Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-05T22:17:52.788Z Has data issue: false hasContentIssue false

Part Two - Multifunctional Properties and Applications

Published online by Cambridge University Press:  27 January 2017

Joseph H. Koo
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Kord, B. (2012). Studies on mechanical characterization and water resistance of glass fiber/thermoplastic polymer bionanocomposites. Journal of Applied Polymer Science 123(4), 23912396.CrossRefGoogle Scholar
Aouada, F. A., Luiz, H., and Longo, E. (2011). New strategies in the preparation of exfoliated thermoplastic starch-montmorillonite nanocomposites. Industrial Crops and Products 34(3), 15021508.CrossRefGoogle Scholar
Majdzadeh-Ardakani, K., Navarchian, A. H., and Sadeghi, F. (2010). Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydrate Polymers 79(3), 547554.CrossRefGoogle Scholar
Ritter, U., Scharff, P., Dmytrenk, O., Kulish, N., Prylutsky, Y., Grabovskiy, Y., et al. (2010). Strength improvement of iPP/MWCNT nanocomposites. Polymer Composites 31(1), 179184.CrossRefGoogle Scholar
Fernandez-d’Arlas, B., Khan, U., Rueda, L., Martin, L., Ramos, J. A., et al. (2012). Study of the mechanical, electrical and morphological properties of PU/MWCNT composites obtained by two different processing routes. Composites Science and Technology 72(2), 235242.CrossRefGoogle Scholar
Eswaraiah, V., Balasubramania, K., and Ramaprabh, S. (2011). Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. Journal of Materials Chemistry 21(34), 1262612628.CrossRefGoogle Scholar
Zhang, X., Chen, Y., Yu, J., and Guo, Z. (2011). Thermoplastic polyurethane/silica nanocomposite fibers by electrospinning. Journal of Polymer Science Part B 49(23), 16831689.CrossRefGoogle Scholar
Karbushev, V., Semakov, A., and Kulichikhin, V. (2011). Structure and mechanical properties of thermoplastics modified with nanodiamonds. Polymer Science Series A 53(9), 765774.CrossRefGoogle Scholar
Lach, R., Michler, G. H., and Grellman, W. (2010). Microstructure and indentation behaviour of polyhedral oligomeric silsesquioxanes modified thermoplastic polyurethane nanocomposites. Macromolecular Materials and Engineering 295(5), 484491.CrossRefGoogle Scholar
Liff, S. M., Kumar, N., and McKinley, G. H. (2007). High-performance elastomeric nanocomposites via solvent-exchange processing. Natural Materials 6(1), 7683.CrossRefGoogle ScholarPubMed
Chavarria, F. and Paul, D. R. (2006). Morphology and properties of thermoplastic polyurethane nanocomposites: Effect of organoclay structure. Polymer 47(22), 77607773.CrossRefGoogle Scholar
Mishra, A., Purkayastha, B. P. D., Roy, J. K., Aswal, V. K., and Maiti, P. (2010). Tunable properties of self-assembled polyurethane using two-dimensional nanoparticles: Potential nano-biohybrid. Macromolecules 43(23), 99289936.CrossRefGoogle Scholar
Puskas, J. E., Foreman-Orlowski, E. A., Lim, G. T., Porosky, S. E., Evancho-Chapman, M. M., et al. (2010). A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer. Biomaterials 31(9), 24772488.CrossRefGoogle ScholarPubMed
Chen, W., Tao, X., and Liu, Y. (2006). Carbon nanotube-reinforced polyurethane composite fibers. Composites Science and Technology 66(15), 30293034.CrossRefGoogle Scholar
Cantournet, S., Boyce, M. C., and Tsou, A. H. (2007). Micromechanics and macromechanics of carbon nanotube-enhanced elastomers. Journal of the Mechanics and Physics of Solids 55(6), 13211339.CrossRefGoogle Scholar
Li, Y., and Shimizu, H. (2007). High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer. Polymer 48(8), 22032207.CrossRefGoogle Scholar
Liao, C. Z., and Tjong, S. C. (2010). Mechanical and fracture behaviors of elastomer-rich thermoplastic polyolefin/SiC nanocomposites. Journal of Nanomaterials 2010, article ID 327973, 9 pages.Google Scholar
Aso, O., Eguiazábal, J. I., and Nazábal, J. (2007). The influence of surface modification on the structure and properties of a nanosilica filled thermoplastic elastomer. Composites Science and Technology 67(13), 28542863.CrossRefGoogle Scholar
Zhou, R.-J. and Burkhart, T. (2011). Thermal and mechanical properties of poly(ether ester)-based thermoplastic elastomer composites filled with TiO nanoparticles. Journal of Materials Science 46(7), 22812287.CrossRefGoogle Scholar
Kinloch, A. J. and Taylor, A. C. (2006). The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. Journal of Materials Science 41, 32713297.CrossRefGoogle Scholar
Gojny, F. H., et al. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Composites Science and Technology 65, 23002313.CrossRefGoogle Scholar
Zheng, Y., et al. (2006). Functionalized effect on carbon nanotube/epoxy nano-composites. Materials Science and Engineering A 435–436, 145149.Google Scholar
Rafiee, M. A. and Rafiee, J. (2009). Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 38843890.CrossRefGoogle ScholarPubMed
Blackman, B. R. K., et al. (2007). The fracture and fatigue behavior of nano-modified epoxy polymers. Journal of Materials Science 42, 70497051.CrossRefGoogle Scholar
Al-Turaif, H. A. (2010). Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Organic Coatings 69, 241246.CrossRefGoogle Scholar
Cheema, T. A., et al. (2011). Fabrication of transparent polymer-matrix nanocomposites with enhanced mechanical properties from chemically modified ZrO2 nanoparticles. Journal of Materials Science 47, 26652674.CrossRefGoogle Scholar
Zeng, J. (2009). An Experimental Study on Tensile Properties of Cellulose Nanocrystal Reinforced Epoxy Nanocomposite Material. MS thesis. Oregon State University, Corvallis, OR.Google Scholar
Beheshty, M. H., Vafayan, M., and Poorabdollah, M. (2008). Low profile unsaturated polyester resin-clay nanocomposite properties. Polymer Composites 30(5), 629638.CrossRefGoogle Scholar
Irwin, P. C., Cao, Y., and Schadler, L. S. (2003). Thermal and mechanical properties of polyimide nanocomposites. 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 120–123.CrossRefGoogle Scholar
Chou, T.-W., Gao, L., Thostenson, E. T., Zhang, Z., and Byun, J.-H. (2010). An assessment of the science and technology of carbon nanotube-based fibers and composites. Composites Science and Technology 70, 119.CrossRefGoogle Scholar
Garcia, E. J., Wardle, B. L., and Hart, A. J. (2008). Joining prepreg composite interfaces with aligned carbon nanotubes. Composites: Part A 39(6), 10651070.CrossRefGoogle Scholar
Garcia, E. J., Wardle, B. L., Hart, A. J., and Yamamoto, N. (2008). Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Composites Science and Technology 68, 20342041.CrossRefGoogle Scholar
Garcia, E. J., Hart, A. J., and Wardle, B. L. (2008). Long carbon nanotubes grown on the surface of fibers for hybrid composites. AIAA Journal 46(6), 14051412.CrossRefGoogle Scholar
Blanco, J., Garcia, E. J., Guzman, R., Villoria, D., and Wardle, B. L. (2009). Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nanotubes. Journal of Composite Materials 43(8), 825841.CrossRefGoogle Scholar
Yamamoto, N., Hart, A. J., Garcia, E. J., Wicks, S. S., Duong, H. M., et al. (2009). High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon 47, 551560.CrossRefGoogle Scholar
Ray, M. C., Guzman de Villoria, R., and Wardle, B. L. (2009). Load transfer analysis in short carbon fibers with radially-aligned carbon nanotubes embedded in a polymer matrix. Journal of Advanced Materials 41(4), 8294.Google Scholar
Wicks, S. S., Guzman de Villoria, R., and Wardle, B. L. (2010). Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Composites Science and Technology 70, 2028.CrossRefGoogle Scholar
Lachman, N., Wiesel, E., Guzman de Villoria, R., Wardle, B. L., and Wagner, H. D. (2012). Interfacial load transfer in carbon nanotube/ceramic microfiber hybrid polymer composites. Composites Science and Technology 72, 14161422.CrossRefGoogle Scholar
Yamamoto, N., Garcia, E. J., Wardle, B. L., and Hart, A. J. (2008). Thermal and electrical properties of hybrid woven composites reinforced with aligned carbon nanotubes. Proceedings of the 49th AIAA Structures, Dynamics, and Materials Conference, Schaumburg, IL, April 7–10.CrossRefGoogle Scholar
Vaddiraju, S., Cebeci, H., Gleason, K. K., and Wardle, B. L. (2009). Hierachical multifunction composites by conformally coating aligned carbon nanotube arrays with conducting polymer. Applied Materials & Interfaces 1(11), 25652572.CrossRefGoogle Scholar
Marconnet, A. M., Yamamoto, H., Panzer, M. A., Wardle, B. L., and Goodson, K. E. (2011). Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 5(6), 48184825.CrossRefGoogle ScholarPubMed
Bello, D. B., et al. (2009). Exposures to nanoscale particles and fibers during handling, processing, and machining of nanocomposites and nano-engineering composites reinforced with aligned carbon nanotubes. In 17th International Conference on Composite Materials (ICCM) proceedings, Edinburgh, Scotland, July 27–31.Google Scholar
Bello, D., Hart, A. J., Ahn, K., Hallock, M., Yamamoto, N., et al. (2008). Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon 46(6), 974977.CrossRefGoogle Scholar
Bello, D., Wardle, B. L., Yamamoto, N., Guzman de Villoria, R., Garcia, E. J., et al. (2009). Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. Journal of Nanoparticles Research 11(1), 231249.CrossRefGoogle Scholar

