Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T15:05:13.124Z Has data issue: false hasContentIssue false

8 - Genetically Engineered Pig Models for Human Diseases using ZFNs, TALENs and CRISPR/Cas9

from Part II - Genome Editing in Model Organisms

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 110 - 131
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, SJ, Rund, LA, Kuzmuk, KN, et al. 2007. Genetic induction of tumorigenesis in swine. Oncogene 26(7): 10381045.CrossRefGoogle ScholarPubMed
Ao, Y, Mich-Basso, JD, Lin, B, Yang, L. 2014. High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells. PLoS One 9(6): 111.CrossRefGoogle ScholarPubMed
Baltimore, D. 1970. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226(5252): 12091211.CrossRefGoogle ScholarPubMed
Barreiro, LB, Quintana-Murci, L. 2010. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 11(1): 1730.CrossRefGoogle ScholarPubMed
Bergen, WG, Mersmann, HJ. 2005. Comparative aspects of lipid metabolism: impact on contemporary research and use of animal models. J Nutr 135(11): 24992502.CrossRefGoogle ScholarPubMed
Berry, RJ 1970. The natural history of the house mouse. Field Studies 3: 219262.Google Scholar
Breuing, K, Kaplan, S, Liu, P, Onderdonk, AB, Eriksson, E. 2003. Wound fluid bacterial levels exceed tissue bacterial counts in controlled porcine partial-thickness burn infections. Plast Reconstruct Surg 111(2): 781788.CrossRefGoogle ScholarPubMed
Bufler, P, Azam, T, Gamboni-Robertson, F, et al. 2002. A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein reduces IL-18 activity. Proc Natl Acad Sci USA 99(21): 1372313728.CrossRefGoogle ScholarPubMed
Butler, JE, Lager, KM, Splichal, I, et al. 2009. The piglet as a model for B cell and immune system development. Vet Immunol Immunopathol 128(1–3): 147170.CrossRefGoogle Scholar
Butler, JR, Martens, GR, Li, P, et al. 2016. The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs. J Surg Res 200(2): 698706.CrossRefGoogle ScholarPubMed
Campbell, KH, McWhir, J, Ritchie, WA, Wilmut, I. 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569): 6466.CrossRefGoogle ScholarPubMed
Carlson, DF, Tan, W, Lillico, SG, et al. 2012. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109(43): 1738217387.CrossRefGoogle ScholarPubMed
Chen, F, Wang, Y, Yuan, Y, et al. 2015. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting. J Genet Genom 42: 437444.CrossRefGoogle ScholarPubMed
Choi, KH, Park, JK, Son, D, et al. 2016. Reactivation of endogenous genes and epigenetic remodeling are barriers for generating transgene-free induced pluripotent stem cells in pig. PLoS One 11(6): 118.Google ScholarPubMed
Cooper, DKC, Ekser, B, Ramsoondar, J, Phelps, C, Ayares, D. 2016. The role of genetically engineered pigs in xenotransplantation research. J Pathol 238(2): 288299.CrossRefGoogle ScholarPubMed
Cuttle, L, Kempf, M, Phillips, GE, et al. 2006. A porcine deep dermal partial thickness burn model with hypertrophic scarring. Burns 32(7): 806820.CrossRefGoogle ScholarPubMed
Davidson, JM. 1998. Animal models for wound repair. Arch Dermatol Res 290(14): S1S11.CrossRefGoogle ScholarPubMed
Du, Y, Kragh, PM, Zhang, Y, et al. 2007. Piglets born from handmade cloning, an innovative cloning method without micromanipulation. Theriogenology 68(8): 11041110.CrossRefGoogle ScholarPubMed
El-Hamamsy, I, Stevens, LM, Vanhoutte, PM, Perrault, LP. 2005. Injury of the coronary endothelium at implantation increases endothelial dysfunction and intimal hyperplasia after heart transplantation. J Heart Lung Transplant 24(3): 251258.CrossRefGoogle ScholarPubMed
