glomerulonephritis in mice. Kidney Int 52:52–59.CrossRefGoogle ScholarPubMed
139. Tam, F.W., Smith, J., Karkar, A.M., Pusey, C.D., and Rees, A.J. 1997. Interleukin-4 ameliorates experimental glomerulonephritis and up-regulates glomerular gene expression of IL-1 decoy receptor. Kidney Int 52:1224–1231.CrossRefGoogle ScholarPubMed
140. Eitner, F., Westerhuis, R., Burg, M., et al. 1997. Role of interleukin-6 in mediating mesangial cell proliferation and matrix production in vivo. Kidney Int 51:69–78.CrossRefGoogle ScholarPubMed
141. Schwarting, A., Tesch, G., Kinoshita, K., Maron, R., Weiner, H.L., and Kelley, V.R. 1999. IL-12 drives IFN-gamma-dependent autoimmune kidney disease in MRL-Fas(lpr) mice. J Immunol 163:6884–6891.Google ScholarPubMed
142. Sugiyama, M., Kinoshita, K., Kishimoto, K., et al. 2008. Deletion of IL-18 receptor ameliorates renal injury in bovine serum albumin-induced glomerulonephritis. Clin Immunol 128:103–108.CrossRefGoogle ScholarPubMed
143. Reynolds, J., Mavromatidis, K., Cashman, S.J., Evans, D.J., and Pusey, C.D. 1998. Experimental autoimmune glomerulonephritis (EAG) induced by homologous and heterologous glomerular basement membrane in two substrains of Wistar-Kyoto rat. Nephrol Dial Transplant 13:44–52.CrossRefGoogle ScholarPubMed
144. Kalluri, R., Meyers, K., Mogyorosi, A., Madaio, M.P., and Neilson, E.G. 1997. Goodpasture syndrome involving overlap with Wegener's granulomatosis and anti-glomerular basement membrane disease. J Am Soc Nephrol 8:1795–1800.Google ScholarPubMed
145. Hopfer, H., Maron, R., Butzmann, U., Helmchen, U., Weiner, H.L., and Kalluri, R. 2003. The importance of cell-mediated immunity in the course and severity of autoimmune anti-glomerular basement membrane disease in mice. FASEB J 17:860–868.CrossRefGoogle ScholarPubMed
146. Kalluri, R., Danoff, T.M., Okada, H., and Neilson, E.G. 1997. Susceptibility to anti-glomerular basement membrane disease and Goodpasture syndrome is linked to MHC class II genes and the emergence of T cell-mediated immunity in mice. J Clin Invest 100:2263–2275.CrossRefGoogle Scholar
147. Reynolds, J., Albouainain, A., Duda, M.A., Evans, D.J., and Pusey, C.D. 2006. Strain susceptibility to active induction and passive transfer of experimental autoimmune glomerulonephritis in the rat. Nephrol Dial Transplant 21:3398–3408.CrossRefGoogle ScholarPubMed
148. Stevenson, A., Yaqoob, M., Mason, H., Pai, P., and Bell, G.M. 1995. Biochemical markers of basement membrane disturbances and occupational exposure to hydrocarbons and mixed solvents. QJM 88:23–28.Google ScholarPubMed
149. Reynolds, J., Norgan, V.A., Bhambra, U., Smith, J., Cook, H.T., and Pusey, C.D. 2002. Anti-CD8 monoclonal antibody therapy is effective in the prevention and treatment of experimental autoimmune glomerulonephritis. J Am Soc Nephrol 13:359–369.Google ScholarPubMed
150. Fisher, M., Pusey, C.D., Vaughan, R.W., and Rees, A.J. 1997. Susceptibility to anti-glomerular basement membrane disease is strongly associated with HLA-DRB1 genes. Kidney Int 51:222–229.CrossRefGoogle ScholarPubMed
151. Phelps, R.G., and Rees, A.J. 1999. The HLA complex in Goodpasture's disease: a model for analyzing susceptibility to autoimmunity. Kidney Int 56:1638–1653.CrossRefGoogle ScholarPubMed
152. Rees, A.J., Peters, D.K., Compston, D.A., and Batchelor, J.R. 1978. Strong association between HLA-DRW2 and antibody-mediated Goodpasture's syndrome. Lancet 1:966–968.Google ScholarPubMed
153. Reynolds, J., Cook, P.R., Ryan, J.J., et al. 2002. Segregation of experimental autoimmune glomerulonephritis as a complex genetic trait and exclusion of Col4a3 as a candidate gene. Exp Nephrol 10:402–407.CrossRefGoogle ScholarPubMed
