Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-14T17:54:59.896Z Has data issue: false hasContentIssue false

21 - CRISPR/Cas9-based In Vivo Models of Cancer

from Part V - Genome Editing in Disease Biology

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 315 - 336
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annunziato, S, Kas, SM, Nethe, M, et al. 2016. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev 30: 14701480.CrossRefGoogle ScholarPubMed
Antal, CE, Hudson, AM, Kang, E, et al. 2015. Cancer-associated protein kinase C mutations reveal kinase’s role as tumor suppressor. Cell 160: 489502.CrossRefGoogle ScholarPubMed
Aubrey, BJ, Kelly, GL, Kueh, AJ, et al. 2015. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep 10: 14221432.CrossRefGoogle ScholarPubMed
Balkwill, FR, Capasso, M, Hagemann, T. 2012. The tumor microenvironment at a glance. J Cell Sci 125: 55915596.CrossRefGoogle ScholarPubMed
Bibikova, M, Beumer, K, Trautman, JK, Carroll, D. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300: 764.CrossRefGoogle ScholarPubMed
Blasco, RB, Karaca, E, Ambrogio, C, et al. 2014. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep 9: 12191227.CrossRefGoogle ScholarPubMed
Braun, CJ, Bruno, PM, Horlbeck, MA, et al. 2016. Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proc Natl Acad Sci USA 113: E3892E3900.CrossRefGoogle ScholarPubMed
Brinster, RL, Chen, HY, Trumbauer, M, et al. 1981. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27: 223231.CrossRefGoogle ScholarPubMed
Buchholz, CJ, Friedel, T, Buning, H. 2015. Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol 33: 777790.CrossRefGoogle ScholarPubMed
Carbery, ID, Ji, D, Harrington, A, et al. 2010. Targeted genome modification in mice using zinc-finger nucleases. Genetics 186: 451459.CrossRefGoogle ScholarPubMed
Castro, NP, Fedorova-Abrams, ND, Merchant, AS, et al. 2015. Cripto-1 as a novel therapeutic target for triple negative breast cancer. Oncotarget 6: 1191011929.CrossRefGoogle ScholarPubMed
Chen, C, Liu, Y, Rappaport, AR, et al. 2014. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25: 652665.CrossRefGoogle ScholarPubMed
Chen, S, Sanjana, NE, Zheng, K, et al. 2015. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160: 12461260.CrossRefGoogle Scholar
Chen, Z, Cheng, K, Walton, Z, et al. 2012. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483: 613617.CrossRefGoogle ScholarPubMed
Chiou, SH, Winters, IP, Wang, J, et al. 2015. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev 29: 15761585.CrossRefGoogle ScholarPubMed
Cho, SW, Kim, S, Kim, Y, et al. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24: 132141.CrossRefGoogle ScholarPubMed
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819823.CrossRefGoogle ScholarPubMed
Costantini, F, Lacy, E. 1981. Introduction of a rabbit beta-globin gene into the mouse germ line. Nature 294: 9294.CrossRefGoogle ScholarPubMed
Dean, DA, Machado-Aranda, D, Blair-Parks, K, Yeldandi, AV, Young, JL. 2003. Electroporation as a method for high-level nonviral gene transfer to the lung. Gene Ther 10: 16081615.CrossRefGoogle ScholarPubMed
Dow, LE, Fisher, J, O’Rourke, KP, et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33: 390394.CrossRefGoogle ScholarPubMed
Drost, J, Van Jaarsveld, RH, Ponsioen, B, et al. 2015. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521: 4347.CrossRefGoogle ScholarPubMed
Engelman, JA, Chen, L, Tan, X, et al. 2008. Effective use of PI3 K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047 R murine lung cancers. Nat Med 14: 13511356.CrossRefGoogle Scholar
Flemr, M, Buhler, M. 2015. Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep 12: 709716.CrossRefGoogle ScholarPubMed
Frese, KK, Tuveson, DA. 2007. Maximizing mouse cancer models. Nat Rev Cancer 7: 645658.CrossRefGoogle ScholarPubMed
Fujiki, H. 2014. Gist of Dr. Katsusaburo Yamagiwa’s papers entitled “Experimental study on the pathogenesis of epithelial tumors” (I to VI reports). Cancer Sci 105: 143149.CrossRefGoogle Scholar
Gelperina, S, Kisich, K, Iseman, MD, Heifets, L. 2005. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172: 14871490.CrossRefGoogle ScholarPubMed
Gilbert, LA, Horlbeck, MA, Adamson, B, et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159: 647661.CrossRefGoogle ScholarPubMed
Gordon, JW, Ruddle, FH. 1981. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214: 12441246.CrossRefGoogle ScholarPubMed
Heckl, D, Kowalczyk, MS, Yudovich, D, et al. 2014. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32: 941946.CrossRefGoogle ScholarPubMed
Hong, AL, Tseng, YY, Cowley, GS, et al. 2016. Integrated genetic and pharmacologic interrogation of rare cancers. Nat Commun 7: 11987.CrossRefGoogle ScholarPubMed
Hutchinson, JN, Muller, WJ. 2000. Transgenic mouse models of human breast cancer. Oncogene 19: 61306137.CrossRefGoogle ScholarPubMed
Li, F, Cowley, DO, Banner, D, et al. 2014. Efficient genetic manipulation of the NOD-Rag1-/-IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 technology. Sci Rep 4: 5290.CrossRefGoogle ScholarPubMed
Li, T, Huang, S, Jiang, WZ, et al. 2011. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39: 359372.CrossRefGoogle ScholarPubMed
Li, W, Teng, F, Li, T, Zhou, Q. 2013. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 31: 684686.CrossRefGoogle ScholarPubMed