References

Ellis, T. S. and D’Angelo, J. S. (2003). Thermal and mechanical properties of a polypropylene nanocomposite. Journal of Applied Polymer Science 90, 16391647.CrossRefGoogle Scholar
Sandlera, J., Wernerb, P., Shaffera, M. S. P., Demchukc, V., Altstatd, V., and Windlea, A. H. (2002). Carbon-nanofibre-reinforced poly(ether ketone) composites. Composites: Part A 33, 10331039.CrossRefGoogle Scholar
Lozano, K. and Barrera, E. V. (2000). Nanofiber-reinforced thermoplastic composites: Thermoanalytical and mechanical analyses. Journal of Applied Polymer Science 79, 125133.3.0.CO;2-D>CrossRefGoogle Scholar
Du, F., Fischer, J. E., and Winey, K. I. (2003). Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. Journal of Polymer Science: Part B: Polymer Physics 41, 33333338.CrossRefGoogle Scholar
Kashiwagi, T., Du, F., Winey, K. I., Harris, R. H., Shields, J. R, and Douglas, J. F. (2005). Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Materials 12(4), 928933.CrossRefGoogle Scholar
Liu, J., Chen, G., and Yang, J. (2008). Preparation and characterization of poly(vinyl chloride)/layered double hydroxide nanocomposites with enhanced thermal stability. Polymer 49, 39233927.CrossRefGoogle Scholar
Piszczyk, Ł., Strankowski, M., Danowska, M., Haponiuk, J. T., and Gazda, M. (2012). Preparation and characterization of rigid polyurethane–polyglycerol nanocomposite foams. European Polymer Journal 48, 17261733.CrossRefGoogle Scholar
Shen, S. Z., Bateman, S., McMahon, P., Dell’Olio, M., Gotama, J., et al. (2010). The effects of clay on fire performance and thermal mechanical properties of woven glass fiber reinforced polyamide 6 nanocomposites. Composites Science and Technology 70, 20632067.CrossRefGoogle Scholar
Wu, J. H., Li, C. H., Wu, Y. T., Leu, M. T., and Tsai, Y. (2010). Thermal resistance and dynamic damping properties of poly(styrene-butadiene-styrene)/thermoplastic polyurethane composites elastomer material. Composite Science and Technology 70, 12581264.CrossRefGoogle Scholar
Kemaloglu, S., Ozkoc, G., and Aytac, A. (2010). Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochimica Acta 499, 4047.CrossRefGoogle Scholar
Barick, A. K. and Tripathy, D. K. (2009). Effect of organoclay on the morphology, mechanical, thermal, and rheological properties of organophillic montmorillonite nanoclay based thermoplastic polyurethane nanocomposites prepared by melt blending. Polymer Engineering & Science 50, 484498.CrossRefGoogle Scholar
Silva, G. G., Rodrigues, M. F., Fantini, C., Borges, R. S., Pimenta, M. A., Carey, B. J., et al. (2010). Thermoplastic polyurethane nanocomposites produced via impregnation of long carbon nanotube forests. Macromolecular Materials and Engineering 296, 5358.Google Scholar
Aurilia, M., Piscitelli, F., Sorrentino, L., Lavorgna, M., and Iannace, S. (2011). Detailed analysis of dynamic mechanical properties of TPU nanocomposite: The role of the interfaces. European Polymer Journal 47, 925936.CrossRefGoogle Scholar
Mishra, A. K., Nando, G. B., and Chattopadhyay, S. (2008). Exploring preferential association of laponite and Cloisite with soft and hard segments in TPU-clay nanocomposite prepared by solution mixing technique. Journal of Polymer Science: Part B: Polymer Physics 46, 23412354.CrossRefGoogle Scholar
Puskas, J. E., Foreman-Orlowski, E. A., Lim, G. T., Porosky, S. E., Evancho-Chapman, M. M., et al. (2009). A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer. Biomaterials 31, 24772488.CrossRefGoogle ScholarPubMed
Haggenmueller, R., Guthy, C., Lukes, J., Fischer, J., and Winey, K. (2007). Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40, 24172421.CrossRefGoogle Scholar
Wang, Z., Lu, Y., Liu, J., Dang, Z., Zhang, L., and Wang, W. (2011). Preparation of nano-zinc oxide/EPDM composites with both good thermal conductivity and mechanical properties. Journal of Applied Polymer Science 119, 11441155.CrossRefGoogle Scholar
Liu, C., Huang, H., Wu, Y., and Fan, S. (2004). Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Applied Physics Letters 84, 8486.CrossRefGoogle Scholar
Ratzke, S. and Kindersberger, J. (2005). Erosion behaviour of nano filled silicone elastomers. Proceedings of the 14th International Symposium for High Voltage Engineering, n. p.Google Scholar
Chatterjee, S., Wangb, J. W., Kuo, W. S., Tai, N. H., Salzmann, C., et al. (2012). Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chemical Physics Letters 531, 610.CrossRefGoogle Scholar
Debelak, B. and Lafdi, K. (2007). Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45, 17271734.CrossRefGoogle Scholar
Balakrishnan, A. and Saha, M. C. (2011). Tensile fracture and thermal conductivity characterization of toughened epoxy/CNT nanocomposites. Materials Science and Engineering A 528, 906913.CrossRefGoogle Scholar
Nagendiran, S., Alagar, M., and Hamerton, I. (2010). Octasilsesquioxane-reinforced DGEBA and TGDDM epoxy nanocomposites: Characterization of thermal, dielectric, and morphological properties. Acta Materialia 58, 33453356.CrossRefGoogle Scholar
Omrani, A., Afsar, S., and Safarpour, A. (2010). Thermoset nanocomposites using hybrid nano TiO2SiO2. Materials Chemistry and Physics 122, 343349.CrossRefGoogle Scholar
Zabihi, O., Khodabandeh, A., and Mostafavi, S. M. (2012). Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposites containing polythiophene nanoparticles using dynamic thermal analysis. Polymer Degradation and Stability 97(1), 313.CrossRefGoogle Scholar
Im, H. and Kim, J. (2012). Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite. Carbon 50, 54295440.CrossRefGoogle Scholar
Ganguli, S., Roy, A. K., and Anderson, D. P. (2008). Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46, 806817.CrossRefGoogle Scholar
Abdalla, M., Dean, D., Robinson, P., and Nyairo, E. (2008). Cure behavior of epoxy/MWCNT nanocomposites: The effect of nanotube surface modification. Polymer 49, 33103317.CrossRefGoogle Scholar
Yang, S., Ma, C. M., Teng, C., Huang, Y., Liao, S., et al. (2010). Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48, 592603.CrossRefGoogle Scholar
Han, Z., and Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science 26, 914944.CrossRefGoogle Scholar
Chen, L.-Y., Chen, Y., Fu, J.-F., Shi, L.-Y., and Zhong, Q.-D. (2010). Thermally conductive nanocomposites based on hyperbranched epoxy and nano-Al2O3 particles modified epoxy resin. Polymer Advanced Technologies 22, 10321041.Google Scholar
Hong, L., Li, Y., Wang, T., and Wang, Q. (2012). In-situ synthesis and thermal, tribological properties of thermosetting polyimide/graphene oxide nanocomposites. Journal of Materials Science 47(4), 18671874.Google Scholar
Kushwaha, P. and Kumar, R. (2011). Reinforcing effect of nanoclay in bamboo-reinforced thermosetting resin composites. Polymer-Plastics Technology and Engineering 50, 127135.CrossRefGoogle Scholar
Shojaei, A. and Faghihi, M. (2010). Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend. Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing 4–5, 917926.CrossRefGoogle Scholar
Zheng, X. and Wilkie, C. (2003). Flame retardancy of polystyrene nanocomposites based on an oligomeric organically-modified clay containing phosphate. Polymer Degradation and Stability 81, 539550.CrossRefGoogle Scholar
Chigwada, G., Jash, P., Jiang, D., and Wilkie, C. (2004). Synergy between nanocomposite formation and low levels of bromine on fire retardancy in polystyrenes. Polymer Degradation and Stability 88, 382393.CrossRefGoogle Scholar