154. Reynolds, J., Khan, S.B., Allen, A.R., Benjamin, C.D., and Pusey, C.D. 2004. Blockade of the CD154-CD40 costimulatory pathway prevents the development of experimental autoimmune glomerulonephritis. Kidney Int 66:1444–1452.CrossRefGoogle ScholarPubMed
155. Reynolds, J., Tam, F.W., Chandraker, A., et al. 2000. CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. J Clin Invest 105:643–651.CrossRefGoogle ScholarPubMed
156. Nakamura, A., Yuasa, T., Ujike, A., et al. 2000. Fcgamma receptor IIB-deficient mice develop Goodpasture's syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease. J Exp Med 191:899–906.CrossRefGoogle ScholarPubMed
157. Johnson, R.J., Iida, H., Alpers, C.E., et al. 1991. Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alphasmooth muscle actin is a marker of mesangial cell proliferation. J Clin Invest 87:847–858.CrossRefGoogle Scholar
158. Brandt, J., Pippin, J., Schulze, M., et al. 1996. Role of the complement membrane attack complex (C5b-9) in mediating experimental mesangioproliferative glomerulonephritis. Kidney Int 49:335–343.CrossRefGoogle ScholarPubMed
159. Aben, J.A., Hoogervorst, D.A., Paul, L.C., et al. 2003. Genes expressed by the kidney, but not by bone marrow-derived cells, underlie the genetic predisposition to progressive glomerulosclerosis after mesangial injury. J Am Soc Nephrol 14:2264–2270.CrossRefGoogle Scholar
160. Floege, J., Johnson, R.J., Alpers, C.E., et al. 1993. Visceral glomerular epithelial cells can proliferate in vivo and synthesize platelet-derived growth factor B-chain. Am J Pathol 142:637–650.Google ScholarPubMed
161. Floege, J., Eng, E., Lindner, V., et al. 1992. Rat glomerular mesangial cells synthesize basic fibroblast growth factor. Release, upregulated synthesis, and mitogenicity in mesangial proliferative glomerulonephritis. J Clin Invest 90:2362–2369.CrossRefGoogle ScholarPubMed
162. Yoshimura, A., Gordon, K., Alpers, C.E., et al. 1991. Demonstration of PDGF B-chain mRNA in glomeruli in mesangial proliferative nephritis by in situ hybridization. Kidney Int 40:470–476.CrossRefGoogle ScholarPubMed
163. Floege, J., Johnson, R.J., Gordon, K., et al. 1991. Increased synthesis of extracellular matrix in mesangial proliferative nephritis. Kidney Int 40:477–488.CrossRefGoogle ScholarPubMed
164. Yo, Y., Braun, M.C., Barisoni, L., et al. 2003. Anti-mouse mesangial cell serum induces acute glomerulonephropathy in mice. Nephron Exp Nephrol 93:e92–106.Google ScholarPubMed
165. Floege, J., Eng, E., Young, B.A., et al. 1993. Infusion of platelet-derived growth factor or basic fibroblast growth factor induces selective glomerular mesangial cell proliferation and matrix accumulation in rats. J Clin Invest 92:2952–2962.CrossRefGoogle ScholarPubMed
166. Baker, A.J., Mooney, A., Hughes, J., Lombardi, D., Johnson, R.J., and Savill, J. 1994. Mesangial cell apoptosis: the major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. J Clin Invest 94:2105–2116.CrossRefGoogle ScholarPubMed
167. Westerhuis, R., van Straaten, S.C., van Dixhoorn, M.G., et al. 2000. Distinctive roles of neutrophils and monocytes in anti-thy-1 nephritis. Am J Pathol 156:303–310.CrossRefGoogle ScholarPubMed
168. Chen, Y.M., Hu-Tsai, M.I., Lin, S.L., Tsai, T.J., and Hsieh, B.S. 2003. Expression of CX3CL1/fractalkine by mesangial cells in vitro and in acute anti-Thy1 glomerulonephritis in rats. Nephrol Dial Transplant 18:2505–2514.CrossRefGoogle ScholarPubMed
169. Duffield, J.S. 2003. The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond) 104:27–38.CrossRefGoogle ScholarPubMed
