Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T03:34:05.659Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2013

Jerry G. Fossum
Affiliation:
University of Florida
Vishal P. Trivedi
Affiliation:
Freescale Semiconductor, Arizona
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, S. and Fossum, J. G. (2008). “On the suitability of a high-k gate dielectric in nanoscale FinFET CMOS technology,” IEEE Trans. Electron Devices, 55, 1714–1719.CrossRefGoogle Scholar
Agrawal, S. and Fossum, J. G. (2010). “A physical model for fringe capacitance in double-gate MOSFETs with non-abrupt source/drain junctions and gate underlap,” IEEE Trans. Electron Devices, 57, 1069–1075.CrossRefGoogle Scholar
Allen, L. P., Caliendo, S., Hofmeester, N., et al. (2002). “SOI uniformity and surface smoothness improvement using GCIB processing,” Proc. IEEE Internat. SOI Conf., pp. 192–193.Google Scholar
Ando, T., Fowler, A. B., and Stern, F. (1982). “Electronic properties of two-dimensional systems,” Rev. Mod. Phys., 54, 437–671.CrossRefGoogle Scholar
Arora, N. D., Hauser, J. R., and Roulston, D. J. (1982). “Electron and hole mobilities in silicon as a function of concentration and temperature,” IEEE Trans. Electron Devices, ED-29, 292–295.CrossRefGoogle Scholar
Auth, C., Allen, C., Blattner, A., et al. (2012). “A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors,” Proc. IEEE Symp. VLSI Tech., pp. 131–132.Google Scholar
Balasubramanian, S., Chang, L., Nikolic, B., and King, T.-J. (2003). “Circuit-performance implications for double-gate MOSFET scaling below 25nm,” Proc. Silicon Nanoelectronics Workshop, pp. 16–17.Google Scholar
Balestra, F., Cristoloveanu, S., Benachir, M., Brini, J., and Elewa, T. (1987). “Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance,” IEEE Electron Device Lett., EDL-8, 410–412.CrossRefGoogle Scholar
Ban, I., Avci, U. E., Shah, U., Barns, C. E., Kencke, D. L., and Chang, P. (2006). “Floating body cell with independently controlled double gates for high density memory,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 573–576.Google Scholar
Boeuf, F., Skotnicki, T., Monfray, S., et al. (2001). “16nm planar NMOSFET manufacturable within state-of-the-art CMOS process thanks to specific design and optimisation,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 637–640.Google Scholar
Brown, A. R., Asenov, A., and Watling, J. R. (2002). “Intrinsic fluctuations in sub 10-nm double-gate MOSFETs introduced by discreteness of charge and matter,” IEEE Trans. Nanotechnology, 1, 195–200.CrossRefGoogle Scholar
Casse, M., Rochette, F., Bhouri, N., et al. (2008). “Mobility of strained and unstrained short channel FD-SOI MOSFETs: new insight by magnetoresistance,” Proc. IEEE Symp. VLSI Tech., pp. 170–171.Google Scholar
Chang, D. (1997). Pragmatic and reliable device/circuit simulation for design in advanced silicon-based technologies. Unpublished Ph.D. Dissertation, University of Florida, Gainesville.
Chang, L., Choi, Y.-K., Ha, D., et al. (2003). “Extremely scaled silicon nano-CMOS devices,” Proc. IEEE, 91, 1860–1873.CrossRefGoogle Scholar
Cheng, K., Khakifirooz, A., Kulkarni, P., et al. (2009). “Fully depleted extremely thin SOI technology fabricated by a novel integration scheme featuring implant-free, zero-silicon-loss, and faceted raised source/drain,” Proc. IEEE Symp. VLSI Tech., pp. 213–214.Google Scholar
Chiang, M.-H. (2001). Process-based compact modeling and analysis of silicon-on-insulator CMOS devices and circuits, including double-gate MOSFETs. Unpublished Ph.D. Dissertation, University of Florida, Gainesville.