References

Pinnavaia, T. J. and Beall, G. W. (Eds.) (2000). Polymer-Clay Nanocomposites. West Sussex, England: John Wiley & Sons.Google Scholar
Utracki, L. A. (2004). Clay-Containing Polymeric Nanocomposites. Shropshire, England: Rapra Technology Limited.Google Scholar
Bhattacharya, S. N., Gupta, R. K., and Kamal, M. R. (2007). Polymeric Nanocomposites-Theory and Practice. Düsseldorf: Carl Hanser Verlag.CrossRefGoogle Scholar
Gilman, J. W., Kashiwagi, T., and Lichtenhan, J. D. (1997). Nanocomposites: a revolutionary new flame retardant approach. SAMPE Journal 33(4), 4046.Google Scholar
Patel, H. A., Bocchini, S., Frache, A., and Camino, G. (2010). Platinum nanoparticle intercalated montmorillonite to enhance the char formation of polyamide 6 nanocomposites. Journal of Materials Chemistry 20, 95509558.CrossRefGoogle Scholar
Lao, S. C., Wu, C., Moon, T. J., Koo, J. H., Morgan, A., et al. (2009). Flame-retardant Polyamide 11 and 12 nanocomposites: Thermal and flammability properties. Journal of Composite Materials 43(17), 18031813.CrossRefGoogle Scholar
Lao, S. C., Yong, W., Nguyen, K., Moon, T. J., Koo, J. H., et al. (2010). Flame-retardant Polyamide 11 and 12 nanocomposites: Processing, morphology and mechanical properties. Journal of Composite Materials 44(25), 29332951.CrossRefGoogle Scholar
Lao, S. C., Koo, J. H., et al. (2011). Flame-retardant Polyamide 11 nanocomposites: Further thermal and flammability studies. Journal of Fire Sciences 29, 1-20. doi: 10.1177/07349041111404658.CrossRefGoogle Scholar
Katsoulis, C. K., Kandare, E., and Kandola, B. K. (2009). Thermal and Fire Performance of Flame-Retarded Epoxy Resin: Investigating Interaction between Resorcinol Bis (Dipenyl Phosphate) and Epoxy Nanocomposites. In Fire Retardancy of Polymers-New Strategies and Mechanisms, Hull, T. R. and Kandola, B. K. (Eds.). Cambridge: The Royal Society of Chemistry, pp. 184205.Google Scholar
Zammarano, M. (2007). Thermoset Fire Retardant Nanocomposites. In Flame Retardant Polymer Nanocomposites, A. Morgan and C. Wilkie (Eds.). Hoboken, NJ: John Wiley & Sons, pp. 235285.CrossRefGoogle Scholar
Wang, Z. and Pinnavaia, T. J. (1998). Hybrid organic-inorganic nanocomposites: exfoliation of magadiite nanoclays in an elastomeric epoxy. Polymer 10, 18201826.Google Scholar
Triantafillidis, C. S., LeBaron, P. C., and Pinnavaia, T. J. (2002). Thermoset epoxy-clay nanocomposites: The dual role of alpha, omega-diamines as clay surface modifiers and polymer curing agents. Journal of Solid State Chemistry 167, 354362.CrossRefGoogle Scholar
Camino, G., Tartaglion, G., Frache, A., Manferti, C., and Costa, G. (2005). Thermal and combustion behavior of layered silicate-epoxy nanocomposites. Polymer Degradation & Stability 90, 354362.CrossRefGoogle Scholar
Hussain, M., Varley, R. J., Mathys, Z., Cheng, Y. B., and Simon, G. P. (2004). Effect of organophosphorus and nano-clay materials on the thermal and fire performance of epoxy resins. Journal of Applied Polymer Science 91, 12331253.CrossRefGoogle Scholar
Hartwig, A., Purtz, D., Schartel, B., Bartholmai, M., and Wenschuh-Josties, M. (2003). Combustion behavior of epoxide based nanocomposites with ammonium and phosphonium bentonites. Macromolecular Chemistry & Physics 204, 22472257.CrossRefGoogle Scholar
Gilman, J. W., Kashiwagi, T., Nyden, M., Brown, J. E. T., Jackson, C. L., et al. (1990). Flammability Studies of Polymer-Layered Silicate Nanocomposites: Polyolefin, Epoxy, and Vinyl Ester Resins. In Chemistry and Technology of Polymer Additives, Ak-Malaika, S., Colovoy, A., and Wilkie, C. A. (Eds.). Malden, MA: Blackwell Science, pp. 249265.Google Scholar
Koo, J. H., Nguyen, K., Lee, J. C., Ho, W. K., Bruns, M. C., and Ezekoye, O. A. (2010). Flammability studies of a novel class of thermoplastic elastomer nanocomposites. Journal of Fire Sciences 28(1), 4985.CrossRefGoogle Scholar
Koo, J. H., Ezekoye, O. A., Lee, J. C., Ho, W. K., and Bruns, M. C. (2011). Rubber-Clay Nanocomposites Based on Thermoplastic Elastomers. In Rubber Clay Nanocomposites, Galimberti, M. (Ed.). New York: John Wiley & Sons, pp. 489521.CrossRefGoogle Scholar
Avila, A. F., Dias, E. C., Lopes da Cruz, D. T., Yoshida, M. I., Bracarense, A. Q., et al. (2010). An investigation on graphene and nanoclay effects on hybrid nanocomposites post fire dynamic behavior. Materials Research 13, 143150.CrossRefGoogle Scholar
Koo, J. H., Leo, H., Clay, W., and Conaway, J. (2011). Methodology to Evaluate Epoxy Nanocomposites for Fire Protection Application. AIAA Paper No. 2011-1799, Reston, VA.CrossRefGoogle Scholar
Guo, Y., Bao, C., Song, L., Yuan, B., and Hu, Y. (2011). In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Industrial and Engineering Chemistry Research 50, 77727783.CrossRefGoogle Scholar
Wang, Z., Tang, X. Z., Yu, Z. Z., Guo, P., Song, H. H., and Du, X. S. (2011). Dispersion of graphene oxide and its flame retardancy effect on epoxy nanocomposites. Chinese Journal of Polymer Science 3, 368376.CrossRefGoogle Scholar
Higginbotham, A. L., Lomdea, J. R., Morgan, A. B., and Tour, J. M. (2009). Graphite oxide flame-retardant polymer nanocomposites. Applied Materials Interfaces 1, 22562261.CrossRefGoogle ScholarPubMed
Kashiwagi, T., Du, F., Winey, K. I., Groth, K. M., Shield, J. R., et al. (2005). Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentration. Polymer 46, 471481.CrossRefGoogle Scholar
Kashiwagi, T. (2007). Progress in Flammability Studies of Nanocomposites with New Types of Nanoparticles. In Flame Retardant Polymer Nanocomposites, Morgan, A. B. and Wilkie, C. A. (Eds.). Hoboken, NJ: Wiley & Sons, pp. 285324.CrossRefGoogle Scholar
Bocchini, S., Frache, A., Camino, G., and Claes, M. (2007). Polyethylene thermal oxidative stabilization in carbon nanotubes based nanocomposites. European Polymer Journal 43, 32223235.CrossRefGoogle Scholar
Butler, S., Kim, G., Koo, J. H., et al. (2011). Polyamide 11-Halloysite Nanotube Nanocomposites: Mechanical, Thermal, and Flammability Characterization. Proceedings of the 2011 SAMPE ISTC, SAMPE, Covina, CA.Google Scholar
Lao, S. C., Kan, M. F., Lam, C. K., Koo, J. H., Moon, T., et al. (2010). Polyamide 11-Carbon Nanotubes Nanocomposites: Processing, Morphological, and Property Characterization. Proceedings of the 2010 Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, TX.Google Scholar
Landry, C. J. T., Coltrain, B. K., Landry, M. R., Fitzgerald, J. J., and Long, V. K. (1993). Poly(vinyl acetate) silica filled materials: Material properties of in-situ vs. fumed silica particles. Macromolecules 26, 37023712.CrossRefGoogle Scholar
Hajji, P., David, L., Gerard, J. F., Pascault, J. P., and Vigier, G. (1999). Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethl methacrylate. Journal of Polymer Science B 37, 31723187.3.0.CO;2-R>CrossRefGoogle Scholar
Ou, Y., Yang, F., and Yu, Z. Z. (1998). New conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. Journal of Polymer Science B 36, 789795.3.0.CO;2-G>CrossRefGoogle Scholar
Reynaud, E., Jouen, T., Gauthier, C., Vigier, G., and Varlet, J. (2001). Nanofiller in polymeric matrix: A study on silica reinforced PA6. Polymer 42, 87598768.CrossRefGoogle Scholar
Hsiue, G. H., Kuo, W. J., Huang, Y. P., and Jeng, R. J. (2000). Microstructural and morphological characteristics of PS-SiO2 nanocomposites. Polymer 41, 28132825.CrossRefGoogle Scholar
Liu, Y. L., Hsu, C. Y., Wei, W. L., and Jeng, R. J. (2003). Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica. Polymer 44, 51595167.CrossRefGoogle Scholar
Kashiwagi, T., Gilman, J. W., Butler, K. M., Harris, R. H., and Shields, J. R. (2000). Flame retardant mechanism of silica gel/silica. Fire Materials 24(6), 277289.3.0.CO;2-A>CrossRefGoogle Scholar
Kashiwagi, T., Shields, J. R., Harris, R. H., and Davis, R. D. (2003). Flame-retardant mechanism of silica: Effect of resin molecular weight. Journal of Applied Polymer Science 87, 15411553.CrossRefGoogle Scholar
Yang, F. and Nelson, G. L. (2004). PMMA/silica nanocomposite studies: Synthesis and properties. Journal of Applied Polymer Science 91, 38443850.CrossRefGoogle Scholar
Kashiwagi, T., Morgan, A. B., Antonucci, J. M., Van Landingham, M. R., Harris, R. H., et al. (2003). Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite. Journal of Applied Polymer Science 89, 20722078.CrossRefGoogle Scholar
Yang, F., Yngard, R., and Nelson, G. L. (2005). Flammability of polymer-clay and polymer-silica nanocomposites. Journal of Fire Science 23, 209226.CrossRefGoogle Scholar
Lao, S. C., Koo, J. H., Moon, T. J., Hadisujoto, B., Yong, W., et al. (2009). Flammability and Thermal Properties of Polyamide 11-alumina Nanocomposites. Proceedings of the 2009 Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin, TX.Google Scholar
Rallini, M., Monti, M., Natali, M., Kenny, J. M., and Torre, L. (2011). Alumina Nanoparticles as a Filler of Carbon Fibre/Epoxy Composites for Improved Fire Resistance. Proceedings of the 2011 SAMPE ISTC. Covina, CA: SAMPE.Google Scholar
Kalfus, J. and Jancar, J. (2010). Effect of particle size on the thermal stability and flammability of Mg(OH)2/EVA nanocomposites. Computer Interfaces 17, 689703.CrossRefGoogle Scholar
Vesely, K., Rychly, J., Kummer, M., and Jancar, J. (1990). Flammability of highly filled polyolefins. Polymer Degradation and Stability 30, 101105.CrossRefGoogle Scholar
Rychly, J., Vesely, K., Gal, E., Kummer, M., Jancar, J., and Rychla, L. (1990). Use of thermal methods in the characterization of the high-temperature decomposition and ignition of polyolefins and EVA copolymers filled with Mg(OH)2, Al(OH)3, and CaCO3. Polymer Degradation and Stability 30, 5762.CrossRefGoogle Scholar
Gui, H., Zhang, X. H., Gao, J. M., Dong, W. F., Song, Z. H., et al. (2007). An EVA/unmodified nano-magnesium hydroxide/silicone rubber nanocomposite with synergistic flame retardancy. Chinese Journal of Polymer Science 25, 437440.CrossRefGoogle Scholar
Ly, J. P. and Liu, W. H. (2007). Flame retardancy and mechanical properties of EVA nanocomposites based on magnesium hydroxide nanoparticles/microcapsulated red phosphorus. Journal of Applied Polymer Science 105, 333340.Google Scholar
Mishra, S., Sonawane, S. H., Singh, R. P., Bendale, A., and Patil, K. (2004). Effect of nano-Mg(OH)2 on the mechanical and flame-retarding properties of polypropylene composites. Journal of Applied Polymer Science 94, 116122.CrossRefGoogle Scholar
Zhang, Q., Tian, M., Wu, Y., Lin, G., and Zhang, L. (2004). Effect of particle size on the properties of Mg(OH)2-filled rubber composites. Journal of Applied Polymer Science 94, 23412346.CrossRefGoogle Scholar
Song, G., Ma, S., Tang, G., Yin, Z., and Wang, X. (2010). Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano-magnesium hydroxide. Energy 35, 21792183.CrossRefGoogle Scholar
Cao, H., Zheng, H., Yin, J., Lu, Y., Wu, S., et al. (2010). Mg(OH)2 complex nanostructures with superhydrophobicity and flame retardant effects. Journal of Physics and Chemistry C 114, 1736217368.CrossRefGoogle Scholar
Patil, C. B., Kapadi, U. R., Hundiwale, D. G., and Mahulikar, P. P. (2008). Effect of nano-magnesium hydroxide on mechanical and flame-retarding properties of SBR and PBR: A comparative study. Polymer-Plastics Technology and Engineering 47, 11741178.CrossRefGoogle Scholar
Suihkonen, R., Nevalainen, K., Orell, O., Honkanen, M., Tang, L., et al. (2012). Performance of epoxy filled with nano- and micro-sized magnesium hydroxide. Journal of Materials Science 47(3), 14801488.CrossRefGoogle Scholar
Hybrid Plastics, Inc. “Home page.” Last modified 2010. http://www.hybridplastics.com.Google Scholar
Mantz, R. A., Jones, P. F., Chaffee, K. P., Lichtenhan, J. D., Gilman, J. W., et al. (1996). Thermolysis of polyhedral oligomeric silsequioxane (POSS) macromers and POSS-siloxane copolymers. Chemistry of Materials 8, 12501259.CrossRefGoogle Scholar
Schwab, J. J., and Lichtenhan, J. D. (1998). Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Applied Orgaometallic Chemistry 12, 707713.3.0.CO;2-1>CrossRefGoogle Scholar
Kashiwagi, T. and Gilman, J. W. (2000). Silicon-Based Flame Retardants. In Fire Retardancy of Polymeric Materials, Grand, A. F. and Wilkie, C. A. (Eds.). New York: Marcel Dekker, pp. 353389.Google Scholar
Fina, A., Tabuani, D., Frache, A., and Camino, G. (2005). Polypropylene-polyhedral oligermeric silsesquioxanes (POSS) nanocomposites. Polymer 46, 78557866.CrossRefGoogle Scholar
Baldi, F., Bignotti, F., Fina, A., Tabuani, D., and Ricco, T. (2007). Mechanical characterization of polyhedral oligomeric silsesquioxane/polypropylene blends. Journal of Applied Polymer Science 105, 935943.CrossRefGoogle Scholar
Fina, A., Bocchini, S., and Camino, G. (2008). Catalytic fire retardant nanocomposites. Polymer Degradation and Stability 93, 16471655.CrossRefGoogle Scholar
Monticelli, O., Fina, A., Ullah, A., and Waghmare, P. (2009). Preparation, characterization, and properties of novel PSMA-POSS systems by reactive blending. Macromolecules 42, 66146623.CrossRefGoogle Scholar
Fina, A., Tabuani, D., Peijs, T., and Camino, G. (2009). POSS grafting on PPgMA by on-step reactive blending. Polymer 50, 218226.CrossRefGoogle Scholar
Fina, A., Monticelli, O., and Camino, G. (2010). POSS-based hybrids by melt/reactive blending. Journal of Materials Chemistry 20, 92979305.CrossRefGoogle Scholar
Herbert, M. J. and Brown, S. C. (1992). New Developments in ATH Technology and Applications. Paper presented at Flame Retardants ‘92 Conference, London, CT, January 12–13, pp. 100–119.Google Scholar
Beyer, G. (2007). Flame Retardant Properties of Organoclays and Carbon Nanotubes and Their Combinations with Alumina Tri Hydrate. In Flame Retardant Polymer Nanocomposites, Morgan, A. B. and Wilkie, C. A. (Eds.). Hoboken, NJ: Wiley & Sons, pp. 163190.CrossRefGoogle Scholar
Beyer, G. (2005). Flame retardancy of nanocomposites: from research to technical products. Journal of Fire Science 23, 7587.CrossRefGoogle Scholar
Beyer, G. (2002). Carbon nanotubes as flame retardants for polymers. Fire Materials 26, 291293.CrossRefGoogle Scholar
Beyer, G. (2002). Improvements of the Fire Performance of Nanocomposites. Paper presented at the 13th Annual BCC Conference on Flame Retardancy for Polymers, Stamford, CT, June 3–6.Google Scholar
Beyer, G. (2005). Filler blend of carbon nanotubes and organoclays with improved char as a few flame retardant system for polymers and cable application. Fire Materials 29, 6169.CrossRefGoogle Scholar
Beyer, G., Gao, F., and Yuan, Q. (2005). A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polymer Degradation and Stability 89, 559564.Google Scholar
Johnson, B., Allcorn, E., Baek, M. G., and Koo, J. H. (2011). Combined Effects of Montmorillonite Clay, Carbon Nanofiber, and Fire Retardant on Mechanical and Flammability Properties of Polyamide 11 Nanocomposites. Proceedings of the 2011 SAMPE ISTC, SAMPE, Covina, CA.Google Scholar
Gao, F., Beyer, G., and Yuan, Q. (2005). A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polymer Degradation and Stability 89(3), 559564.CrossRefGoogle Scholar
Peeterbroeck, M., Alexandre, J., J. B. Nagy, et al. (2004). Polymer-layered silicate–carbon nanotube nanocomposites: Unique nanofiller synergistic effect. Composites Science and Technology 64(15), 23172323.CrossRefGoogle Scholar
Gilman, J. W. (2007). Flame Retardant Mechanism of Polymer-Clay Nanocomposites. In Flame Retardant Polymer Nanocomposites, Morgan, A. B. and Wilkie, C. A. (Eds.). Hoboken, NJ: Wiley & Sons, pp. 6787.CrossRefGoogle Scholar
Kashiwagi, T., Harris, R. H., Zhang, X., Briber, R. M., Cipriano, B. H., et al. (2004). Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45, 881891.CrossRefGoogle Scholar
Lewin, M., E. M. Pearce, K. Levon, et al. (2006). Nanocomposites at elevated temperatures: migration and structural changes. Polymer for Advanced Technology 17, 226234. doi:10.1002/pat.684.CrossRefGoogle Scholar
Kashiwagi, T., Du, F., Winey, K. I., Groth, K. M., Shields, J. R., et al. (2005). Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentration. Polymer 46, 471481.CrossRefGoogle Scholar
Fina, A., Bocchini, S., and Camino, G. (2009). Thermal Behavior of Nanocomposites and Fire Testing Performance. In Fire and Polymers, Wilkie, C.A., Morgan, A. B., and Nelson, G. L. (Eds.). Washington, DC: American Chemical Society, pp. 1024.CrossRefGoogle Scholar
Fina, A., Canta, F., Castrovinci, A., and Camino, G. (2009). Significant Assessment of Nanocomposites’ Combustion Behaviour by the Appropriate Use of the Cone Calorimeter. In Fire Retardancy of Polymer – New Strategies and Mechanism, Hull, T. R., and Kandola, B. K. (Eds.). Cambridge: RSC Publishing, pp. 147159.Google Scholar
Morgan, A. B. and Wilkie, C. A. (2007). Practical Issues and Future Trends in Polymer Nanocomposite Flammability Research. In Flame Retardant Polymer Nanocomposites, Morgan, A. B. and Wilkie, C. A. (Eds.). Hoboken, NJ: Wiley & Sons, pp. 355399.CrossRefGoogle Scholar
Alongi, J., Carosio, F., and Malucelli, G. (2013). Current emerging techniques to impart flame retardancy to fabrics: An overview. Polymer Degradation and Stability 106, 138-149. doi: 10.1016/j.polymdegradstab.2013.07.012.Google Scholar