Ellegaard Göttingen Minipigs. 2010. Taking good care of Ellegaard Göttingen Minipigs. https://minipigs.dk/fileadmin/filer/pdf/Taking_good_care_of_Ellegaard_Goettingen_Minipigs_13.03.13.pdf (accessed October 2017).Google Scholar
Estrada, J, Martens, G, Li, P, et al. 2015. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes. Xenotransplantation 22(3): 194202.CrossRefGoogle ScholarPubMed
Ezashi, T, Telugu, BPVL, Alexenko, AP, et al. 2009. Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci USA 106(27): 1099310998.CrossRefGoogle ScholarPubMed
Fan, N, Chen, J, Shang, Z, et al. 2013. Piglets cloned from induced pluripotent stem cells. Cell Res 23(1): 162166.CrossRefGoogle ScholarPubMed
Farre, L, Rigau, T, Mogas, T, et al. 1999. Adenovirus-mediated introduction of DNA into pig sperm and offspring. Mol Reprod Devel 53(2): 149158.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Finn, OJ. 2012. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol 23(Suppl. 8): 811.CrossRefGoogle ScholarPubMed
Flisikowska, T, Kind, A, Schnieke, A. 2014. Genetically modified pigs to model human diseases. J Appl Genet 55(1): 5364.CrossRefGoogle ScholarPubMed
Flisikowska, T, Merkl, C, Landmann, M, et al. 2012. A porcine model of familial adenomatous polyposis. Gastroenterology 143(5): 11731177.CrossRefGoogle ScholarPubMed
Gerner, W, Käser, T, Saalmüller, A. 2009. Porcine T lymphocytes and NK cells: an update. Devel Compar Immunol 33(3): 310320.CrossRefGoogle ScholarPubMed
Gertsenstein, M, Lobe, C, Nagy, A. 2002. ES cell-mediated conditional transgenesis. Meth Mol Biol 185(5): 285307.Google ScholarPubMed
Gregory-Evans, K, Weleber, RG. 1997. An eye for an eye: new models of genetic ocular disease. Nat Biotech 15: 947948.CrossRefGoogle ScholarPubMed
Hagemann, S, Günther, T, Dennemärker, J, et al. 2004. The human cysteine protease cathepsin V can compensate for murine cathepsin L in mouse epidermis and hair follicles. Euro J Cell Biol 83(11–12): 775780.CrossRefGoogle ScholarPubMed
Hai, T, Teng, F, Guo, R, Li, W, Zhou, Q. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24(3): 372375.CrossRefGoogle ScholarPubMed
Hammer, RE, Pursel, VG, Rexroad, CE, et al. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021): 680683.CrossRefGoogle ScholarPubMed
He, Z, Shi, X, Du, B, et al. 2015. Highly efficient enrichment of porcine cells with deletions induced by CRISPR/Cas9 using dual fluorescence selection. J Biotechnol 214: 6974.CrossRefGoogle ScholarPubMed
Holm, IE, Alstrup, AKO, Luo, Y. 2016. Genetically modified pig models for neurodegenerative disorders. J Pathol 238(2): 267287.CrossRefGoogle ScholarPubMed
Holm, IE, West, MJ. 1994. Hippocampus of the domestic pig: a stereological study of subdivisional volumes and neuron numbers. Hippocampus 4(1): 115125.CrossRefGoogle ScholarPubMed
Hyodo, A, Reger, SI, Negami, S, et al. 1995. Evaluation of a pressure sore model using monoplegic pigs. Plast Reconstr Surg 96(2): 421428.CrossRefGoogle ScholarPubMed
Ingram, DL, Legge, KF. 1970. Variations in deep body temperature in the young unrestrained pig over the 24 hour period. J Physiol 210(4): 989998.CrossRefGoogle Scholar
Ji, G, Ruan, W, Liu, K, et al. 2013. Telomere reprogramming and maintenance in porcine iPS cells. PLoS One 8(9): e74202.CrossRefGoogle ScholarPubMed
Jinek, M, Chylinski, K, Fonfara, I, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6069): 816821.CrossRefGoogle ScholarPubMed