Chiang, M.-H., Lin, J.-N., Kim, K., and Chuang, C.-T. (2007). “Random dopant fluctuation in limited-width FinFET technologies,” IEEE Trans. Electron Devices, 54, 2055–2060.CrossRefGoogle Scholar
Choi, J.-Y. and Fossum, J. G. (1991). “Analysis and control of floating-body bipolar effects in fully depleted submicrometer SOI MOSFETs,” IEEE Trans. Electron Devices, 38, 1384–1391.CrossRefGoogle Scholar
Choi, Y.-K., Asano, K., Lindert, N., et al. (2000). “Ultrathin-body SOI MOSFET for deep-sub-tenth micron era,” IEEE Electron Device Lett., 21, 254–256.CrossRefGoogle Scholar
Chouksey, S. and Fossum, J. G. (2008). “DICE: a beneficial short-channel effect in nanoscale double-gate MOSFETs,” IEEE Trans. Electron Devices, 55, 796–802.CrossRefGoogle Scholar
Chouksey, S., Fossum, J. G., Behnam, A., Agrawal, S., and Mathew, L. (2009). “Threshold voltage adjustment in nanoscale DG FinFETs via limited source/drain dopants in the channel,” IEEE Trans. Electron Devices, 56, 2348–2353.CrossRefGoogle Scholar
Chouksey, S., Fossum, J. G., and Agrawal, S. (2010). “Insights on design and scalability of thin-BOX FD/SOI CMOS,” IEEE Trans. Electron Devices, 57, 2073–2079.CrossRefGoogle Scholar
Chowdhury, M. M. and Fossum, J. G. (2006). “Physical insights on electron mobility in contemporary FinFETs,” IEEE Electron Device Lett., 27, 482–485.CrossRefGoogle Scholar
Chowdhury, M. M., Trivedi, V. P., Fossum, J. G., and Mathew, L. (2007). “Carrier mobility/transport in undoped-UTB DG FinFETs,” IEEE Trans. Electron Devices, 54, 1125–1131.CrossRefGoogle Scholar
Colinge, J. P. (1997). SOI Technology: Materials to VLSI. Boston, MA: Kluwer Academic Publishers.Google Scholar
Cros, A., Romanjek, K., Fleury, D., et al. (2006). “Unexpected mobility degradation for very short devices: a new challenge for CMOS scaling,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 663–666.Google Scholar
Damaraju, S., George, V., Jahagirdar, S., , T., et al. (2012). “A 22nm IA multi-CPU and GPU system-on-chip,” Tech. Dig. IEEE Internat. Solid-State Circuits Conf., pp. 56–57.Google Scholar
Delprat, D., Boedt, F., David, C., et al. (2009). “SOI substrate readiness for 22/20 nm and for fully depleted planar device architectures,” Proc. IEEE Internat. SOI Conf., pp. 120–123.Google Scholar
Doris, B., Ieong, M., Kanarsky, T., et al. (2002). “Extreme scaling with ultra-thin Si channel MOSFETs,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 267–270.CrossRefGoogle Scholar
Doyle, B., Boyanov, B., Datta, S., et al. (2003a). “Tri-gate fully-depleted CMOS transistors: fabrication, design and layout,” Proc. IEEE Symp. VLSI Tech., pp. 133–134.Google Scholar
Doyle, B. S., Datta, S., Doczy, M., et al. (2003b). “High performance fully-depleted tri-gate CMOS transistors,” IEEE Electron Device Lett., 24, 263–265.CrossRefGoogle Scholar
Endo, K., Migita, S., Ishikawa, Y., et al. (2012). “Flexible Vth FinFETs with 9-nm-thick extremely thin BOX,” Proc. IEEE Internat. SOI Conf.Google Scholar
Ernst, T., Tinella, C., Raynaud, C., and Cristoloveanu, S. (2002). “Fringing fields in sub-0.1 μm fully depleted SOI MOSFETs: optimization of the device architecture,” Solid-State Electron., 46, 373–378.CrossRefGoogle Scholar
Esseni, D., Mastrapasqua, M., Celler, G. K., et al. (2000). “Low field mobility of ultra-thin SOI n- and p-MOSFETs: measurements and implications on the performance of ultra-short MOSFETs,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 671–673.Google Scholar
Esseni, D., Mastrapasqua, M., Fiegna, C., Celler, G. K., Selmi, L., and Sangiorgi, E. (2001). “An experimental study of low field electron mobility in double-gate, ultra-thin SOI MOSFETs,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 445–448.Google Scholar
Faynot, O., Andrieu, F., Weber, O., et al. (2010). “Planar fully depleted SOI technology: a powerful architecture for the 20 nm node and beyond,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 50–53.Google Scholar