References

Koo, J. H., Ho, W. K., and Ezekoye, O. A. (2006). A Review of Numerical and Experimental Characterization of Thermal Protection Materials – Part I. Numerical Modeling, AIAA-2006-4936. Presented at the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Sacramento, CA, July 9–12.Google Scholar
Koo, J. H., Ho, W. K., Bruns, M., and Ezekoye, O. A. (2007). A Review of Numerical and Experimental Characterization of Thermal Protection Materials – Part II. Material Properties Characterization, AIAA-2007-2131. Presented at the 48th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, April 23–26.Google Scholar
Koo, J. H., Ho, W. K., Bruns, M., and Ezekoye, O. A. (2007). A Review of Numerical and Experimental Characterization of Thermal Protection Materials – Part III. Experimental Testing, AIAA-2007-5773. Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, July 8–11.CrossRefGoogle Scholar
Koo, J. H., Natali, M., Tate, J., and Allcorn, E. (2013). Polymer nanocomposites as advanced ablatives – a comprehensive review. International Journal of Energetic Materials and Chemical Propulsion 12(2), 119-162.CrossRefGoogle Scholar
Pinnavaia, T. J. and Beall, G. W. (Eds.) (2000). Polymer-Clay Nanocomposites. New York: Wiley & Sons.Google Scholar
Koo, J. H. (2006). Polymer Nanocomposites: Processing, Characterization, and Applications. New York: McGraw-Hill.Google Scholar
Morgan, A. B. and Wilkie, C. A. (Eds.) (2007). Flame Retardant Polymer Nanocomposites. Hoboken, NJ: Wiley & Sons.CrossRefGoogle Scholar
Gupta, R. A., Kennel, E., and Kim, K. J. (Eds.) (2010). Polymer Nanocomposites Handbook. Boca Raton, FL: CRC Press.Google Scholar
Mittal, V. (Ed.) (2010). Polymer Nanotube Nanocomposites: Synthesis, Properties, and Applications. Hoboken, NJ: Wiley & Sons.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2010). Optimization of Polymer Nanocomposites Properties. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2011). Thermally Stable and Flame Retardant Polymer Nanocomposites. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2012). Characterization Techniques for Polymer Nanocomposites. Weinhein, Germany: Wiley-VCH.CrossRefGoogle Scholar
Beall, G. W. and Powell, C. B. (2011). Polymer-Clay Nanocomposites. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Vaia, R. A., Price, G., Ruth, P. N., Nguyen, H. T., and Lichtenhan, J. L. (1999). Polymer/layer silicate nanocomposites as high performance ablative materials. Applied Clay Sciences 15, 6792.CrossRefGoogle Scholar
Laub, B. and Venkatathy, E. (2003). Thermal Protection System Technology and Facility Needs for Demanding Future Planetary Missions. Proceedings of the International Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, Lisbon, Portugal.Google Scholar
Lombardi, M., Fino, P., Malicelli, G., and Montanaro, L. (2012). Exploring composites based on PPO blend as ablative thermal protection systems – Part I: The role of layered fillers. Composite Structures 94, 10671074.CrossRefGoogle Scholar
Lombardi, M., Fino, P., and Montanaro, L. (2014). Influence of ceramic particles features on the thermal behaviour of PPO-matrix composites. Science and Engineering of Composite Materials De Gruyter, 23-28, ISNN: 2191-0359.Google Scholar
Fino, P., Lombardi, M., Antonini, A., Malucelli, G., and Montanaro, L. (2012). Exploring composites based on PPO blend as ablative thermal protection systems – Part II: The role of equiaxial fillers. Composite Structures 94, 10601066.CrossRefGoogle Scholar
Lincoln, D. M., Vaia, R. A., Brown, J. M., and Benison Tolle, T. H. (2000). Revolutionary Nanocomposite Materials to Enable Space Systems. Proceedings of the 21st Century Aerospace Conference IEEE, Big Sky, MT, vol. 4, pp. 183–192.Google Scholar
Philip, S. H., Gonzales, R. I., Blanski, R. L., and Viers, B. D. (2002). Hybrid Inorganic/Organic Reactive Polymers for Severe Environment Protection. Proceedings of the 47th SAMPE ISSE, SAMPE, Covina, CA, May 12–16.Google Scholar
Yezzi, C. A. and Moore, B. B. (1986). Characterization of Kevlar/EPDM rubbers for use as rocket motor case insulators, AIAA-86-1489. Presented at the AIAA/ASME/SAE/ASEE 22nd Joint Propulsion Conference, Huntsville, AL, June 16-18.Google Scholar
Mathias, E. C. and Johnson, T. N., (1999). 20th JANNAF Rocket Nozzle Subcommittee Meeting, CPIA Pub. 694, pp. 237–266.Google Scholar
Koo, J. H., Polidan, J., et al. (2002). An Investigation of Polymer Nanocomposite Ablatives Characterization. Invited lecture at the 30th Annual Conference of the North American Thermal Analysis Society, Pittsburgh, PA, September 23–25.Google Scholar
Koo, J. H., Blanski, R., et al. (2003). Nanostructured Ablatives for Rocket Propulsion System–Recent Progress, AIAA-2003-1769. Presented at the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, April 7–10.Google Scholar
Koo, J. H. and Pilato, L. (2005). Polymer Nanostructured Materials for Propulsion Systems, AIAA-2005-3606. Presented at the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tucson, AZ, July 10–12.Google Scholar
Gao, G., Zhang, Z., Li, X., Meng, X. Q., Zheng, Y., and Jin, Z. (2010). Study on mechanical and ablative properties of EPDM/OMMT thermal insulating nanocomposites. Journal of Nanoscience and Nanotechnology 10, 70317035.CrossRefGoogle Scholar
ASTM E-285-80 (2008). Standard test method for oxy-acetylene ablation testing of thermal insulation materials. Annual Book of ASTM Standards.Google Scholar
Singh, S., Guchhait, P. K., Bandyopadhyay, G. G., and Chaki, T. K. (2013). Development of polyimide-nanosilica filled EPDM based light rocket motor insulator compound: Influence of polyimide-nanosilica loading on thermal, ablation, and mechanical properties. Composites: Part A 44, 815.CrossRefGoogle Scholar
Natali, M., Rallini, M., Puglia, D., Kenny, J., and Torre, L. (2013). EPDM based heat shielding materials for solid rocket motors: A comparative study of different fibrous reinforcements. Polymer Degradation and Stability 98, 21312139.CrossRefGoogle Scholar
Iqbal, N., Sagar, S., Khan, M. B., and Rafique, H. M. (2014). Elastomeric ablative nanocomposites used in hyperthermal environments. Polymer Engineering and Science 54, 255263.CrossRefGoogle Scholar
Khanlart, S. and Kokabi, M. (2010). Thermal stability, aging properties, and flame resistance of NR-based nanocomposites. Journal of Applied Polymer Science 119, 855862.CrossRefGoogle Scholar
Guan, Y., Zhang, L. X., Zhang, L. Q., and Lu, Y. L. (2011). Study on ablative properties and mechanisms of hydrogenated nitrile butadiene rubber (HNBR) composites containing different fillers. Polymer Degradation and Stability 96, 808817.CrossRefGoogle Scholar
Koo, J. H. (2006). Polymer Nanocomposites: Processing, Characterization, and Applications, New York: McGraw-Hill.Google Scholar
Koo, J. H., Pilato, L., and Wissler, G. (2007). Polymer nanostructured materials for propulsion systems. Journal of Spacecraft and Rockets 44(6), 12501262.CrossRefGoogle Scholar
Koo, J. H., Ezekoye, O. A., et al. (2009). Characterization of Polymer Nanocomposites for Solid Rocket Motor – Recent Progress. Proceedings of the SAMPE 2009 ISSE, SAMPE, Covina, CA.Google Scholar
Koo, J. H., et al. (2010). Flammability studies of a novel class of thermoplastic elastomer nanocomposites. Journal of Fire Sciences 28(1), 4985.CrossRefGoogle Scholar
Koo, J. H., Ezekoye, O. A., Lee, J. C., Ho, W. K., and Bruns, M. C. (2011). Rubber-Clay Nanocomposites Based on Thermoplastic Elastomers. In Rubber-Clay Nanocomposites, Galimberti, M. (Ed.). Hoboken, NJ: Wiley and Sons, pp. 489521.CrossRefGoogle Scholar
Ho, W. K., Koo, J. H., and Ezekoye, O. A. (2009). Kinetics and thermophysical properties of polymer nanocomposites for solid rocket motor insulation. Journal of Spacecraft and Rockets 46(3), 526544.CrossRefGoogle Scholar
Ho, W. K., Koo, J. H., and Ezekoye, O. A. (2010). Thermoplastic polyurethane elastomer nanocomposites: Morphology, thermophysical, and flammability properties. Journal of Nanomaterials 2010, Article ID 583234 (11pp). doi: 10.1155/2010/583234.Google Scholar
Bruns, M. C., Koo, J. H., and Ezekoye, O. A. (2009). Population-based models of thermoplastic degradation: Using optimization to determine model parameters. Polymers Degradation and Stability 94, 10131022.CrossRefGoogle Scholar
Lee, J. C., Koo, J. H., and Ezekoye, O. A. (2009). Flammability Studies of Thermoplastic Polyurethane Elastomer Nanocomposites, AIAA-2009-2544. Presented at the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Spring, CA, May 4–7.Google Scholar
Lee, J. C., Koo, J. H., Ezekoye, O. A., et al. (2009). Heating Rate and Nanoparticle Loading Effects on Thermoplastic Polyurethane Elastomer Nanocomposite Kinetics, AIAA-2009-4096. Presented at the AIAA Thermophysics Conference, San Antonio, TX, June 22–25.Google Scholar
Lee, J. C., Koo, J. H., and Ezekoye, O. A. (2009). Thermoplastic Polyurethane Elastomer Nanocomposites: Density, Hardness, and Flammability Properties Correlations, AIAA-2009-5273. Presented at the AIAA Joint Propulsion Conference, Denver, CO, August 2–5.Google Scholar
Lee, J. C. (2010). Characterization of Ablative Properties of Thermoplastic Polyurethane Elastomer Nanocomposites. Ph.D. Dissertation, The University of Texas at Austin, Department of Mechanical Engineering, Austin, TX.Google Scholar
Lee, J. C., Koo, J. H., and Ezekoye, O. A. (2011). Thermoplastic Polyurethane Elastomer Nanocomposite Ablatives: Characterization and Performance, AIAA-2011-6051. Presented at the 47th AIAA/ASME/SAE Joint Propulsion Conference, San Diego, CA, August 1–4.Google Scholar
Allcorn, E., Natali, M., and Koo, J. H. (2011). Ablation Performance and Characterization of Thermoplastic Elastomer Nanocomposites. Proceedings of the SAMPE 2011 ISTC, Fort Worth, TX, October 17–20.Google Scholar
Allcorn, E., Natali, M., and Koo, J. H. (2013). Ablation performance and characterization of thermoplastic elastomer nanocomposites. Composites: Part A 45, 109118.CrossRefGoogle Scholar
De Heer, W. A. (2004). Nanotubes and the pursuit of applications. Materials Research Society Bulletin 29(4), 281285.CrossRefGoogle Scholar
Bell, M. S. and Tam, W. (1992). ASRM Case Insulation Design and Development, NASA-CR-191947.Google Scholar
Bhuvaneswari, C. M., Kakade, S. D., Deuskar, V. D., Dange, A. B., and Gupta, M. (2008). Filled ethylene-propylene diene terpolymer elastomer as thermal insulator for case-bonded solid rocket motors. Defence Science Journal 58(1), 94102.CrossRefGoogle Scholar
Bhuvaneswari, C. M., Sureshkumar, M. S., Kakade, S. D., and Gupta, M. (2006). Ethylene-propylene diene rubber as a futuristic elastomer for insulation of solid rocket motors. Defence Science Journal 56(3), 309320.CrossRefGoogle Scholar
Jaramillo, M., Koo, J. H., Edd, A. E., and Wells, D. M. (2011). An Experimental Investigation of Char Strength of Polymer Nanocomposites for Propulsion Applications. Proceedings of the International SAMPE Technical Conference, Dallas, TX, October.Google Scholar
Moniruzzaman, M. and Winey, K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16), 51945205.CrossRefGoogle Scholar
George, J. J. and Bhowmick, A. K. (2008). Fabrication and properties of ethylene vinyl acetate-carbon nanofiber nanocomposites. Nanoscale Research Letters 3, 508515.CrossRefGoogle ScholarPubMed
Lee, S. H. et al. (2004). Thermal properties of maleated polyethylene/ layered silicates nanocomposites. International Journal of Thermophysics 25, 15851595.CrossRefGoogle Scholar