Jørgensen, FG, Hobolth, A, Hornshøj, H, et al. 2005. Comparative analysis of protein coding sequences from human, mouse and the domesticated pig. BMC Biol 3: 2.CrossRefGoogle ScholarPubMed
Kalloo, AN, Singh, VK, Jagannath, SB, et al. 2004. Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. Gastrointest Endosc 60(1): 114117.CrossRefGoogle ScholarPubMed
Kang, J-T, Cho, B, Ryu, J, et al. 2016a. Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs. Reprod Biol Endocrinol 14(1): 74.CrossRefGoogle ScholarPubMed
Kang, J-T, Kwon, DK, Park, AR, et al. 2016b. Production of α-1,3-galactosyltransferase targeted pigs using transcription activator-like effector nuclease-mediated genome editing technology. J Vet Sci 17(1): 8996.CrossRefGoogle ScholarPubMed
Kang, J-T, Ryu, J, Cho, B, et al. 2016c. Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting. Reprod Dom Animals 51(6): 970978.CrossRefGoogle ScholarPubMed
Kantsevoy, SV, Jagannath, SB, Niiyama, H, et al. 2005. Endoscopic gastrojejunostomy with survival in a porcine model. Gastrointest Endosc 62(2): 287292.CrossRefGoogle ScholarPubMed
Kim, YG, Cha, J, Chandrasegaran, S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93(3): 11561160.CrossRefGoogle ScholarPubMed
Kraft, TW, Allen, D, Petters, RM, et al. 2005. Altered light responses of single rod photoreceptors in transgenic pigs expressing P347 L or P347S rhodopsin. Mol Vision 11: 12461256.Google ScholarPubMed
Kragh, PM, Du, Y, Corydon, TJ, et al. 2005. Efficient in vitro production of porcine blastocysts by handmade cloning with a combined electrical and chemical activation. Theriogenology 64(7): 15361545.CrossRefGoogle ScholarPubMed
Kragh, PM, Nielsen, AL, Li, J, et al. 2009. Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res 18: 545558.CrossRefGoogle ScholarPubMed
Kwon, J, Namgoong, S, Kim, N. 2015. CRISPR/Cas9 as tool for functional study of genes involved in preimplantation embryo development. PLoS One 10(3): e0120501.CrossRefGoogle ScholarPubMed
Lai, L, Kolber-Simonds, D, Park, K-W, et al. 2002. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295(5557): 10891092.CrossRefGoogle ScholarPubMed
Lai, S, Wei, S, Zhao, B, et al. 2016. Generation of knock-in pigs carrying Oct4-tdTomato Reporter through CRISPR/Cas9-mediated genome engineering. PLoS One 11(1): e0146562.CrossRefGoogle ScholarPubMed
Lavitrano, M, Camaioni, A, Fazio, VM, et al. 1989. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57(5): 717723.CrossRefGoogle ScholarPubMed
Lee, K, Kwon, D-N, Ezashi, T, et al. 2014. Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci USA 111(20): 72607265.CrossRefGoogle ScholarPubMed
Lee, PY, Park, SG, Kim, EY, et al. 2010. Proteomic analysis of pancreata from mini-pigs treated with streptozotocin as type I diabetes models. J Microbiol Biotechnol 20(4): 817820.Google ScholarPubMed
Leeb, T, Müller, M. 2004. Comparative human-mouse-rat sequence analysis of the ICAM gene cluster on HSA 19p13.2 and a 185-kb porcine region from SSC 2q. Gene 343(2): 239244.CrossRefGoogle Scholar
Lei, S, Ryu, J, Wen, K, et al. 2016. Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency. Sci Rep 6: 25222.CrossRefGoogle ScholarPubMed
Li, P, Estrada, JL, Burlak, C, et al. 2015. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation 22(1): 2031.CrossRefGoogle Scholar
Li, X-Q, Donnelly, DJ, Jensen, TG (eds.). 2015. Somatic Genome Manipulation. New York, NY: Springer New York.CrossRefGoogle Scholar
