Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T16:03:00.658Z Has data issue: false hasContentIssue false

7 - Bayesian smoothing algorithms for object tracking

Published online by Cambridge University Press:  07 September 2011

Subhash Challa
Affiliation:
University of Melbourne
Mark R. Morelande
Affiliation:
University of Melbourne
Darko Mušicki
Affiliation:
Hanyang University, Republic of Korea
Robin J. Evans
Affiliation:
University of Melbourne
Get access

Summary

Estimation of an object state at a particular time based on measurements collected beyond that time is generally termed as smoothing or retrodiction. Smoothing improves the estimates compared to the ones obtained by filters owning to the use of more observations (or information). This comes at the cost of a certain time delay. However, these improvements are highly effective in applications like “situation awareness” or “threat assessment.” These higher level applications improve operator efficiency if a more accurate picture of the actual field scenario is provided to them, even if it is with a time delay. For these applications, besides object state, parameters representing the overall scenario, like number of targets, their initiation/termination instants and locations, may prove to be very useful ones. A smoothing algorithm can result in a better estimation of the overall situational picture and thus help increase the effectiveness of the critical applications like situation/ threat awareness. This chapter will introduce the Bayesian formulation of smoothing and derive the established smoothing algorithms under different tracking scenarios: non-maneuvering, maneuvering, clutter and in the presence of object existence uncertainty.

Introduction to smoothing

Filters, introduced in previous chapters, produce the “best estimate” of the object state at a particular time based on the measurements collected up to that time. Smoothers, on the other hand, produce an estimate of the state at a time based on measurements collected beyond the time in question (the predictor is another estimator where the estimation at a certain time is carried out based on measurements collected until a point before that time).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×