Schartel, B., Weib, A., Sturm, H., Kleemeier, M., Hartwig, A., et al. (2011). Layered silicate epoxy nanocomposites: Formation of the inorganic-carbonaceous fire protection layer. Polymers for Advanced Technologies 22(12), 1581-1592, doi: 10.1002/pat.1644.CrossRefGoogle Scholar
Natali, M., Monti, M., Puglia, D., Kenny, J. M., and Torre, L. (2011). Ablative properties of carbon black and MWNT/phenolic composites: A comparative study. Composites: Part A 43, 174182.CrossRefGoogle Scholar
Ambuken, P., Stretz, H., Koo, J. H., Lee, J., and Trejo, R. (2012). High Temperature Flammability and Mechanical Properties of Thermoplastic Polyurethane Nanocomposites. In Fire and Polymers VI: New Advances in Flame Retardant Chemistry and Science, A. Morgan and Wilkie, C. (Eds.). Washington, DC: ACS Books Series, pp. 344-360. doi: 10.1021/bk-2012-1118.ch023.Google Scholar
Yang, D., Zhang, W., Jiang, B. Z., and Guo, Y. (2013). Silicone rubber ablative composites improved with zirconium carbide or zirconia. Composites: Part A 44, 7077.CrossRefGoogle Scholar
Patton, R. D., Pittman, C. U., Jr., Wang, L., and Hill, J. R. (1999). Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites. Composites: Part A 30(9), 10811091.CrossRefGoogle Scholar
Patton, R. D., Pittman, C. U., Jr., Wang, L., and Hill, J. R. (1999). Vapor grown carbon fiber composites with epoxy and poly (phenylene fulfide) matrices. Composites: Part A 30, 10811091.CrossRefGoogle Scholar
Koo, J. H., Kneer, M., et al. (1992). A cost-effective approach to evaluate high-temperature ablatives for military applications. Naval Engineers Journal 104(3), 166177.CrossRefGoogle Scholar
Koo, J. H., Lin, S, et al. (1992). Performance of High-Temperature Polymer Composite Ablatives under a Hostile Environment. Science of Advanced Materials and Process Engineering Series, 37, SAMPE, Covina, CA, pp. 506–520.Google Scholar
Koo, J. H., Miller, M., et al. (1993). Evaluation of Fiber-Reinforced Composites Ablatives for Thermal Protection. Science of Advanced Materials and Process Engineering Series, 38, SAMPE, Covina, CA, pp. 1085–1098.Google Scholar
Cheung, F. B., Koo, J. H., et al. (1993). Modeling of one-dimensional thermo-mechanical erosion of high-temperature ablatives. Journal of Applied Mechanics 60, 10271032.Google Scholar
Wilson, D., Beckley, D., and Koo, J. H. (1994). Development of silicone matrix-based advanced composites for thermal protection. High Performance Polymer 6(2), 165181.CrossRefGoogle Scholar
Shih, Y. C., Cheung, F. B., and Koo, J. H. (2003). Numerical study of transient thermal ablation of high-temperature insulation materials. Journal of Thermophysics and Heat Transfer 17(1), 5361.CrossRefGoogle Scholar
Koo, J. H., Miller, M. J., Weispfenning, J., and Blackmon, C. (2011). Silicone polymer composites for thermal protection system: Fiber reinforcements and microstructures. Journal of Composite Materials 45(13), 13631380.CrossRefGoogle Scholar
Koo, J. H., Miller, M. J., Weispfenning, J., and Blackmon, C. (2011). Silicone polymer composite for thermal protection of naval launching system. Journal of Spacecraft and Rockets 48(6), 904919.CrossRefGoogle Scholar
Koo, J. H., Stretz, H., Bray, A., and Wootan, W. (2001). Next Generation Nanostructured Ablatives for Rocket Propulsion System, AFOSR Contract No. F49620-00-C-0045, STTR Phase I Final Report, Submitted to AFOSR, Arlington, VA, September.Google Scholar
Koo, J. H., Stretz, H., Bray, A., Wootan, W., Mulich, S., et al. (2002). Phenolic-clay nanocomposite for rocket propulsion systems. Proceedings of the 2002 SAMPE ISSE, 47, SAMPE, Covina, CA, pp. 10851099.Google Scholar
Koo, J. H., Stretz, H., and Bray, A. (2002). Nanocomposite Rocket Ablative Materials, AFOSR Contract No. F49620-00-C-0045, STTR Phase II Annual Report, Submitted AFOSR, Arlington, VA, September.Google Scholar
Koo, J. H., Stretz, H., Bray, A., Weispfenning, J., Luo, Z. P., and Wootan, W. (2003). Nanocomposites Rocket Ablative Materials: Processing, Characterization, and Performance. Proceedings of the 2003 SAMPE ISSE, 48, SAMPE, Covina, CA, pp. 1156–1170.Google Scholar
Koo, J. H., Stretz, H., Bray, A., Weispfenning, J., Luo, Z. P., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Processing, Microstructure, and Performance, AIAA-2004-1996. Presented at the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Palms Springs, CA, April 19–22.CrossRefGoogle Scholar
Koo, J. H., Stretz, H., Weispfenning, J., Luo, Z. P., and Wootan, W. (2004). Nanocomposite rocket ablative materials: Subscale ablation test. Proceedings of the 2004 SAMPE ISSE, 49, SAMPE, Covina, CA, pp. 10001014.Google Scholar
Koo, J. H., Chow, W. K., Stretz, H., Cheng, A. C.-K., Bray, A., and Weispfenning, J. (2003). Flammability properties of polymer nanostructured materials. Proceedings of the 2003 SAMPE ISSE, 48, SAMPE, Covina, CA, pp. 954963.Google Scholar
Koo, J. H., Pilato, L., and Wissler, G. E. (2005). Polymer nanostructured materials for high-temperature applications. SAMPE Journal 41(2), 719.Google Scholar
Koo, J. H. and Pilato, L. A. (2006). Thermal Properties and Microstructures of Polymer Nanostructured Materials. In Nanoengineering of Structural, Functional, and Smart Materials, Schulz, M. J., Kelkar, A., and Sundaresan, M. J. (Eds.). Boca Raton, FL: CCR Press, pp. 409441.Google Scholar
Miller, M. J., Koo, J. H, et al. (1993). Evaluation of Different Categories of Composite Ablative for Thermal Protection, AIAA-93-0839. Presented at the 31st AIAA Aerospace Sciences Meeting, Reno, NV, January.Google Scholar
Cheung, F. B., Koo, J. H., et al. (1995). Prediction of Thermo-Mechanical Erosion of High-Temperature Ablatives in the SSRM Facility, AIAA-95-0254. Presented at the 33rd Aerospace Sciences Meeting, Reno, NV, January.Google Scholar
VanMeter, M., Koo, J. H., et al. (1995). Mechanical Properties and Material Behavior of a Glass Silicone Polymer Composite. Proceedings of the 40th International SAMPE Symposium, SAMPE, Covina, CA.Google Scholar
Koo, J. H., et al. (1998). Effect of Major Constituents on the Performance of Silicone Polymer Composites. Proceedings of the 30th International SAMPE Technical Conference, SAMPE, Covina, CA.Google Scholar
Koo, J. H., et al. (1999). Thermal Protection of a Class of Polymer Composites. Proceedings of the 44th International SAMPE Symposium, SAMPE, Covina, CA.Google Scholar
MX-4926 Technical Data Sheet, Cytec Engineered Materials, Winona, MN.Google Scholar
Luehmann, W., Pratt & Whitney Space Propulsion/Chemical Systems Division, San Jose, CA, personal communication.Google Scholar
SC-1008 Technical Data Sheet, Borden Chemical, Louisville, KY.Google Scholar
Koo, J. H., Pittman, C. U., Jr., Liang, K., Cho, H., Pilato, L. A., et al. (2003). Nanomodified carbon/carbon composites for intermediate temperature: processing and characterization. Proceedings of the International SAMPE Technical Conference 35, 521534.Google Scholar
Koo, J. H., Pilato, L. A., Pittman, C. U., and Winzek, P. (2004). Nanomodified Carbon/Carbon Composites for Intermediate Temperature, AFOSR Contract No. F49620-02-C-0086, STTR Phase I Final Report, submitted to AFOSR, Arlington, VA, January.Google Scholar
Koo, J. H., Pilato, L. A., Winzek, P., Shivakumar, K., Pittman, C. U., Jr., and Luo, Z. P. (2004). Thermo-oxidative studies of nanomodified carbon/carbon composites. Proceedings of the International SAMPE Symposium and Exhibition 49, 12141228.Google Scholar
Blanski, R., Koo, J. H., et al. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation – Ablation Performance. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.Google Scholar
Koo, J. H., Marchant, D., et al. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation – Processing, Microstructure, and Mechanical Properties. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.Google Scholar
Ruth, P., Blanski, R., and Koo, J. H. (2004). Preparation of Polymer Nanostructured Materials for Solid Rocket Motor Insulation. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.Google Scholar
Koo, J. H., Pilato, L., et al. (2005). Epoxy Nanocomposites for Carbon Fiber-Reinforced Composites. Proceedings of the SAMPE 2005 International Symposium, SAMPE, Covina, CA, May 1–5.Google Scholar
Koo, J. H., Pilato, L., et al. (2005). Nanocomposites for Carbon Fiber-Reinforced Polymer Matrix Composites, AIAA-2005-1928. Presented at the 46th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Austin, TX, April 18–21.CrossRefGoogle Scholar
Koo, J. H., Pilato, L., et al. (2004). Nanocomposite for Carbon Fiber Reinforced Polymer Matrix Composites, AFOSR STTR Phase I Final Report, submitted to AFOSR, Arlington, VA, October.Google Scholar
Koo, J.H., Pilato, L., Wissler, G.E. and Luo, Z.P. (2005) Flammability and Mechanical Properties of Nylon 11 Nanocomposites, Proceedings of the International SAMPE 2005 Symposium and Exhibition (ISSE), SAMPE, Covina, CA, May.Google Scholar
Koo, J. H., Pilato, L. A., and Wissler, G. E. (2005). Fire Retardant Polymer Nanocomposites for Selective Laser Sintering Processing, submitted USPO patent application on July 27.Google Scholar
Cheng, J., Lao, S., Nguyen, K., Ho, W., Cummings, A., and Koo, J. H. (2005). SLS Processing of Nylon 11 Nanocomposites. Proceedings of the 17th Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, TX, August.Google Scholar
Koo, J. H., Pilato, L., et al. (2005). Innovative Selective Laser Sintering Rapid Manufacturing Using Nanotechnology. Proceedings of the 2005 Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, TX, August.Google Scholar
Lao, S., Ho, W., Nguyen, K., Cheng, J., and Koo, J. H. (2005). Microstructural Analyses of Nylon 11 Nanocomposites. Proceedings of the 37th International SAMPE Technical Conference (ISTC), Seattle, WA, October 31 – November 3.Google Scholar
Cummings, A., Shi, L., and Koo, J. H. (2005). Thermal Conductivity Measurements of Nylon 11-Carbon Nanofiber Nanocomposites. Proceedings of the IMECE2005 (2005 ASME International Mechanical Engineering Congress and Exposition), Orlando, FL, November 5–11.CrossRefGoogle Scholar
Lao, S. C., Moon, T., Koo, J. H., et al. (2009). Flame-retardant polyamide 11 and 12 nanocomposites: Thermal and flammability properties. Journal of Composite Materials 43(17), 18031816.CrossRefGoogle Scholar
Lao, S. C., Koo, J. H., et al. (2010). Flame-retardant polyamide 11 and 12 nanocomposites: Processing, morphology, and mechanical properties. Journal of Composite Materials 44(25), 29332951.CrossRefGoogle Scholar
Lao, S. C., Koo, J. H., et al. (2011). Flame-retardant polyamide 11 nanocomposites: Further thermal and flammability studies, Journal of Fire Sciences 29(6), 479498.CrossRefGoogle Scholar
Bray, A., Beal, G., and Stretz, H. (2004). Nanocomposite Rocket Ablative Materials, AFOSR STTR Phase II Contract F49620-02-0013, Final Report, submitted to AFOSR, Arlington, VA.Google Scholar
Liu, Y., Lu, Z., Chen, X., Wang, D., Liu, J., and Hu, L. (2009). Study on phenolic-resin/carbon-fiber ablation composites modified with polyhedral oligomeric silsesquioxanes. Proceedings of the 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China, January 5–8.Google Scholar
Laine, R. M. (2005). Nanobuilding blocks based on the [OSiO] (x=6, 8, 10) octasilsesquioxanes. Journal of Materials Chemistry 15, 37253744.CrossRefGoogle Scholar
Hu, L., Zhang, X., and Sun, Y. (2005). Hardness and elastic modulus profiles of hybrid coating. Journal of Sol-Gel Science and Technology 34, 4146.CrossRefGoogle Scholar