Fenouillet-Beranger, C., Denorme, S., Perreau, P., et al. (2009). “FDSOI devices with thin BOX and ground plane integration for 32 nm node and below,” Solid-State Electron., 53, 730–734.CrossRefGoogle Scholar
Fenouillet-Beranger, C., Perreau, P., Denorme, S., et al. (2010). “Impact of a 10 nm ultra-thin BOX (UTBOX) and ground plane on FDSOI devices for 32 nm node and below,” Solid-State Electron., 54, 849–854.CrossRefGoogle Scholar
Fischetti, M. V., Ren, Z., Solomon, P. M., Yang, M., and Rim, K. (2003). “Six-band k*p calculation of the hole mobility in silicon inversion layers: dependence on surface orientation, strain, and silicon thickness,” J. Appl. Phys., 94, 1079–1095.CrossRefGoogle Scholar
Fossum, J. G. (1997). UFSOI MOSFET Models User’s Guide. Gainesville, FL: University of Florida (license information at ).Google Scholar
Fossum, J. G. (2007). “Physical insights on nanoscale multi-gate CMOS design,” Solid-State Electron., 51, 188–194.CrossRefGoogle Scholar
Fossum, J. G. (2010). UFDG MOSFET Model User’s Guide. Gainesville, FL: University of Florida (license information at ).Google Scholar
Fossum, J. G. and Krishnan, S. (1993). “Current drive enhancement limited by carrier velocity saturation in deep-submicrometer fully depleted SOI MOSFETs,” IEEE Trans. Electron Devices, 40, 457–459.CrossRefGoogle Scholar
Fossum, J. G., Ren, Z., Kim, K., and Lundstrom, M. (2000). “Extraordinarily high drive currents in asymmetrical double-gate MOSFETs,” Superlatt. Microstruct., 28, 525–530.CrossRefGoogle Scholar
Fossum, J. G., Ge, L., and Chiang, M.-H. (2002). “Speed superiority of scaled double-gate CMOS,” IEEE Trans. Electron Devices, 49, 808–811.CrossRefGoogle Scholar
Fossum, J. G., Chowdhury, M. M., Trivedi, V. P., et al. (2003a). “Physical insights on design and modeling of nanoscale FinFETs,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 679–682.Google Scholar
Fossum, J. G., Yang, J.-W., and Trivedi, V. P. (2003b). “Suppression of corner effects in triple-gate MOSFETs,” IEEE Electron Device Lett., 24, 745–747.CrossRefGoogle Scholar
Fossum, J. G., Ge, L., Chiang, M.-H., et al. (2004a). “A process/physics-based compact model for nonclassical CMOS device and circuit design,” Solid-State Electron., 48, 919–926.CrossRefGoogle Scholar
Fossum, J. G., Wang, L.-Q., Yang, J.-W., Kim, S.-H., and Trivedi, V. P. (2004b). “Pragmatic design of nanoscale multi-gate CMOS,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 613–616.Google Scholar
Fossum, J. G., Lu, Z., and Trivedi, V. P. (2007). “New insights on ‘capacitorless’ floating-body DRAM cells,” IEEE Electron Device Lett., 28, 513–516.CrossRefGoogle Scholar
Fossum, J. G., Zhou, Z., Mathew, L., and Nguyen, B.-Y. (2010). “SOI versus bulk-silicon nanoscale FinFETs,” Solid-State Electron., 54, 86–89.CrossRefGoogle Scholar
Frank, D. J., Taur, Y., Ieong, M., and Wong, H.-S. P. (1999). “Monte Carlo modeling of threshold variation due to dopant fluctuations,” Proc. IEEE Symp. VLSI Tech., pp. 169–170.Google Scholar
Fried, D. M., Duster, J. S., and Kronegay, K. T. (2004). “High-performance p-type independent-gate FinFETs,” IEEE Electron Device Lett., 25, 199–201.CrossRefGoogle Scholar
Gámiz, F. and Fischetti, M. V. (2001). “Monte Carlo simulation of double-gate silicon-on-insulator inversion layer: the role of volume inversion,” J. Appl. Phys., 89, 5478–5487.CrossRefGoogle Scholar
Gámiz, F., Roldán, J. B., and López-Villanueva, J. A. (1998). “Phonon-limited electron mobility in ultrathin silicon-on-insulator inversion layers,” J. Appl. Phys., 83, 4802–4806.CrossRefGoogle Scholar
Gámiz, F., Roldán, J. B., López-Villanueva, J. A., Cartujo-Cassinello, P., Carceller, J. E., and Cartujo, P. (2001). “Monte Carlo simulation of electron transport in silicon-on-insulator devices,” Proc. 10th Internat. Symp. SOI Tech. and Devices, vol. ECS 2001–3.Google Scholar
Ge, L. (2002). Physical modeling and analysis of carrier confinement and transport in silicon-on-insulator and double-gate CMOS devices and circuits. Unpublished Ph.D. Dissertation, University of Florida, Gainesville.