Li, Y, Park, AI, Mou, H, et al. 2015. A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol 16: 111.CrossRefGoogle ScholarPubMed
Lok, BH, Gardner, EE, Schneeberger, VE, et al. 2016. PARP inhibitor activity correlates with SLFN11 expression and demonstrates synergy with temozolomide in small cell lung cancer. Clin Cancer Res 23(2): 523535.CrossRefGoogle ScholarPubMed
Macleod, KF, Jacks, T. 1999. Insights into cancer from transgenic mouse models. J Pathol 187: 4360.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Maddalo, D, Machado, E, Concepcion, CP, et al. 2014. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516: 423427.CrossRefGoogle ScholarPubMed
Malina, A, Mills, JR, Cencic, R, et al. 2013. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev 27: 26022614.CrossRefGoogle ScholarPubMed
Maresch, R, Mueller, S, Veltkamp, C, et al. 2016. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun 7: 10770.CrossRefGoogle ScholarPubMed
Maruyama, T, Dougan, SK, Truttmann, MC, et al. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33: 538542.CrossRefGoogle ScholarPubMed
Matano, M, Date, S, Shimokawa, M, et al. 2015. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21: 256262.CrossRefGoogle ScholarPubMed
Nihongaki, Y, Yamamoto, S, Kawano, F, Suzuki, H, Sato, M. 2015. CRISPR-Cas9-based photoactivatable transcription system. Chem Biol 22: 169174.CrossRefGoogle ScholarPubMed
Niu, Y, Shen, B, Cui, Y, et al. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156: 836843.CrossRefGoogle ScholarPubMed
O’Connell, MR, Oakes, BL, Sternberg, SH, et al. 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516: 263266.CrossRefGoogle ScholarPubMed
Olive, KP, Tuveson, DA, Ruhe, ZC, et al. 2004. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119: 847860.CrossRefGoogle ScholarPubMed
Platt, RJ, Chen, S, Zhou, Y, et al. 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159: 440455.CrossRefGoogle ScholarPubMed
Qi, LS, Larson, MH, Gilbert, LA, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 11731183.CrossRefGoogle ScholarPubMed
Quick, L, Young, R, Henrich, IC, et al. 2016. Jak1-STAT3 signals are essential effectors of the USP6/TRE17 oncogene in tumorigenesis. Cancer Res 76: 53375347.CrossRefGoogle ScholarPubMed
Ran, FA, Hsu, PD, Lin, CY, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 13801389.CrossRefGoogle ScholarPubMed
Sanchez-Rivera, FJ, Papagiannakopoulos, T, Romero, R, et al. 2014. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516: 428431.CrossRefGoogle ScholarPubMed
Shalem, O, Sanjana, NE, Hartenian, E, et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343: 8487.CrossRefGoogle ScholarPubMed
Shi, J, Wang, E, Milazzo, JP, et al. 2015. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33: 661667.CrossRefGoogle ScholarPubMed
Shimkin, MB, Stoner, GD. 1975. Lung tumors in mice: application to carcinogenesis bioassay. Adv Cancer Res 21: 158.CrossRefGoogle ScholarPubMed
Sommer, D, Peters, AE, Baumgart, AK, Beyer, M. 2015. TALEN-mediated genome engineering to generate targeted mice. Chromosome Res 23: 4355.CrossRefGoogle ScholarPubMed
Stehelin, D, Varmus, HE, Bishop, JM, Vogt, PK. 1976. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260: 170173.CrossRefGoogle Scholar
Thun, MJ, Delancey, JO, Center, MM, Jemal, A, Ward, EM. 2010. The global burden of cancer: priorities for prevention. Carcinogenesis 31: 100110.CrossRefGoogle ScholarPubMed
Togashi, Y, Mizuuchi, H, Tomida, S, et al. 2015. MET gene exon 14 deletion created using the CRISPR/Cas9 system enhances cellular growth and sensitivity to a MET inhibitor. Lung Cancer 90: 590597.CrossRefGoogle ScholarPubMed
Torres, R, Martin, MC, Garcia, A, et al. 2014. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun 5: 3964.CrossRefGoogle ScholarPubMed
Valton, J, Dupuy, A, Daboussi, F, et al. 2012. Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287: 3842738432.CrossRefGoogle ScholarPubMed
Vojta, A, Dobrinic, P, Tadic, V, et al. 2016. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44: 56155628.CrossRefGoogle ScholarPubMed
Walrath, JC, Hawes, JJ, Van Dyke, T, Reilly, KM. 2010. Genetically engineered mouse models in cancer research. Adv Cancer Res 106: 113164.CrossRefGoogle ScholarPubMed
Wang, H, Yang, H, Shivalila, CS, et al. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153: 910918.CrossRefGoogle ScholarPubMed
Weber, J, Ollinger, R, Friedrich, M, et al. 2015. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc Natl Acad Sci USA 112: 1398213987.CrossRefGoogle ScholarPubMed
Xiao, A, Wang, Z, Hu, Y, et al. 2013. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41: e141.CrossRefGoogle ScholarPubMed
Xue, W, Chen, S, Yin, H, et al. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514: 380384.CrossRefGoogle ScholarPubMed
Yang, H, Wang, H, Shivalila, CS, et al. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154: 13701379.CrossRefGoogle ScholarPubMed
Zuckermann, M, Hovestadt, V, Knobbe-Thomsen, CB, et al. 2015. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun 6: 7391.CrossRefGoogle ScholarPubMed
Zuris, JA, Thompson, DB, Shu, Y, et al. 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33: 7380.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×