Tanaka, K., Adachi, S., and Chujo, Y. (2009). Structure-property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. Journal of Polymer Science: Part A: Polymer Chemistry 47, 56905697.CrossRefGoogle Scholar
Franchini, E., Galy, J., Gèrard, J. F., Tabuani, D., and Medici, A. (2009). Influence of POSS structure on the fire retardant properties of epoxy hybrid networks. Polymer Degradation and Stability 94, 17281736.CrossRefGoogle Scholar
Yu, Q-C. and Wan, H. (2012). Ablation capability of flake graphite reinforced barium-phenolic resin composite under long pulse laser irradiation. Journal of Inorganic Materials 27(2), 157161 (in Chinese).CrossRefGoogle Scholar
Si, J., Li, J., Wang, S., Li, Y., and Jing, X. (2013). Enhanced thermal resistance of phenolic resin composites at low loading of graphene oxide. Composites: Part A 54, 166172.CrossRefGoogle Scholar
Srikanth, I., Daniel, A., Kumar, S., Padmavathi, N., Singh, V., et al. (2010). Nano silica modified carbon–phenolic composites for enhanced ablation resistance. Scripta Materialia 63, 200203.CrossRefGoogle Scholar
ASTM E1225-09 (2008). Standard test method for thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique, Annual Book of ASTM Standards.Google Scholar
Kumar, S., Kumar, A., Shukla, A., Devi, G. R., and Gupta, A. K. (2005). Thermal-diffusivity measurement of 3D-stitched C–SiC composites. Journal of the European Ceramics Society 29(3), 489495.CrossRefGoogle Scholar
Knacke, O., Kubaschewski, O., and Hesselman, K. (1991). Thermo-Chemical Properties of Inorganic Substances, 2nd ed. Berlin: Springer-Verlag.Google Scholar
Xiao, J., Chen, J.-M., Zhou, H.-D., and Zhang, Q. (2007). Study of several organic resin coatings as anti-ablation coatings for supersonic craft control actuator. Materials Science and Engineering: Part A 452–453, 2330.CrossRefGoogle Scholar
Lee, Y. J. and Joo, H. (2004). Ablation characteristics of carbon fiber reinforced carbon (CFRC) composites in the presence of silicon carbide. Surface Coating Technologies 180–181, 286289.CrossRefGoogle Scholar
Srikanth, I., Padmavathi, N., Kumar, S., Ghosal, P., Kumar, A., and Subrahmanyam, C. (2013). Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Composites Science and Technology 80, 17.CrossRefGoogle Scholar
Bahramian, A. R., Kokabi, M., Navid Famili, M. H., and Beheshty, M. H. (2006). Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: Process modelling and experiment. Polymer 47, 36613673.CrossRefGoogle Scholar
Bahramian, A. R., Kokabi, M., Navid Famili, M. H., and Beheshty, M. H. (2007). Thermal degradation process of resol type phenolic resin matrix/kaolinite layered silicate nanocomposite. Iranian Polymer Journal 16(6), 375387.Google Scholar
Bahramian, A. R., Kokabi, M., Navid Famili, M. H., and Beheshty, M. H. (2008). High temperature ablation of kaolinite layered silicate/phenolic resin/asbestos cloth nanocomposite. Journal of Hazardous Materials 150, 136145.CrossRefGoogle ScholarPubMed
Bahramian, A. R. and Kokabi, M. (2009). Ablation mechanism of polymer layered silicate nanocomposite heat shield. Journal of Hazardous Materials 166, 445454.CrossRefGoogle ScholarPubMed
Bahramian, A. R. and Kokabi, M. (2011). Numerical and experimental evaluations of the flammability and pyrolysis of a resole-based nanocomposite by cone calorimeter. Iranian Polymer Journal 20(5), 399411.Google Scholar
Paydeyesh, A., Kokabi, M., and Bahramian, A. R. (2013). High temperature ablation of highly filled polymer-layered silicate nanocomposites. Journal of Applied Polymer Science 127, 2776-2785, doi: 10.1002/app.377588.CrossRefGoogle Scholar
ASTM E1269-11 (2008). Standard test method for determining specific heat capacity by differential scanning calorimetry. Annual Book of ASTM Standards.Google Scholar
Bartholmai, M. and Schartel, B. (2004). Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polymer for Advanced Technologies 15, 355364.CrossRefGoogle Scholar
Zanetti, M., Camino, G., and Mülhaupt, R. (2001). Combustion behavior of EVA/flourohectorite nanocomposites. Polymer Degradation and Stability 74, 413417.CrossRefGoogle Scholar
Duquesne, S., Jama, C., Bras, M. L., Delobel, R., Recourt, P., and Gloaguen, J. M. (2003). Elaboration of EVA-nanoclay systems-characterization, thermal behaviour and fire performance. Composites Science and Technologies 63, 11411148.CrossRefGoogle Scholar
Gilman, J. W., Jackson, C. L., Morgan, A. B., Harris, R., Manias, E., et al. (2000). Flammability properties of polymer layered silicate nanocomposites polypropylene and polystyrene nanocomposites. Chemistry of Materials 12, 18661873.CrossRefGoogle Scholar
Bahramian, A. R. (2013). Pyrolysis and flammability properties of novolac/graphite nanocomposites. Fire Safety Journal 61, 265273.CrossRefGoogle Scholar
Bahramian, A. R. and Astaneh, R. A. (2014). Improvement of ablation and heat shielding performance of carbon fiber reinforced composite using graphite and kaolinite nanopowders. Iranian Polymer Journal 23, 979985.CrossRefGoogle Scholar
Mirzapour, A., Asadollahi, M. H., Baghshaei, S., and Akbari, M. (2014). Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite. Composites: Part A 63, 159167.CrossRefGoogle Scholar
Torre, L., Kenny, J. M., and Maffezzoli, A. M. (1998). Degradation behaviour of a composite material for thermal protection systems, Part I–Experimental characterization. Journal of Materials Science 33(12), 31373143.CrossRefGoogle Scholar
Torre, L., Kenny, J. M., and Maffezzoli, A. M., (1998) Degradation behaviour of a composite material for thermal protection systems, Part II – Process simulation. Journal of Materials Science 33(12), 31453149.CrossRefGoogle Scholar
Torre, L., Kenny, J. M., Boghetich, G., and Maffezzoli, A. M. (2000). Degradation behaviour of a composite material for thermal protection systems, Part III – Char characterization. Journal of Materials Science 35(18), 45634566.CrossRefGoogle Scholar
Natali, M., Monti, M., Kenny, J., and Torre, L. (2011). Synthesis and thermal characterization of phenolic resin/silica nanocomposites prepared with high shear rate-mixing technique. Journal of Applied Polymer Science 120, 26322640.CrossRefGoogle Scholar
Natali, M., Monti, M., Kenny, J., and Torre, L. (2011). A nanostructured ablative bulk moulding compound: Development and characterization. Composite: Part A 42, 1197-1204. doi:10.1016/j.compositesa.2011.04.022.CrossRefGoogle Scholar
Natali, M., Monti, M., Puglia, D., Kenny, J., and Torre, L. (2012). Ablative properties of carbon black and MWNT/phenolic composites: a comparative study. Composites: Part A 43(1), 174182.CrossRefGoogle Scholar
Pavli, A. J. (1968). Experimental evaluation of several advanced ablative materials as nozzle sections of a storable propellant rocket engine, NASA TM X-1559.Google Scholar
Warga, J. J. (1979). Low Cost Fabrication Techniques for Solid Rocket Nozzles. Proceedings of the National Aeronautics and Space Engineering and Manufacturing Meeting, Los Angeles, CA, October 5–9, pp. 700–796.Google Scholar
D’Aelio, G. F. and Parker, J. A. (1971). Ablative Plastics. New York: Marcel Dekker.Google Scholar
Sutton, P. and Biblarz, O. (2000). Rocket Propulsion Elements. New York: Wiley-IEEE.Google Scholar
Peterson, D. A., Winter, J. M., and Shinn, A. M., Jr. (1969). Rocket engine evaluation of erosion and char as functions of fabric orientation for silica-reinforced nozzle materials, NASA TM X-1721.Google Scholar
ASTM E457-08 (2008). Standard test method for measuring heat-transfer rate using a thermal capacitance (slug) calorimeter. Annual Book of ASTM Standards.Google Scholar
Wu, C. S., Liu, Y. L., and Chiu, Y. S. (2002). Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents. Polymer 43(15), 42774284.CrossRefGoogle Scholar
Wang, W. J., Perng, L. H., Hsiue, G. H., and Chang, F. C. (2000). Characterization and properties of new silicone-containing epoxy resin. Polymer 41(16), 61136122.CrossRefGoogle Scholar
Zheng, S., Wang, H., Dai, Q., Kuo, X., Ma, D., and Wang, K. (1995). Morphology and structure of organosilicon polymer-modified epoxy resins. Macromolecular Chemistry and Physics 196(1), 269278.CrossRefGoogle Scholar
Monti, M., Natali, M., Petrucci, R., Puglia, D., Terenzi, A., et al. (2011). Advanced Fiber Reinforced Composites Based on Nanocomposite Matrices. In Wiley Encyclopaedia of Composites, 2nd ed., Nicolais, L. and Borzacchiello, A. (Eds.). doi:10.1002/9781118097298.weoc025.Google Scholar
Kashiwagi, T., Du, F., Winey, K. I., Groth, K. M., Shields, J. R., et al. (2005). Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentration. Polymer 46, 471481.CrossRefGoogle Scholar
Kashiwagi, T., Du, F., Douglas, J. F., Winey, K. I., Harris, R. H., and Shields, J. R. (2005). Nanoparticle networks reduced the flammability of polymer nanocomposites. Nature Materials 4, 928933.CrossRefGoogle ScholarPubMed
Cipiriano, B. H., Kashiwagi, T., Raghavan, S. R., Yang, Y., Grulke, E. A., et al. (2007). Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48, 60866096.CrossRefGoogle Scholar
Zhao, Z. and Gou, J. (2009). Improved fire retardancy of thermoset composites modified with carbon nanofibers. Science and Technologies of Advanced Materials 10 (1), 015005 (6pp). doi: 10.1088/1468-6996/10/1/015005.CrossRefGoogle ScholarPubMed
Rahatekara, S. S., Zammarano, M., Matko, S., Koziol, K. K., Windle, A. H., et al. (2010). Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites. Polymers Degradation and Stability 95, 870879.CrossRefGoogle Scholar
Park, J. M., Kwon, D. J., Wang, Z. J., Roh, J. U., Lee, W. I., et al. (2014). Effects of carbon nanotubes and carbon fiber reinforcements on thermal conductivity and ablation properties of carbon/phenolic composites. Composites: Part B 67, 2229.CrossRefGoogle Scholar
Tate, J. S., Jacobs, C. J., and Koo, J. H. (2011). Dispersion of MWCNT in phenolic resin using different dispersion techniques and evaluation of thermal properties. Proceedings of the 2011 SAMPE ISSE, Long Beach, CA, May 23–26.Google Scholar
Tate, J. S., Gaikwad, S., Theodoropoulou, N., Trevino, E., and Koo, J. H. (2013). Carbon/phenolic nanocomposites as advanced thermal protection material in aerospace applications. Journal of Composites 2013, ID 403656 (9pp). doi: 10.1155/2013/403656.CrossRefGoogle Scholar
Thostenson, E. T., Li, C., and Chou, T. W. (2005). Nanocomposites in context. Composites Science and Technology 65, 491516.CrossRefGoogle Scholar
Cheng, J. (2006). Polysyanate ester/small diameter carbon nanotubes nanocomposite. Master’s thesis, The University of Texas at Austin, Dept. of Mechanical Engineering, Austin, TX.Google Scholar
Safadi, R. A. (2002). Multiwalled carbon nanotube polymer composites: Synethis and characterization of thin films. Journal of Applied Polymer Science 84, 26602669.CrossRefGoogle Scholar
Pulci, G., Tirillo, J., Marra, F., Fossati, F., Bartuli, C., and Valente, T. (2010). Carbon-phenolic ablative materials for re-entry space vehicles: Manufacturing and properties. Composites: Part A 41, 14831490.CrossRefGoogle Scholar
Marra, F., Pulci, G., Tirillo, J., Bartuli, C., and Valente, T. (2011). Numerical simulation of oxy-acetylene testing procedure of ablative materials for re-entry space vehicles. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 225, pp. 3240. doi: 10.1177/14644207JMDA335.CrossRefGoogle Scholar
Pulci, G., Tirillo, J., and Valente, T. (2012). Ablative Materials for Thermal Protection Systems. Unpublished data, University of Rome, Rome, Italy.Google Scholar
Duffa, G. (2013). Ablative Thermal Protection System Modeling. Reston, VA: AIAA.CrossRefGoogle Scholar