Ge, L. and Fossum, J. G. (2002). “Analytical modeling of quantization and volume inversion in thin Si-film double-gate MOSFETs,” IEEE Trans. Electron Devices, 49, 287–294.Google Scholar
Ge, L., Fossum, J. G., and Liu, B. (2001). “Physical compact modeling and analysis of velocity overshoot in extremely scaled CMOS devices and circuits,” IEEE Trans. Electron Devices, 48, 2074–2080.Google Scholar
Ghani, T., Mistry, K., Packan, P., et al. (2000). “Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors,” Proc. IEEE Symp. VLSI Tech., pp. 174–175.Google Scholar
Goodnick, S. M., Ferry, D. K., Wilmsen, C. W., Liliental, Z., Fathy, D., and Krivanek, O. L. (1985). “Surface roughness at the Si(100)-SiO2 interface,” Phys. Rev. B, 32, 8171–8186.CrossRefGoogle Scholar
Gusmeroli, R., Spinelli, A. S., Pirovano, A., Lacaita, A. L., Boeuf, F., and Skotnicki, T. (2003). “2D QM simulation and optimization of decanano non-overlapped MOS devices,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 225–228.Google Scholar
Hisamoto, D., Kana, T., and Takeda, E. (1991). “Impact of the vertical SOI ‘DELTA’ structure on planar device technology,” IEEE Trans. Electron Devices, 38, 1419–1424.CrossRefGoogle Scholar
Huang, X., Lee, W.-C., Kuo, C., et al. (1999). “Sub-50nm FinFET: PMOS,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 67–70.Google Scholar
Jurczak, M., Skotnicki, T., Paoli, M., et al. (2000). “Silicon-on-nothing (SON)–an innovative process for advanced CMOS,” IEEE Trans. Electron Devices, 47, 2179–2187.CrossRefGoogle Scholar
Kedzierski, J., Nowak, E., Kanarsky, T., et al. (2002). “Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 247–250.CrossRefGoogle Scholar
Khakifirooz, A., Cheng, K., Kulkarni, P., et al. (2010). “Challenges and opportunities of extremely thin SOI (ETSOI) CMOS technology for future low power and general purpose system-on-chip applications,” Proc. IEEE Symp. VLSI Tech., pp. 110–111.Google Scholar
Khakifirooz, A., Kangguo, C., Reznicek, A., et al. (2012). “Scalability of extremely thin SOI (ETSOI) MOSFETs to sub-20-nm gate length,” IEEE Electron Device Lett., 33, 149–151.CrossRefGoogle Scholar
Kim, K. and Fossum, J. G. (2001). “Double-gate CMOS: symmetrical- versus asymmetrical-gate devices,” IEEE Trans. Electron Devices, 48, 294–299.Google Scholar
Kim, S.-H. and Fossum, J. G. (2005). “Nanoscale CMOS: potential nonclassical technologies versus a hypothetical bulk-silicon technology,” Solid-State Electron., 49, 595–605.CrossRefGoogle Scholar
Kim, S.-H. and Fossum, J. G. (2007). “Design optimization and performance projections of double-gate FinFETs with gate-source/drain underlap for SRAM application,” IEEE Trans. Electron Devices, 54, 1934–1942.Google Scholar
Kim, S.-H., Fossum, J. G., and Trivedi, V. P. (2005). “Bulk inversion in FinFETs and implied insights on effective gate width,” IEEE Trans. Electron Devices, 52, 1993–1997.CrossRefGoogle Scholar
Kim, S.-H., Fossum, J. G., and Yang, J.-W. (2006). “Modeling and significance of fringe capacitance in nonclassical CMOS devices with gate-source/drain underlap,” IEEE Trans. Electron Devices, 53, 2143–2150.CrossRefGoogle Scholar
Klaassen, F. M. and de Groot, W. C. J. (1980). “Modelling of scaled-down MOS transistors,” Solid-State Electron., 23, 237–242.CrossRefGoogle Scholar
Krishnan, S. and Fossum, J. G. (1998). “Grasping SOI floating-body effects,” IEEE Circuits Devices Mag., 14, 32–37.CrossRefGoogle Scholar
Kuhn, K. J. (2011). “CMOS scaling for the 22nm node and beyond: device physics and technology,” Proc. Internat. Symp. VLSI Tech., Syst., and Appl., pp. 2–3.Google Scholar
Kwong, M. Y., Kasnavi, R., Griffin, P., Plummer, J. D., and Dutton, R. W. (2002). “Impact of lateral source/drain abruptness on device performance,” IEEE Trans. Electron Devices, 49, 1882–1890.CrossRefGoogle Scholar
Lee, T. (1998). The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge: Cambridge University Press.Google Scholar