170. Goldschmeding, R., van der Schoot, C.E., ten Bokkel Huinink, D., et al. 1989. Wegener's granulomatosis autoantibodies identify a novel diisopropylfluorophosphate-binding protein in the lysosomes of normal human neutrophils. J Clin Invest 84:1577–1587.CrossRefGoogle ScholarPubMed
171. Jennette, J.C., Wilkman, A.S., and Falk, R.J. 1989. Anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and vasculitis. Am J Pathol 135:921–930.Google ScholarPubMed
172. Xiao, H., Heeringa, P., Hu, P., et al. 2002. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest 110:955–963.CrossRefGoogle ScholarPubMed
173. Ruth, A.J., Kitching, A.R., Kwan, R.Y., et al. 2006. Antineutrophil cytoplasmic antibodies and effector CD4+ cells play nonredundant roles in anti-myeloperoxidase crescentic glomerulonephritis. J Am Soc Nephrol 17:1940–1949.CrossRefGoogle ScholarPubMed
174. Mauiyyedi, S., Pelle, P.D., Saidman, S., et al. 2001. Chronic humoral rejection: identification of antibody-mediated chronic renal allograft rejection by C4d deposits in peri-tubular capillaries. J Am Soc Nephrol 12:574–582.Google Scholar
175. Collins, A.B., Schneeberger, E.E., Pascual, M.A., et al. 1999. Complement activation in acute humoral renal allograft rejection: diagnostic significance of C4d deposits in peritubular capillaries. J Am Soc Nephrol 10:2208–2214.Google ScholarPubMed
176. Brouwer, E., Huitema, M.G., Klok, P.A., et al. 1993. Antimyeloperoxidase-associated proliferative glomeru-lonephritis: an animal model. J Exp Med 177:905–914.CrossRefGoogle Scholar
177. Yang, J.J., Jennette, J.C., and Falk, R.J. 1994. Immune complex glomerulonephritis is induced in rats immunized with heterologous myeloperoxidase. Clin Exp Immunol 97:466–473.Google ScholarPubMed
178. Ben-Smith, A., Dove, S.K., Martin, A., Wakelam, M.J., and Savage, C.O. 2001. Antineutrophil cytoplasm autoantibodies from patients with systemic vasculitis activate neutrophils through distinct signaling cascades: comparison with conventional Fcgamma receptor ligation. Blood 98:1448–1455.CrossRefGoogle ScholarPubMed
179. Kowalewska, J., Muhlfeld, A.S., Hudkins, K.L., et al. 2007. Thymic stromal lymphopoietin transgenic mice develop cryoglobulinemia and hepatitis with similarities to human hepatitis C liver disease. Am J Pathol 170:981–989.CrossRefGoogle ScholarPubMed
180. Muhlfeld, A.S., Segerer, S., Hudkins, K., et al. 2003. Deletion of the fcgamma receptor IIb in thymic stromal lymphopoietin transgenic mice aggravates membranoproliferative glomerulonephritis. Am J Pathol 163:1127–1136.CrossRefGoogle ScholarPubMed
181. Guo, S., Wietecha, T.A., Hudkins, K., et al. 2008. Macrophages are essential contributors to kidney injury in murine cryoglobiulinemia-associated membranoproliferative glomerulonephritis. J Am Soc Nephrol 19:Abstract in press.Google Scholar
182. Brouwer, E., Klok, P.A., Huitema, M.G., Weening, J.J., and Kallenberg, C.G. 1995. Renal ischemia/reperfusion injury contributes to renal damage in experimental anti-myeloperoxidase-associated proliferative glomerulonephritis. Kidney Int 47:1121–1129.CrossRefGoogle ScholarPubMed
183. Chandraker, A., Takada, M., Nadeau, K.C., Peach, R., Tilney, N.L., and Sayegh, M.H. 1997. CD28-b7 blockade in organ dysfunction secondary to cold ischemia/reperfusion injury. Kidney Int 52:1678–1684.CrossRefGoogle ScholarPubMed
184. Duffield, J.S., and Bonventre, J.V. 2004. Acute renal failure from Bench to Bedside: Chapter 43. In Chronic Kidney Disease, Dialysis and Transplant. Pereira (ed), pp. 765–786. Philadelphia: WB Saunders Co.Google Scholar
185. Dworkin, L.D., Hostetter, T.H., Rennke, H.G., and Brenner, B.M. 1984. Hemodynamic basis for glomeru-lar injury in rats with desoxycorticosterone-salt hypertension. J Clin Invest 73:1448–1461.CrossRefGoogle ScholarPubMed