Liu, Y, Li, J, Løvendahl, P, et al. 2015. In vitro manipulation techniques of porcine embryos: a meta-analysis related to transfers, pregnancies and piglets. Reprod Fert Dev 27(3): 429.CrossRefGoogle ScholarPubMed
Luo, Y, Li, J, Liu, Y, et al. 2011. High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgen Res 20(5): 975988.CrossRefGoogle ScholarPubMed
Luo, Y, Lin, L, Bolund, L, Jensen, TG, Sørensen, CB. 2012. Genetically modified pigs for biomedical research. J Inherit Metabol Dis 35(4): 695713.CrossRefGoogle ScholarPubMed
Ma, XC, Ning, J, Ge, GB, et al. 2011. Comparative metabolism of cinobufagin in liver microsomes from mouse, rat, dog, minipig, monkey, and human. Drug Metabol Dispos 39(4): 675682.CrossRefGoogle ScholarPubMed
Marchant, JN, Whittaker, X, Broom, DM. 2001. Vocalisations of the adult female domestic pig during a standard human approach test and their relationships with behavioural and heart rate measures. Appl Animal Behav Sci 72(1): 2339.CrossRefGoogle ScholarPubMed
Merrifield, CA, Lewis, M, Claus, SP, et al. 2011. A metabolic system-wide characterisation of the pig: a model for human physiology. Mol BioSystems 7(9): 25772588.CrossRefGoogle Scholar
Mestas, J, Hughes, CCW. 2004. Of mice and not men: differences between mouse and human immunology. J Immunol 172(5): 27312738.CrossRefGoogle Scholar
Mussolino, C, Morbitzer, R, Lütge, F, et al. 2011. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39: 92839293.CrossRefGoogle ScholarPubMed
Niemann, H, Petersen, B. 2016. The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgen Res 25(3): 361374.CrossRefGoogle ScholarPubMed
Nottle, MB, Haskard, KA, Verma, PJ, et al. 2001. Effect of DNA concentration on transgenesis rates in mice and pigs. Transgen Res 10(6): 523531.CrossRefGoogle ScholarPubMed
Parker, N, Porter, ACG. 2004. Identification of a novel gene family that includes the interferon-inducible human genes 6–16 and ISG12. BMC Genom 5(1): 8.CrossRefGoogle ScholarPubMed
Peng, J, Wang, Y, Jiang, J, et al. 2015. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep 5(April): 16705.CrossRefGoogle ScholarPubMed
Petters, RM, Alexander, CA, Wells, KD, et al. 1997. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15(10): 965970.CrossRefGoogle ScholarPubMed
Pillay, P, Manger, PR. 2007. Order-specific quantitative patterns of cortical gyrification. Euro J Neurosci 25(9): 27052712.CrossRefGoogle ScholarPubMed
Pond, WG, Boleman, SL, Fiorotto, ML, et al. 2000. Perinatal ontogeny of brain growth in the domestic pig. Proc Soc Exp Biol Med 223(1): 102108.Google ScholarPubMed
Puente, X, Sánchez, L, Christopher, M, López-Otín, C. 2003. Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4(7): 544558.CrossRefGoogle ScholarPubMed
Ran, FA, Hsu, PD, Lin, C-Y, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6): 13801389.CrossRefGoogle ScholarPubMed
Rao, S, Fujimura, T, Matsunari, H, et al. 2016. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev  83(1): 6170.CrossRefGoogle ScholarPubMed
Reece, WO. 2005. Dukes’ Physiology of Domestic Animals, 12th edn. Ithaca, NY: Cornell University Press.Google Scholar
Renner, S, Fehlings, C, Herbach, N, et al. 2010. Glucose intolerance and reduced proliferation of pancreatic β-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59(5): 12281238.CrossRefGoogle ScholarPubMed
Rogers, CS, Stoltz, DA, Meyerholz, DK, et al. 2008. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321(5897): 18371841.CrossRefGoogle Scholar