Lim, H.-K. and Fossum, J. G. (1983). “Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFETs,” IEEE Trans. Electron Devices, ED-30, 1244–1251.Google Scholar
Lin, C.-H., Chang, J., Guillorn, M., Bryant, A., Oldiges, P., and Haensch, W. (2010). “Non-planar device architecture for 15 nm node: FinFET or trigate?,” Proc. IEEE Internat. SOI Conf., pp. 58–59.Google Scholar
Lindert, N., Chang, L., Choi, Y.-K., et al. (2001). “Sub-60-nm quasi-planar FinFETs fabricated using a simplified process,” IEEE Electron Device Lett., 22, 487–489.CrossRefGoogle Scholar
Liu, Q., Yagishita, A., Loubet, N., et al. (2010). “Ultra-thin-body and BOX (UTBB) fully depleted (FD) device integration for 22nm node and beyond,” Proc. IEEE Symp. VLSI Tech., pp. 61–62.Google Scholar
Liu, Y. X., Masahara, M., Ishii, K., et al. (2003). “Flexible threshold voltage FinFETs with independent double gates and an ideal rectangular cross-section Si-fin channel,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 986–988.Google Scholar
López-Villanueva, J. A., Cartujo-Cassinello, P., Gámiz, F., Banqueri, J., and Palma, A. J. (2000). “Effects of inversion-layer centroid on the performance of double-gate MOSFET’s,” IEEE Trans. Electron Devices, 47, 141–146.CrossRefGoogle Scholar
Maleville, C. (2011). “Extending planar device roadmap beyond node 20nm through ultra thin body technology,” Proc. Internat. Symp. VLSI Tech., Syst., and Appl., pp. 130–133.Google Scholar
Mathew, L., Du, Y., Thean, A. V-Y., et al. (2004). “CMOS vertical multiple independent gate field effect transistor (MIGFET),” Proc. IEEE Internat. SOI Conf., pp. 187–189.Google Scholar
Mathew, L., Sadd, M., Kalpat, S., et al. (2005). “Inverted-T channel FET (ITFET) – Fabrication and characteristics of vertical-horizontal, thin-body, multi-gate, multi-orientation devices, ITFET SRAM bit-cell operation: a novel technology for 45nm and beyond CMOS,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 731–734.Google Scholar
Mathew, L., Kalpat, S., Stephens, T., et al. (2006). “Undoped channel PMOS FinFET with deposited titanium nitride gate electrode over SiO2 gate dielectric for low leakage applications,” Proc. IEEE Silicon Nanoelectron. Workshop, pp. 7–8.Google Scholar
Mathew, L., Chowdhury, M. M., Hackenberg, J., et al. (2007). “Double-gate CMOS technology with sub-lithographic (<20 nm), 100 nm tall, undoped channel, TiN+HfxZr1-xO2 gate, multiple silicided source/drain with record PMOS Ion/Ioff,” Proc. IEEE Si Nanoelectron. Workshop.Google Scholar
Mazhari, B. and Ioannou, D. E. (1993). “Surface potential at threshold in thin-film SOI MOSFET’s,” IEEE Trans. Electron Devices, 40, 1129–1133.CrossRefGoogle Scholar
Moglestue, C. (1986). “Self-consistent calculation of electron and hole inversion layer charges at silicon-silicon dioxide interfaces,” J. Appl. Phys., 59, 3175–3183.CrossRefGoogle Scholar
Mohapatra, N. R., Desai, M. P., and Rao, V. R. (2003). “Detailed analysis of FIBL in MOS transistors with high-k gate dielectrics,” Proc. 16th Annual Conf. VLSI Design, pp. 99–104.Google Scholar
Moore, G. E. (1965). “Cramming more components onto integrated circuits,” Electronics, 38, 114.Google Scholar
Na, M. H., Nowak, E. J., Haensch, W., and Cai, J. (2002). “The effective drive current in CMOS inverters,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 121–124.CrossRefGoogle Scholar
Natarajan, S., Armstrong, M., Bost, M., et al. (2008). “A 32nm logic technology featuring 2nd-generation high-k + metal-gate transistors, enhanced channel strain and 0.171μm2 SRAM cell size in a 291Mb array,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 941–943.Google Scholar
Noel, J.-P., Thomas, O., Jaud, M.-A., et al. (2011). “Multi-VT UTBB FDSOI device architectures for low-power CMOS circuit,” IEEE Trans. Electron Devices, 58, 2473–2482.CrossRefGoogle Scholar