186. Ichimura, T., Asseldonk, E.J., Humphreys, B.D., Gunaratnam, L., Duffield, J.S., and Bonventre, J.V. 2008. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 118:1657–1668.CrossRefGoogle ScholarPubMed
187. Duffield, J.S., Hong, S., Vaidya, V.S., et al. 2006. Resolvin D series and protectin D1 mitigate acute kidney injury. J Immunol 177:5902–5911.CrossRefGoogle ScholarPubMed
188. Basile, D.P., Donohoe, D., Roethe, K., and Osborn, J.L. 2001. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281:F887–F899.CrossRefGoogle ScholarPubMed
189. Johnson, R.J., Rodriguez-Iturbe, B., Schreiner, G.F., and Herrera-Acosta, J. 2002. Hypertension: a microvascular and tubulointerstitial disease. J Hypertens Suppl 20:S1–S7.Google ScholarPubMed
190. Haudek, S.B., Xia, Y., Huebener, P., et al. 2006. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci USA 103:18284–18289.CrossRefGoogle ScholarPubMed
191. Rabb, H., Mendiola, C.C., Dietz, J., et al. 1994. Role of CD11a and CD11b in ischemic acute renal failure in rats. Am J Physiol 267:F1052–F1058.Google ScholarPubMed
192. Linas, S.L., Whittenburg, D., Parsons, P.E., and Repine, J.E. 1995. Ischemia increases neutrophil retention and worsens acute renal failure: role of oxygen metabolites and ICAM 1. Kidney Int 48:1584–1591.CrossRefGoogle ScholarPubMed
193. Kelly, K.J., Williams, W.W. Jr.Colvin, R.B., and Bonventre, J.V. 1994. Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci USA 91:812–816.CrossRefGoogle ScholarPubMed
194. Kelly, K.J., Williams, W.W. Jr.Colvin, R.B., et al. 1996. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97:1056–1063.CrossRefGoogle ScholarPubMed
195. Day, Y.J., Huang, L., Ye, H., Linden, J., and Okusa, M.D. 2005. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. Am J Physiol Renal Physiol 288:F722–F731.CrossRefGoogle ScholarPubMed
196. Arnold, L., Henry, A., Poron, F., et al. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069.CrossRefGoogle ScholarPubMed
197. Lin, S.L., Nowlin, B.T., Nathans, J., Lang, R.A., and Duffield, J.S. 2008. Macrophage-delivered Canonical Wnt Signaling is a mediator of Tissue Repair in the Injured Kidney. J Am Soc Nephrol 19:Abstract in press.Google Scholar
198. Burne-Taney, M. J., Ascon, D.B., Daniels, F., Racusen, L., Baldwin, W., and Rabb, H. 2003. B cell deficiency confers protection from renal ischemia reperfusion injury. J Immunol 171:3210–3215.CrossRefGoogle ScholarPubMed
199. Burne, M.J., Daniels, F., El Ghandour, A., et al. 2001. Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest 108:1283–1290.CrossRefGoogle ScholarPubMed
200. Park, P., Haas, M., Cunningham, P.N., Bao, L., Alexander, J.J., and Quigg, R.J. 2002. Injury in renal ischemia-reperfusion is independent from immunoglobulins and T lymphocytes. Am J Physiol Renal Physiol 282:F352–F357.CrossRefGoogle ScholarPubMed
201. Li, L., Huang, L., Sung, S.S., et al. 2007. NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury. J Immunol 178:5899–5911.CrossRefGoogle ScholarPubMed
202. Zhang, M., Austen, W.G. Jr.Chiu, I., et al. 2004. Identification of a specific self-reactive IgM antibody that initiates intestinal ischemia/reperfusion injury. Proc Natl Acad Sci USA 101:3886–3891.Google ScholarPubMed
203. Zhang, M., Alicot, E.M., and Carroll, M.C. 2008. Human natural IgM can induce ischemia/reperfusion injury in a murine intestinal model. Mol Immunol 45:4036–4039.CrossRefGoogle Scholar
204. Zhang, M., Michael, L.H., Grosjean, S.A., Kelly, R.A., Carroll, M.C., and Entman, M.L. 2006. The role of natural IgM in myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 41:62–67.CrossRefGoogle ScholarPubMed