Roser, M. 2016. Life expectancy. Our World in Data. https://ourworldindata.org/life-expectancy/ (accessed November 2017).Google Scholar
Roy, S, Biswas, S, Khanna, S, et al. 2009. Characterization of a preclinical model of chronic ischemic wound. Physiol Genomics 37(3): 211224.CrossRefGoogle ScholarPubMed
Sakoda, T, Kasahara, N, Kedes, L, Ohyanagi, M. 2007. Lentiviral vector-mediated gene transfer to endotherial cells compared with adenoviral and retroviral vectors. Prep Biochem Biotechnol 37(1): 111.CrossRefGoogle ScholarPubMed
Seaton, M, Hocking, A, Gibran, NS. 2015. Porcine models of cutaneous wound healing. ILAR J 56(1): 127138.CrossRefGoogle ScholarPubMed
Shen, B, Zhang, W, Zhang, J, et al. 2014. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Meth 11(4): 399402.CrossRefGoogle ScholarPubMed
Shim, J, Al-Mashhadi, RH, Sørensen, CB, Bentzon, JF. 2016. Large animal models of atherosclerosis – new tools for persistent problems in cardiovascular medicine. J Pathol 238(2): 257266.CrossRefGoogle ScholarPubMed
Shinkai, A, Komuta-Kunitomo, M, Sato-Nakamura, N, Anazawa, H. 2002. N-terminal domain of eotaxin-3 is important for activation of CC chemokine receptor 3. Prot Engineering Design Select 15(11): 923929.CrossRefGoogle ScholarPubMed
Sieren, JC, Meyerholz, DK, Wang, XJ, et al. 2014. Development and translational imaging of a TP53 porcine tumorigenesis model. J Clin Invest 124(9): 40524066.CrossRefGoogle ScholarPubMed
Stubhan, M, Markert, M, Mayer, K, et al. 2008. Evaluation of cardiovascular and ECG parameters in the normal, freely moving Göttingen minipig. J Pharmacol Toxicol Methods 57(3): 202211.CrossRefGoogle ScholarPubMed
Swindle, MM, Smith, AC, Laber-Laird, K, Dungan, L. 1994. Swine in biomedical research: management and models. ILAR J 36(1): 15.CrossRefGoogle Scholar
Talan, M. 1984. Body temperature of C57BL/6 J mice with age. Exp Gerontol 19(1): 2529.CrossRefGoogle Scholar
Tan, W, Carlson, DF, Lancto, CA, et al. 2013. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Nat Acad Sci USA 110(41): 1652616531.CrossRefGoogle ScholarPubMed
Thibault, KL, Margulies, SS. 1998. Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J Biomech 31(12): 11191126.CrossRefGoogle ScholarPubMed
Timmers, L, Henriques, JPS, de Kleijn, DPV, et al. 2009. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 53(6): 501510.CrossRefGoogle Scholar
Tomita, S, Mickle, DAG, Weisel, RD, et al. 2002. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 123(6): 11321140.CrossRefGoogle ScholarPubMed
Uechi, M, Asai, K, Osaka, M, et al. 1998. Depressed heart rate variability and arterial baroreflex in conscious transgenic mice with overexpression of cardiac Gsalpha. Circul Res 82(4): 416423.CrossRefGoogle ScholarPubMed
Vajta, G, Callesen, H. 2012. Establishment of an efficient somatic cell nuclear transfer system for production of transgenic pigs. Theriogenology 77(7): 12631274.CrossRefGoogle ScholarPubMed
Vajta, G, Kragh, PM, Mtango, NR, Callesen, H. 2005. Hand-made cloning approach: potentials and limitations. Reprod Fertil Dev 17(1–2): 97112.CrossRefGoogle ScholarPubMed
Vaughan, AN, Malde, P, Rogers, NJ, et al. 2000. Porcine CTLA4-Ig lacks a MYPPPY motif, binds inefficiently to human B7 and specifically suppresses human CD4+ T cell responses costimulated by pig but not human B7. J Immunol 165(6): 31753181.CrossRefGoogle Scholar
Velander, P, Theopold, C, Hirsch, T, et al. 2008. Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair Regen 16(2): 288293.CrossRefGoogle Scholar