Nowak, E. (2012). “FinFET isolation issues and second-generation FinFET CMOS,” Advanced Substrate News, 20 (Fall/Winter), 8–9 ().Google Scholar
Numata, T., Uchida, K., Koga, J., and Takagi, S. (2002). “Device design for subthreshold slope and threshold voltage control in sub-100 nm fully depleted SOI MOSFETs,” Proc. IEEE Internat. SOI Conf., pp. 179–180.Google Scholar
Okano, K., Izumida, T., Kawasaki, H., et al. (2005). “Process integration technology and device characteristics of CMOS FinFET on bulk silicon substrate with sub-10 nm fin width and 20 nm gate length,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 739–742.Google Scholar
Okhonin, S., Nagoga, M., Sallese, J. M., and Fazan, P. (2001). “A SOI capacitor-less 1T-DRAM concept,” Proc. IEEE Internat. SOI Conf., pp. 153–154.Google Scholar
Park, D.-G., Cha, T.-H., Lim, K.-Y., et al. (2001). “Robust ternary metal gate electrodes for dual gate CMOS devices,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 671–674.Google Scholar
Park, J.-T. and Colinge, J.-P. (2002). “Multiple-gate SOI MOSFETs: device design guidelines,” IEEE Trans. Electron Devices, 49, 2222–2229.CrossRefGoogle Scholar
Pelella, M. M., Fossum, J. G., Suh, D., Krishnan, S., Jenkins, K. A., and Hargrove, M. J. (1996). “Low-voltage transient bipolar effect induced by dynamic floating-body charging in PD/SOI MOSFET’s,” IEEE Electron Device Lett., 17, 196–198.CrossRefGoogle Scholar
Sampedro, C., Gámiz, F., Donetti, L., and Godoy, A. (2012). “Reaching sub-32 nm nodes: ET-FDSOI and BOX optimization,” Solid-State Electron., 70, 101–105.CrossRefGoogle Scholar
Schulz, T., Pacha, C., Luyken, R. J., et al. (2004). “Impact of technology parameters on device performance of UTB-SOI CMOS,” Solid-State Electron., 48, 521–527.CrossRefGoogle Scholar
Shankar, R. (1994). Principles of Quantum Mechanics. New York: Plenum Press.CrossRefGoogle Scholar
Shenoy, R. S. and Saraswat, K. C. (2003). “Optimization of extrinsic source/drain resistance in ultrathin body double-gate FETs,” IEEE Trans. Nanotechnology, NANO-2, 265–270.CrossRefGoogle Scholar
Shino, T., Kusunoki, N., Higashi, T., et al. (2006). “Floating body RAM technology and its scalability to 32nm node and beyond,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 569–572.Google Scholar
Shrivastava, R. and Fitzpatrick, K. (1982). “A simple model for the overlap capacitance of a VLSI MOS device,” IEEE Trans. Electron Devices, ED-29, 1870–1875.CrossRefGoogle Scholar
SIA (1994–2011). International Technology Roadmap for Semiconductors (ITRS). Austin, TX: Semiconductor Industry Association ().Google Scholar
Skotnicki, T. (2011). “Competitive SOC on UTBB SOI,” Proc. IEEE Internat. SOI Conf., pp. 1–61.Google Scholar
Stern, F. (1972). “Self-consistent results for n-type Si inversion layers,” Phys. Rev. B, 5, 4891–4899.CrossRefGoogle Scholar
Stern, F. and Howard, W. E. (1967). “Properties of semiconductor surface inversion layers in the electric quantum limit,” Phys. Rev., 163, 816–835.CrossRefGoogle Scholar
Suh, D. and Fossum, J. G. (1994). “Dynamic floating-body instabilities in partially depleted SOI CMOS circuits,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 661–664.Google Scholar
Suh, D. and Fossum, J. G. (1995). “A physical charge-based model for non-fully depleted SOI MOSFETs and its use in assessing floating-body effects in SOI CMOS circuits,” IEEE Trans. Electron Devices, 42, 728–737.Google Scholar
Suzuki, E., Ishii, K., Kanemaru, S., et al. (2000). “Highly suppressed short-channel effects in ultrathin SOI n-MOSFETs,” IEEE Trans. Electron Devices, 47, 354–359.CrossRefGoogle Scholar
Suzuki, K. and Sugii, T. (1995). “Analytic models for n+-p+ double-gate SOI MOSFETs,” IEEE Trans. Electron Devices, 42, 1940–1948.CrossRefGoogle Scholar
Suzuki, K., Tanaka, T., Tosaka, Y., Horie, H., and Arimoto, Y. (1993). “Scaling theory for double-gate MOSFETs,” IEEE Trans. Electron Devices, 40, 2326–2329.CrossRefGoogle Scholar