205. Chan, R.K., Verna, N., Afnan, J., et al. 2006. Attenuation of skeletal muscle reperfusion injury with intravenous 12 amino acid peptides that bind to pathogenic IgM. Surgery 139:236–243.CrossRefGoogle ScholarPubMed
206. Austen, W.G. Jr.Zhang, M., Chan, R., et al. 2004. Murine hindlimb reperfusion injury can be initiated by a self-reactive monoclonal IgM. Surgery 136:401–406.CrossRefGoogle ScholarPubMed
207. Zhang, M., Takahashi, K., Alicot, E.M., et al. 2006. Activation of the lectin pathway by natural IgM in a model of ischemia/reperfusion injury. J Immunol 177:4727–4734.CrossRefGoogle Scholar
208. Arumugam, T.V., Shiels, I. A., Strachan, A. J., Abbenante, G., Fairlie, D.P., and Taylor, S.M. 2003. A small molecule C5a receptor antagonist protects kidneys from ischemia/reperfusion injury in rats. Kidney Int 63:134–142.CrossRefGoogle ScholarPubMed
209. de Vries, B., Kohl, J., Leclercq, W.K., et al. 2003. Complement factor C5a mediates renal ischemia-reper-fusion injury independent from neutrophils. J Immunol 170:3883–3889.CrossRefGoogle ScholarPubMed
210. De Vries, B., Matthijsen, R.A., Wolfs, T.G., Van Bijnen, A. A., Heeringa, P., and Buurman, W.A. 2003. Inhibition of complement factor C5 protects against renal ischemia-reperfusion injury: inhibition of late apoptosis and inflammation. Transplantation 75:375–382.CrossRefGoogle ScholarPubMed
211. Thurman, J.M., Ljubanovic, D., Edelstein, C.L., Gilkeson, G.S., and Holers, V.M. 2003. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J Immunol 170:1517–1523.CrossRefGoogle ScholarPubMed
212. Zhou, W., Farrar, C.A., Abe, K., et al. 2000. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest 105:1363–1371.CrossRefGoogle ScholarPubMed
213. Rabb, H., Ramirez, G., Saba, S.R., et al. 1996. Renal ischemic-reperfusion injury in L-selectin-deficient mice. Am J Physiol 271:F408–F413.Google ScholarPubMed
214. Chiao, H., Kohda, Y., McLeroy, P., Craig, L., Linas, S., and Star, R.A. 1998. Alpha-melanocyte-stimulating hormone inhibits renal injury in the absence of neutrophils. Kidney Int 54:765–774.CrossRefGoogle ScholarPubMed
215. Bonventre, J.V. 2003. Molecular response to cytotoxic injury: role of inflammation, MAP kinases, and endoplasmic reticulum stress response. Semin Nephrol 23:439–448.CrossRefGoogle ScholarPubMed
216. Takada, M., Chandraker, A., Nadeau, K.C., Sayegh, M.H., and Tilney, N.L. 1997. The role of the B7 costimulatory pathway in experimental cold ischemia/reperfusion injury. J Clin Invest 100:1199–1203.CrossRefGoogle ScholarPubMed
217. Macedo, L., Pinhal-Enfield, G., Alshits, V., Elson, G., Cronstein, B.N., and Leibovich, S.J. 2007. Wound healing is impaired in MyD88-deficient mice: a role for MyD88 in the regulation of wound healing by adenosine A2A receptors. Am J Pathol 171:1774–1788.CrossRefGoogle ScholarPubMed
218. Godson, C., Mitchell, S., Harvey, K., Petasis, N.A., Hogg, N., and Brady, H.R. 2000. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol 164:1663–1667.CrossRefGoogle ScholarPubMed
219. Leonard, M.O., Hannan, K., Burne, M.J., et al. 2002. 15-Epi-16-(para-fluorophenoxy)-lipoxin A(4)-methyl ester, a synthetic analogue of 15-epi-lipoxin A(4), is protective in experimental ischemic acute renal failure. J Am Soc Nephrol 13:1657–1662.CrossRefGoogle Scholar
220. Goh, J., Godson, C., Brady, H.R., and Macmathuna, P. 2003. Lipoxins: pro-resolution lipid mediators in intestinal inflammation. Gastroenterology 124: 1043–1054.CrossRefGoogle ScholarPubMed
221. Serhan, C.N., and Chiang, N. 2002. Lipid-derived mediators in endogenous anti-inflammation and resolution: lipoxins and aspirin-triggered 15-epi-lipoxins. Scientific World Journal 2:169–204.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×