References

Lew, C. Y. and Luizi, C. M. (2013). The Influence of Processing Conditions on the Electrical Properties of Polypropylene Nanocomposites Incorporating Multiwall Carbon Nanotube. Published on November 18 at http://www.nanocyl.com.Google Scholar
Krause, B., Pötschke, P., and Häußler, L. (2009). Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Composites Science and Technology 69, 15051515.CrossRefGoogle Scholar
Pujari, S., Ramanathan, T., Kasimatis, K., Masuda, J. I., Andrews, R., et al. (2009). Preparation and characterization of multiwalled carbon nanotube dispersions in polypropylene: Melt mixing versus solid-state shear pulverization. Journal of Polymer Science Part B: Polymer Physic 47, 14261436.CrossRefGoogle Scholar
Villmow, T., Pötschke, P., Pegel, S., Häussler, L., and Kretzschmar, B. (2008). Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49, 35003509.CrossRefGoogle Scholar
Logakis, E., Pandis, C., Peoglos, V., Pissis, P., Pionteck, J. (2009). Electrical/dielectric properties and conduction mechanism in melt processed polyamide/multi-walled carbon nanotubes composites. Polymer 50, 51035111.CrossRefGoogle Scholar
Meincke, O., Kaempfer, D., Weickmann, H., Friedrich, C., Vathauer, M., and Warth, H. (2004). Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45, 739748.CrossRefGoogle Scholar
Socher, R., Krause, B., Boldt, R., Hermasch, S., Wursche, R., and Pötschke, P. (2011). Melt mixed nano composites of PA12 with MWNTs: Influence of MWNT and matrix properties on macrodispersion and electrical properties. Composites Science and Technology 71, 306314.CrossRefGoogle Scholar
Carneiro, O. S., Covas, J. A., Bernardo, C. A., Caldeira, G., Van Hattum, F. W. J., et al. (1998). Production and assessment of polycarbonate composites reinforced with vapour-grown carbon fibres. Composites Science and Technology 58, 401407.CrossRefGoogle Scholar
Tibbetts, G. G., Lake, M. L., Strong, K. L., and Rice, B. P. (2007). A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology 67, 17091718.CrossRefGoogle Scholar
Jimenez, G. A. and Jana, S. C. (2007). Oxidized carbon nanofiber/polymer composites prepared by chaotic mixing. Carbon 45, 20792091.CrossRefGoogle Scholar
Jimenez, G. A. and Jana, S. C. (2007). Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. Composites Part A: Applied Science and Manufacturing 38, 983993.CrossRefGoogle Scholar
Kalaitzidou, K., Fukushima, H., and Drzal, L. T. (2007). A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Composites Science and Technology 67, 20452051.CrossRefGoogle Scholar
Li, Y. and Shimizu, H. (2008). Conductive PVDF/PA6/CNTs nanocomposites fabricated by dual formation of co-continuous and nanodispersion structures. Macromolecules 41, 53395344.CrossRefGoogle Scholar
Kilbride, B. E., Coleman, J. N., Fraysse, J., Fournet, P., Cadek, M., et al. (2002). Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. Journal of Applied Physics 92, 40244030.CrossRefGoogle Scholar
Wang, W.-P., Liu, Y., Li, X.-X., and You, Y.-Z. (2006). Synthesis and characteristics of poly(methyl methacrylate)/expanded graphite nanocomposites. Journal of Applied Polymer Science 100, 14271431.CrossRefGoogle Scholar
Goyal, R. K., Samant, S. D., Thakar, A. K., and Kadam, A. (2010). Electrical properties of polymer/expanded graphite nanocomposites with low percolation. Journal of Physics D-Applied Physics, 43 (36), 365404(7 pp.).CrossRefGoogle Scholar
Zheng, W. and Wong, S.-C. (2003). Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Composites Science and Technology 63, 225235.CrossRefGoogle Scholar
Pan, Y.-X., Yu, Z.-Z., Ou, Y.-C., and Hu, G.-H. (2000). A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization. Journal of Polymer Science Part B: Polymer Physics 38, 16261633.3.0.CO;2-R>CrossRefGoogle Scholar
Via, M. D., King, J. A., Keith, J. M., and Bogucki, G. R. (2012). Electrical conductivity modeling of carbon black/polycarbonate, carbon nanotube/polycarbonate, and exfoliated graphite nanoplatelet/polycarbonate composites. Journal of Applied Polymer Science 124, 182189.CrossRefGoogle Scholar
Zhang, S. M., Lin, H., Deng, H., Gao, X., Bilotti, E., et al. (2012). Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. eXPRESS Polymer Letters 6, 159168.CrossRefGoogle Scholar
Sun, Y., Bao, H.-D., Guo, Z.-X., and Yu, J. (2008). Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 42, 459463.CrossRefGoogle Scholar
Puglia, D., Valentini, L., and Kenny, J. M. (2003). Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy. Journal of Applied Polymer Science 88, 452458.CrossRefGoogle Scholar
Christodoulou, L. and Venables, J. D. (2006). Multifunctional material systems: The first generation. Journal of Materials 55, 3945.Google Scholar
Battisti, A., Skordos, A. A., and Partridge, I. K. (2010). Percolation threshold of carbon nanotubes filled unsaturated polyesters. Composites Science and Technology 70, 633637.CrossRefGoogle Scholar
Vera-Agullo, J., Glória-Pereira, A., Varela-Rizo, H., Gonzalez, J. L., and Martin-Gullon, I. (2009). Comparative study of the dispersion and functional properties of multiwall carbon nanotubes and helical-ribbon carbon nanofibers in polyester nanocomposites. Composites Science and Technology 69, 15211532.CrossRefGoogle Scholar
Martin, C. A., Sandler, J. K. W., Shaffer, M. S. P., Schwarz, M. K., Bauhofer, W., et al. (2004). Formation of percolating networks in multi-wall carbon nanotube–epoxy composites. Composites Science and Technology 64, 23092316.CrossRefGoogle Scholar
Thostenson, E. T., Ziaee, S., and Chou, T.-W. (2009). Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Composites Science and Technology 69, 801804.CrossRefGoogle Scholar
Sandler, J. K. W., Kirk, J. E., Kinloch, I. A., Shaffer, M. S. P., and Windle, A. H. (2003). Ultra-low electrical percolation threshold in carbon nanotube–epoxy composites. Polymer 44, 58935899.CrossRefGoogle Scholar
Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Kinloch, I. A., Bauhofer, W., et al. (2006). Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47, 20362045.CrossRefGoogle Scholar
Moisala, A., Li, Q., Kinloch, I. A., and Windle, A. H. (2006). Thermal and electrical conductivity of single- and multi-walled carbon nanotube–epoxy composites. Composites Science and Technology 66, 12851288.CrossRefGoogle Scholar
Gojny, F. H., Wichmann, M. H. G.,Kopke, U., Fiedler, B., &Schulte (2004), K.. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology 64, 23632371.CrossRefGoogle Scholar
Gojny, F. H., Wichmann, M. H. G.,Kopke, U., Fiedler, B., &Schulte, K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Composites Science and Technology 65, 23002313.CrossRefGoogle Scholar
Moniruzzaman, M. and Winey, K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 51945205.CrossRefGoogle Scholar
Lao (2013)., S. C. Multifunctional Cyanate Ester/MWNT Nanocomposites: Processing and Characterization. Ph.D. dissertation, The University of Texas at Austin, Austin, TX, Dec.Google Scholar
Liang, K., Li, G., Toghiani, H., Koo, J. H., Pittman, C. U. Jr., andDave, C. (2006). Cyanate ester/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: Synthesis and characterization. Chemistry of Materials 18(2), 301312.CrossRefGoogle Scholar
Cho, H. S., Liang, K., Chatterjee, S., andPittman, C. U. Jr. (2005). Synthesis, morphology, and viscoelastic properties of polyhedral oligomeric silsesquioxane nanocomposites with epoxy and cyanate ester matrices. Journal of Inorganic and Organometallic Polymers and Materials 15(4), 541553.CrossRefGoogle Scholar
Liang, K., Toghiani, H., Li, G., Pittman, C. U. Jr., and Dave, C. (2005). Synthesis, morphology, and viscoelastic properties of cyanate ester/polyhedral oligomeric silsesquioxane nanocomposites. Journal of Polymer Science, Part A: Polymer Chemistry 43(17), 38873898.CrossRefGoogle Scholar
Fundamentals of Electrostatic Discharge, Part One – An Introduction to ESD (2010), ESD Association, Rome, NY.Google Scholar
Hu, N., Masuda, Z., and Fukunaga, H. (2009). Carbon Nanotubes: New Research, Nova Science Publishers, Inc., New York, NY, pp. 175222.Google Scholar
Ma, P.-C., Siddiqui, N. A., Marom, G., andKim, J.-K. (2010). Dispersion and Functionalization of Carbon Nanotubes for Polymer-based Nanocomposites: A Review. Composites: Part A 41, 13451367.CrossRefGoogle Scholar
Smrutisikha, B. (2010). Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Materials & Design 31, 24062413.Google Scholar
Ardanuy, M., Rodríguez-Perez, M. A., and Algaba, I. (2011). Electrical conductivity and mechanical properties of vapor-grown carbon nanofibers/trifunctional epoxy composites prepared by direct mixing. Composites Part B: Engineering 42, 675681.CrossRefGoogle Scholar
Cipriano, B. H., Kota, A. K., Gershon, A. L., Laskowski, C. J., Kashiwagi, T., et al. (2008). Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer 49, 48464851.CrossRefGoogle Scholar
Knite, M., Teteris, V., Polyakov, B., and Erts, D. (2002). Electric and elastic properties of conductive polymeric nanocomposites on macro- and nanoscales. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 19, 1519.Google Scholar
Tkalya, E., Ghislandi, M., Alekseev, A., Koning, C., and Loos, J. (2010). Latex-based concept for the preparation of graphene-based polymer nanocomposites. Journal of Materials Chemistry 20, 30353039.CrossRefGoogle Scholar
Chen, G.-H., Wu, D.-J., Weng, W.-G., He, B., and Yan, W.-L. (2001). Preparation of polystyrene-graphite conducting nanocomposites via intercalation polymerization. Polymer International 50, 980985.CrossRefGoogle Scholar
Zhao, Y. F., Xiao, M., Wang, S. J., Ge, X. C., and Meng, Y. Z. (2007). Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Composites Science and Technology 67, 25282534.CrossRefGoogle Scholar
Kim, S. and Drzal, L. T. (2009). Comparison of exfoliated graphite nanoplatelets (xGnP) and CNTs for reinforcement of EVA nanocomposites fabricated by solution compounding method and three screw rotating systems. Journal of Adhesion Science and Technology 23, 16231638.CrossRefGoogle Scholar
Kalaitzidou, K., Fukushima, H., and Drzal, L. T. (2007). Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Composites: Part A 38, 16751682.CrossRefGoogle Scholar
Tlili, R., Boudenne, A., Cecen, V., Ibos, L., Krupa, I., and Candau, Y. (2010). Thermophysical and electrical properties of nanocomposites based on ethylene-vinylacetate copolymer (EVA) filled with expanded and unexpanded graphite. International Journal of Thermophysics 31, 936948.CrossRefGoogle Scholar
Sumfleth, J., Adroher, X., and Schulte, K. (2009). Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. Journal of Materials Science 44, 32413247.CrossRefGoogle Scholar
Zhang, S. M., Lin, L., Deng, H., Gao, X., Bilotti, E., et al. (2012). Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. Express Polymer Letters 6, 159168.CrossRefGoogle Scholar
Ma, P.-C., Liu, M.-Y., Zhang, H., Wang, S.-Q., Wang, R., et al. (2009). Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Applied Materials & Interfaces 1, 10901096.CrossRefGoogle ScholarPubMed
Karttunen, M., Ruuskanen, P., Pitkanen, V., and Albers, W. M., (2008). Electrically conductive metal polymer nanocomposites for electronics applications. Journal of Electronic Materials 37, 951954.CrossRefGoogle Scholar
Li, Y. J. and Shimizu, H. (2009). Toward a stretchable, elastic, and electrically conductive nanocomposite: Morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42, 25872593.CrossRefGoogle Scholar
Koerner, H., Price, G., Pearce, N. A., Alexander, M., and Vaia, R. A. (2004). Remotely actuated polymer nanocomposites – stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Materials 3, 115120.CrossRefGoogle ScholarPubMed
Koerner, H., Liu, W. D., Alexander, M., Mirau, P., Dowty, H., and Vaia, R. A. (2005). Deformation-morphology correlations in electrically conductive carbon nanotube thermoplastic polyurethane nanocomposites. Polymer 46, 44054420.CrossRefGoogle Scholar
Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., and Someya, T. (2008). A rubberlike stretchable active matrix using elastic conductors. Science 321, 14681472.CrossRefGoogle ScholarPubMed
Chen, G.-X., Li, Y., and Shimizu, H. (2007). Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites. Carbon 45, 23342340.CrossRefGoogle Scholar