Synopsys, Inc. (2003). Davinci-2003.06 User’s Guide. Durham, NC: Synopsys.Google Scholar
Synopsys, Inc. (2004). Medici-4.0 User’s Manual. Durham, NC: Synopsys.Google Scholar
Synopsys, Inc. (2006). Taurus-2006 User’s Manual. Durham, NC: Synopsys.Google Scholar
Sze, S. M. and Ng, K. K. (2007). Physics of Semiconductor Devices, 3rd edn. Hoboken, NJ: John Wiley & Sons.Google Scholar
Takagi, S., Iwase, M., and Torium, A. (1988). “On the universality of inversion-layer mobility in n- and p-channel MOSFETs,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 398–401.CrossRefGoogle Scholar
Takagi, S., Toriumi, A., Iwase, M., and Tango, H. (1994). “On the universality of inversion layer mobility in Si MOSFET’s: Part I – Effects of substrate impurity concentration,” IEEE Trans. Electron Devices, 41, 2357–2368.CrossRefGoogle Scholar
Tanaka, T., Suzuki, K., Horie, H., and Sugii, T. (1994). “Ultrafast operation of V-adjusted p+-n+ double-gate SOI MOSFET’s,” IEEE Electron Device Lett., 15, 386–388.CrossRefGoogle Scholar
Taur, Y. (2001). “Analytic solutions of charge and capacitance in symmetric and asymmetric double-gate MOSFETs,” IEEE Trans. Electron Devices, 48, 2861–2869.CrossRefGoogle Scholar
Taur, Y. and Ning, T. H. (2009). Fundamentals of Modern VLSI Devices, 2nd edn. New York: Cambridge University Press.CrossRefGoogle Scholar
Taur, Y., Wann, C. H., and Frank, D. J. (1998). “25 nm CMOS design considerations,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 789–792.Google Scholar
Taur, Y., Liang, X., Wang, W., and Lu, H. (2004). “A continuous, analytic drain-current model for DG MOSFETs,” IEEE Electron Device Lett., 25, 107–109.CrossRefGoogle Scholar
Thompson, S., Packan, P., Ghani, T., et al. (1998). “Source/drain extension scaling for 0.1μm and below channel length MOSFETs,” Proc. IEEE Symp. VLSI Tech., pp. 132–133.Google Scholar
Thompson, S. E., Armstrong, M., Auth, C., et al. (2004). “A logic nanotechnology featuring strained silicon,” IEEE Electron Device Lett., 25, 191–193.CrossRefGoogle Scholar
Trivedi, V. P. (2005). Physics and design of nonclassical nanoscale CMOS devices with ultra-thin bodies. Unpublished Ph. D. Dissertation, University of Florida, Gainesville.
Trivedi, V. P. and Fossum, J. G. (2003). “Scaling fully depleted SOI CMOS,” IEEE Trans. Electron Devices, 50, 2095–2103.CrossRefGoogle Scholar
Trivedi, V. P. and Fossum, J. G. (2005a). “Nanoscale FD/SOI CMOS:thick or thin BOX?,” IEEE Electron Device Lett., 26, 26–28.CrossRefGoogle Scholar
Trivedi, V. P. and Fossum, J. G. (2005b). “Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFETs,” IEEE Electron Device Lett., 26, 579–582.CrossRefGoogle Scholar
Trivedi, V. P., Fossum, J. G., and Vandooren, A. (2003). “Non-classical CMOS device design,” Proc. IEEE Internat. SOI Conf., pp. 155–157.Google Scholar
Trivedi, V. P., Fossum, J. G., and Gámiz, F. (2004). “A compact QM-based mobility model for nanoscale ultra-thin body CMOS devices,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 763–766.Google Scholar
Trivedi, V., Fossum, J. G., and Chowdhury, M. M. (2005). “Nanoscale FinFETs with gate-source/drain underlap,” IEEE Trans. Electron Devices, 52, 56–62.Google Scholar
Trivedi, V. P., Fossum, J. G., and Zhang, W. (2007). “Threshold voltage and bulk-inversion effects in nonclassical CMOS devices with undoped ultra-thin bodies,” Solid-State Electron., 51, 170–178.CrossRefGoogle Scholar
Tsividis, Y. (1982). “Moderate inversion in MOS devices,” Solid-State Electron., 25, 1099–1104; Erratum, Y. Tsividis (1983). Solid-State Electron., 26, 823.CrossRefGoogle Scholar
Uchida, K., Koga, J., Ohba, R., Numata, T., and Takagi, S. (2001). “Experimental evidences of quantum-mechanical effects on low-field mobility, gate-channel capacitance, and threshold voltage of ultrathin body SOI MOSFETs,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 633–636.Google Scholar