Walpole, SC, Prieto-Merino, D, Edwards, P, et al. 2012. The weight of nations: an estimation of adult human biomass. BMC Publ Health 12(1): 439.CrossRefGoogle ScholarPubMed
Wang, D, Mou, H, Li, S, et al. 2015. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Human Gene Ther 26(7): 432442.CrossRefGoogle ScholarPubMed
Wang, X, Cao, C, Huang, J, et al. 2016. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 6: 20620.CrossRefGoogle ScholarPubMed
Wang, XQ, Kempf, M, Liu, PY, et al. 2008. Conservative surgical debridement as a burn treatment: supporting evidence from a porcine burn model. Wound Repair Regen 16(6): 774783.CrossRefGoogle ScholarPubMed
Wang, Y, Du, Y, Shen, B, et al. 2015. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep 5: 8256.CrossRefGoogle ScholarPubMed
Weaver, BK, Bohn, E, Judd, BA, Gil, MP, Schreiber, RD. 2007. ABIN-3: a molecular basis for species divergence in interleukin-10-induced anti-inflammatory actions. Mol Cell Biol 27(13): 46034616.CrossRefGoogle ScholarPubMed
Wernersson, R, Schierup, MH, Jørgensen, FG, et al. 2005. Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genom 6: 70.CrossRefGoogle ScholarPubMed
Whitelaw, CBA, Lillico, SG, King, T. 2008. Production of transgenic farm animals by viral vector-mediated gene transfer. Reprod Domest Animals 43(Suppl. 2): 355358.CrossRefGoogle ScholarPubMed
Whitworth, KM, Lee, K, Benne, JA, et al. 2014. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos 1. Biol Reprod 91: 113.CrossRefGoogle Scholar
Wilmut, I, Schnieke, AE, McWhir, J, Kind, AJ, Campbell, KH. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619): 810813.CrossRefGoogle ScholarPubMed
Wolf, E, Braun-Reichhart, C, Streckel, E, Renner, S. 2014. Genetically engineered pig models for diabetes research. Transgen Res 23(1): 2738.CrossRefGoogle ScholarPubMed
Woo, JS, Kim, W, Ha, S., et al. 2013. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler Thrombo Vasc Biol 33(9): 22522260.CrossRefGoogle ScholarPubMed
Xie, B, Wang, JJ, Liu, S, et al. 2014. Positive correlation between the efficiency of induced pluripotent stem cells and the development rate of nuclear transfer embryos when the same porcine embryonic fibroblast lines are used as donor cells. Cell Reprog 16(3): 206214.CrossRefGoogle ScholarPubMed
Xin, J, Yang, H, Fan, N, et al. 2013. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One 8(12): 19.CrossRefGoogle ScholarPubMed
Yang, D, Wang, CE, Zhao, B, et al. 2010. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Human Mol Genet 19(20): 39833994.CrossRefGoogle ScholarPubMed
Yang, L, Güell, M, Niu, D, et al. 2015. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350(6264): 11011104.CrossRefGoogle ScholarPubMed
Yao, J, Huang, J, Zhao, J. 2016. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Human Genet 135(9): 10931105.CrossRefGoogle ScholarPubMed
Zerhouni, EA, Parish, DM, Rogers, WJ, Yang, A, Shapiro, EP. 1988. Human heart: tagging with MR imaging – a method for noninvasive assessment of myocardial motion. Radiology 169(1): 5963.CrossRefGoogle ScholarPubMed
Zhou, X, Wang, L, Du, Y, et al. 2016. Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes. Human Mutat 37(1): 110118.CrossRefGoogle ScholarPubMed
Zhou, X, Xin, J, Fan, N, et al. 2015. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72(6): 11751184.CrossRefGoogle ScholarPubMed
Zhu, KQ, Engrav, LH, Gibran, NS, et al. 2003. The female, red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin. Burns 29(7): 649664.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×