References

Zhang, J. Z. (2009). Optical Properties and Spectroscopy of Nanomaterials. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
Tamborra, M., Striccoli, M., Comparelli, R., Curri, M. L., Petrella, A., and Agostiano, A. (2004). Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer. Nanotechnology 15, S240S244.CrossRefGoogle Scholar
Beecroft, L. L. and Ober, C. K. (1997). Nanocomposite materials for optical applications. Chemistry of Materials 9, 13021317.CrossRefGoogle Scholar
Srivasta, S., Haridas, M., and Basu, J. K. (2008). Optical properties of polymer nanocomposites. Bulletin of Material Science 31, 213217.CrossRefGoogle Scholar
Pandey, J. K., Reddy, K. R., Kumar, A. P., and Singh, R. P. (2005). An overview on the degradability of polymer nanocomposites. Polymer Degradation and Stability 88, 234250.CrossRefGoogle Scholar
Caseri, W. (2000). Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties. Macromolecular Rapid Communications 21, 705722.3.0.CO;2-3>CrossRefGoogle Scholar
Becker, C., Mueller, P., and Schmidt, H. (1998). Optical and thermomechanical investigations on thermoplastic nanocomposites with surface modified silica nanoparticles. Proceedings of SPIE 3469, 8898.CrossRefGoogle Scholar
Carotenuto, G., Longo, A., and Hison, C. L. (2009). Tuned linear optical properties of gold-polymer nanocomposites. Journal of Materials Chemistry 19, 57445750.CrossRefGoogle Scholar
Pérez-Juste, J., Rodríguez-Gonzáles, B., Mulvaney, P., and Liz-Marzán, L. M. (2005). Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Advanced Functional Materials 15, 10651071.CrossRefGoogle Scholar
Bockstaller, M. R. and Thomas, E. L. (2003). Optical properties of polymer-based photonic nanocomposite materials. Journal of Physics and Chemistry 107, 1001710024.CrossRefGoogle Scholar
Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L. M., and Mulvaney, P. (2005). Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews 249, 18701901.CrossRefGoogle Scholar
Barber, D. B., Pollock, C. R., Beecroft, L. L., and Ober, C. K. (1997). Amplification by optical composites. Optics Letters 22, 12471249.CrossRefGoogle ScholarPubMed
Wang, Z. and Pinnavaia, T. J. (1998). Nanolayer reinforcement of elastomeric polyurethane. Chemistry of Materials 10, 37693771.CrossRefGoogle Scholar
Choudhury, A., Bhowmick, A. K., and Ong, C. (2009). Novel role of polymer-solvent and clay-solvent interaction parameters on the thermal, mechanical and optical properties of nanocomposites. Polymer 50, 201210.CrossRefGoogle Scholar
Giesfeldt, K. S., Connatser, R. M., De Jesús, M. A., Dutta, P., and Sepaniak, M. J. (2005). Gold-polymer nanocomposites: studies of their optical properties and their potential as SERS substrates. Journal of Raman Spectroscopy 36, 11341142.CrossRefGoogle Scholar
Giesfeldt, K. S., Connatser, R. M., De Jesús, M. A., Lavrik, N. V., Dutta, P., and Sepaniak, M. J. (2003). Studies of the optical properties of metal-pliable polymer composite materials. Applied Spectroscopy 57, 13461352.CrossRefGoogle ScholarPubMed
Liang, J., Xu, Y., Huang, Y., Zhang, L., Wang, Y., et al. (2009). Infrared-triggered actuators from graphene-based nanocomposites. Journal of Physics and Chemistry 113, 99219927.Google Scholar
Wang, Z., Lan, T., and Pinnavaia, T. J. (1996). Hybrid organic-inorganic nanocomposites formed from an epoxy polymer and a layered silicic acid (Magadiite). Chemistry of Materials 8, 22002204.CrossRefGoogle Scholar
Deng, Y., Gu, A., and Fang, Z. (2004). The effect of morphology on the optical properties of transparent epoxy/montmorillonite composites. Polymer International 53, 8591.CrossRefGoogle Scholar
Dimopoulos, A., Buggy, S. J., Skordos, A. A., James, S. W., Tatam, R. P., and Partridge, I. K. (2009). Monitoring cure in epoxies containing carbon nanotubes with an optical-fiber Fresnel refractometer. Journal of Applied Polymer Science 113, 730735.CrossRefGoogle Scholar
Winey, K. I. and Vaia, R. A. (Eds.) (2007). Polymer nanocomposites. MRS Bulletin 32, 314322.CrossRefGoogle Scholar

References

International, ASTM D4060 (2010). Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser.Google Scholar
Taber Rotary Abraser 5135/5155 (2008), edited by Taber Industries.Google Scholar
Zhou, Q., Wang, K., and Loo, L. S. (2009). Abrasion studies of nylon 6/montmorillonite nanocomposites using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Journal of Applied Polymer Science 113(5), 32863293.CrossRefGoogle Scholar
Liu, S.-P., Hwang, S.-S., Yeh, J.-M., and Hung, C.-C. (2011). Mechanical properties of polyamide-6/montmorillonite nanocomposites – prepared by the twin-screw extruder mixed technique. International Communications in Heat and Mass Transfer 38(1), 3743.CrossRefGoogle Scholar
Srinath, G. and Gnanamoorthy, R. (2006). Two-body abrasive wear characteristics of nylon clay nanocomposites: Effect of grit size, load, and sliding velocity. Materials Science and Engineering: Part A 435–436, 181186.CrossRefGoogle Scholar
Mu, B., Wang, Q., Wang, T., Wang, H., and Jian, L. (2008). The Friction and Wear Properties of Clay Filled PA66. Polymer Engineering & Science 48 (1), 203–09.CrossRefGoogle Scholar
International, ASTM (2009). The Standard Test Method for Evaluation of Scratch Resistance of Polymeric Coatings and Plastics Using an Instrumented Scratch Machine.Google Scholar
Carrión, F. J., Espejo, C., Sanes, J., and Bermúdez, M. D. (2010). Single-walled carbon nanotubes modified by ionic liquid as antiwear additives of thermoplastics. Composites Science and Technology 70(15), 21602167.CrossRefGoogle Scholar
Bermúdez, M. D., Carrión, F. J., Espejo, C., Martínez-López, E., and Sanes, J. (2011). Abrasive wear under multiscratching of polystyrene + single-walled carbon nanotube nanocomposites: Effect of sliding direction and modification by ionic liquid. Applied Surface Science 257(21), 90739081.CrossRefGoogle Scholar
Giraldo, L. F., Brostow, W., Devaux, E., Lopez, B. L., and Perez, L. D. (2008). Scratch and wear resistance of polyamide 6 reinforced with multiwall carbon nanotubes. Journal of Nanoscience and Nanotechnology 8(6), 31763183.CrossRefGoogle ScholarPubMed
Kandanur, S. S., Rafiee, M. A., Yavari, F., Schrameyer, M., Yu, Z.-Z., et al. (2012). Suppression of wear in graphene polymer composites. Carbon 50(9), 31783183.CrossRefGoogle Scholar
Paulo Davim, J. (Ed.) (2013). Tribology of Nanocomposites. Berlin Heidelberg: Springer-Verlag.Google Scholar
Bhattacharya, M., Biswas, S., and Bhowmick, A. K. (2011). Permeation characteristics and modeling of barrier properties of multifunctional rubber nanocomposites. Polymer 52, 15621576.CrossRefGoogle Scholar
Wu, Q., Zhu, W., Zhang, C., Liang, Z., and Wang, B. (2010). Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon 48, 17991806.CrossRefGoogle Scholar
Czichos, H., Saito, T., and Smith, L. E. (Eds.) (2006). Mechanical Properties. In Springer Handbook of Materials Measurement Methods. New York: Springer, pp. 283397.CrossRefGoogle Scholar
Karkhanechi, H., Kazemian, H., Nazockdast, H., Mozdianfard, M. R., and Bidoki, S. M. (2012). Fabrication of homogenous polymer-zeolite nanocomposites as mixed-matrix membranes for gas separation. Chemical Engineering & Technology 35(5), 885892.CrossRefGoogle Scholar
Pinto, A. M., Cabral, J., Pacheco Tanaka, D. A., Mendes, A. M., and Magalhaes, F. D. (2013). Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polymer International 62, 3340.CrossRefGoogle Scholar
Chang, J. H., An, Y. K., and Sur, G. S. (2003). Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. Journal of Polymer Science Part B 41(1), 94103.CrossRefGoogle Scholar
Poreba, R., Spirkova, M., Brozova, L., Lazic, N., Pavlicevic, J., and Strachota, A. (2013). Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. II. Mechanical, thermal, and gas transport properties. Journal of Applied Polymer Science 127(1), 329341.CrossRefGoogle Scholar
van Rooyen, L. J., Karger-Kocsis, J., Vorster, O. C., and Kock, L. D. (2013). Helium gas permeability reduction of epoxy composite coatings by incorporation of glass flakes. Journal of Membrane Science 430, 203210.CrossRefGoogle Scholar
Prusty, G. and Swain, S. K. (2013). Dispersion of multiwalled carbon nanotubes in polyacrylonitrile-co-starch copolymer matrix for enhancement of electrical, thermal, and gas barrier properties. Polymer Composites 34(3), 330334.CrossRefGoogle Scholar
Castarlenas, S., Gorgojo, P., Casado-Coterillo, C., Masheshwari, S., Tsapatsis, M., et al. (2013). Melt compounding of swollen titanosilicate JDF-L1 with polysulfone to obtain mixed matrix membranes for H2/CH4 separation. Industrial & Engineering Chemistry Research 52(5), 19011907.CrossRefGoogle Scholar
Valix, M., Mineyama, H., Chen, C., Cheung, W. H., Shi, J., and Bustamante, H. (2011). Effect of film thickness and filler properties on sulphuric acid permeation in various commercially available epoxy mortar coatings. Water Science & Technology 64(9), 18641869.CrossRefGoogle ScholarPubMed
Kong, X. and Ohadi, M. (2010). Applications of Micro and Nano Technologies in the Oil and Gas Industry – Overview of the Recent Progress. Paper presented at Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 1-4 November. Society of Petroleum Engineers, SPE-138241-MS. doi: 10.2118/138241-MS.CrossRefGoogle Scholar
Singh, S. K., Ahmed, R. M., and Growcock, F. (2010). Vital Role of Nanopolymers in Drilling and Stimulations Fluid Applications. Paper presented at SPE Annual Technical Conference and Exhibition, Florence, Italy, 20-22 Sept. ISBN: 978-1-55563-300-4.Google Scholar
Pourafshary, P., Azimipour, S. S., Motamedi, P., Samet, M., Taheri, S. A., et al. (2009). Priority Assessment of Investment in Development of Nanotechnology in Upstream Petroleum Industry. Paper presented at the SPE Saudi Arabia Section Technical Symposium, Al Khobar, Saudi Arabia, 9-11 May. SPIE No. 126101.CrossRefGoogle Scholar
Nabhani, N., Emami, M., and Taghavi Moghadam, A. B. (2011). Application of nanotechnology and nanomaterials in oil and gas industry. AIP Conference Proceedings 1415(1), 128131.CrossRefGoogle Scholar
Cai, J., Chenevert, M. E., Sharma, M. M., and Friedheim, J. E. (2012). Decreasing water invasion into atoka shale using nanomodified silica nanoparticles. Society of Petroleum Engineers 27(1), 103112.Google Scholar
Savino, V., Fallatah, G. M., and Mehdi, M. S. (2010). Applications of nanocomposite materials in the oil and gas industry. Advanced Materials Research 83–86, 771776.Google Scholar
Clark, M. (2009). Minimizing Environmental Footprint by Utilizing Prevention Technology. Paper presented at the SPE Annual Technical Conference and Exhibition, Houston, TX, 26-29 Sept. Society of Petroleum Engineers, SPE 90242.CrossRefGoogle Scholar
Ito, M., Noguchi, T., Ueki, H., Takeuchi, K., and Endo, M. (2011). Carbon nanotube enables quantum leap in oil recovery. Materials Research Bulletin 46(9), 14801484.CrossRefGoogle Scholar
Endo, M., Noguchi, T., Ito, M., Takeuchi, K., Hayashi, T., et al. (2008). Extreme-performance rubber nanocomposites for probing and excavating deep oil resources using multi-walled carbon nanotubes. Advanced Functional Materials 18(21), 34033409.CrossRefGoogle Scholar
Xu, Z., Agrawal, G., and Salinas, B. J. (2011). Smart Nanostructured Materials Deliver High Reliability Completion Tools for Gas Shale Fracturing. Paper presented at the SPE Annual Technical Conference and Exhibition, Denver, CO, 30 Oct-2 Nov. Society of Petroleum Engineers, SPE 146586.CrossRefGoogle Scholar
One colossal discovery: Materials science breakthrough creates nanostructured material of immense proportions. (2011). Connexus 2(2), 8–13.Google Scholar
Dasari, A., Lim, S., Yu, Z., and Mai, Y. (2007). Toughening, thermal stability, flame retardancy, and scratch–wear resistance of polymer–clay nanocomposites. Australian Journal of Chemistry 60(7), 496518.CrossRefGoogle Scholar
Dasari, A., Yu, Z.-Z., and Mai, Y.-W. (2009). Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Materials Science and Engineering: R: Reports 63(2), 3180.CrossRefGoogle Scholar
Koo, J. H. (2006). Polymer Nanocomposites: Processing, Characterization, and Applications. New York: McGraw-Hill.Google Scholar
Sinha, S. K., Song, T., Wan, X., and Tong, Y. (2009). Scratch and normal hardness characteristics of polyamide 6/nano-clay composite. Wear 266(7–8), 814821.CrossRefGoogle Scholar
Verdejo, R., Mar Bernal, M., Romasanta, L. J., and Lopez-Manchado, M. A. (2011). Graphene filled polymer nanocomposites. Journal of Materials Chemistry 21(10), 33013310.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×