Uchida, K., Koga, J., and Takagi, S. (2003). “Experimental study of carrier transport mechanisms in ultrathin-body SOI n- and p-MOSFETs with SOI thickness less than 5nm,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 805–808.Google Scholar
Vandooren, A., Jovanovic, D., Egley, S., et al. (2002). “Scaling assessment of fully depleted SOI technology at the 30 nm gate length generation,” Proc. IEEE Internat. SOI Conf., pp. 25–26.Google Scholar
Vasileska, D. and Ren, Z. (2000). SCHRED-2.0 Manual. West Lafayette, IN: Purdue University.Google Scholar
Veeraraghavan, S. and Fossum, J. G. (1988). “A physical short-channel model for the thin-film SOI MOSFET applicable to device and circuit CAD,” IEEE Trans. Electron Devices, 35, 1866–1875.CrossRefGoogle Scholar
Venugopal, R., Ren, Z., Datta, S., Lundstrom, M. S., and Jovanovic, D. (2002). “Simulating quantum transport in nanoscale transistors: real versus mode-space approaches,” J. Appl. Phys., 92, 3730–3739.CrossRefGoogle Scholar
Ward, D. E. and Dutton, R. W. (1978). “A charge-oriented model for MOS transistor capacitances,” IEEE J. Solid-State Circuits, SC-13, 703–707.CrossRefGoogle Scholar
Wong, H.-S. P., Frank, D. J., and Solomon, P. M. (1998). “Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET’s at the 25nm channel length generation,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 407–410.Google Scholar
Yan, R.-H., Ourmazd, A., and Lee, K. F. (1992). “Scaling the Si MOSFET: from bulk to SOI to bulk,” IEEE Trans. Electron Devices, 39, 1704–1710.CrossRefGoogle Scholar
Yang, J.-W. and Fossum, J. G. (2005). “On the feasibility of nanoscale triple-gate CMOS transistors,” IEEE Trans. Electron Devices, 52, 1159–1164.CrossRefGoogle Scholar
Yang, M., Gusev, E. P., Ieong, M., et al. (2003). “Performance dependence of CMOS on silicon substrate orientation for ultrathin oxynitride and HfO2 gate dielectrics,” IEEE Electron Device Lett., 24, 339–341.CrossRefGoogle Scholar
Yeh, P. C. and Fossum, J. G. (1995). “Physical subthreshold MOSFET modeling applied to viable design of deep-submicron fully depleted SOI low-voltage CMOS technology,” IEEE Trans. Electron Devices, 42, 1605–1613.Google Scholar
Yoshida, E. and Tenaka, T. (2006). “A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory,” IEEE Trans. Electron Devices, 53, 692–697.CrossRefGoogle Scholar
Yu, B., Chang, L., Ahmed, S., et al. (2002). “FinFET scaling to 10nm gate length,” Tech. Dig. IEEE Internat. Electron Devices Meeting, pp. 251–254.Google Scholar
Zhang, R., Roy, K., and James, D. B. (2001). “Double-gate fully depleted SOI transistors for low-power high-performance nano-scale circuit design,” Proc. 2001 Internat. Symp. Low Power Electronics and Design, pp. 213–218.CrossRefGoogle Scholar
Zhang, W., Fossum, J. G., Mathew, L., and Du, Y. (2005). “Physical insights regarding design and performance of independent-gate FinFETs,” IEEE Trans. Electron Devices, 52, 2198–2206.CrossRefGoogle Scholar
Zhang, W., Fossum, J. G., Mathew, L. (2006). “The ITFET: a novel FinFET-based hybrid device,” IEEE Trans. Electron Devices, 53, 2335–2343.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jerry G. Fossum, University of Florida, Vishal P. Trivedi
  • Book: Fundamentals of Ultra-Thin-Body MOSFETs and FinFETs
  • Online publication: 05 September 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139343466.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jerry G. Fossum, University of Florida, Vishal P. Trivedi
  • Book: Fundamentals of Ultra-Thin-Body MOSFETs and FinFETs
  • Online publication: 05 September 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139343466.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jerry G. Fossum, University of Florida, Vishal P. Trivedi
  • Book: Fundamentals of Ultra-Thin-Body MOSFETs and FinFETs
  • Online publication: 05 September 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139343466.010
Available formats
×