Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T08:42:59.120Z Has data issue: false hasContentIssue false

5 - Genome Editing in the Crustacean Daphnia magna using CRISPR/Cas and TALEN Systems

from Part II - Genome Editing in Model Organisms

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 71 - 83
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asada, M, Kato, Y, Matsuura, T, Watanabe, H. 2014. Visualization of ecdysteroid activity using a reporter gene in the crustacean, Daphnia. Mar Environ Res 93: 118122.CrossRefGoogle ScholarPubMed
Auer, TO, Duroure, K, De Cian, A, Concordet, JP, Del Bene, F. 2014. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24: 142153.CrossRefGoogle ScholarPubMed
Cade, L, Reyon, D, Hwang, WY, et al. 2012. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 40: 80018010.CrossRefGoogle ScholarPubMed
Carroll, D. 2014. Genome engineering with targetable nucleases. Annu Rev Biochem 83: 409439.CrossRefGoogle ScholarPubMed
Cermak, T, Doyle, EL, Christian, M, et al. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39: e82.CrossRefGoogle ScholarPubMed
Colbourne, JK, Pfrender, ME, Gilbert, D, et al. 2011. The ecoresponsive genome of Daphnia pulex. Science 331: 555561.CrossRefGoogle ScholarPubMed
Doyle, EL, Booher, NJ, Standage, DS, et al. 2012. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40: W117W122.CrossRefGoogle ScholarPubMed
Eads, BD, Colbourne, JK, Bohuski, E, Andrews, J. 2007. Profiling sex-biased gene expression during parthenogenetic reproduction in Daphnia pulex. BMC Genomics 8: 464.CrossRefGoogle ScholarPubMed
Ebert, D. 2011. A genome for the environment. Science 331: 539540.CrossRefGoogle ScholarPubMed
Gaj, T, Gersbach, CA, Barbas, CF. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31: 397405.CrossRefGoogle ScholarPubMed
Gratz, SJ, Cummings, AM, Nguyen, JN, et al. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194: 10291035.CrossRefGoogle ScholarPubMed
Hill, RE, Favor, J, Hogan, BL, et al. 1991. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354: 522525.CrossRefGoogle Scholar
Jinek, M, Chylinski, K, Fonfara, I, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816821.CrossRefGoogle ScholarPubMed
Kanda, T, Sullivan, KF, Wahl, GM. 1998. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8: 377385.CrossRefGoogle ScholarPubMed
Kato, Y, Matsuura, T, Watanabe, H. 2012. Genomic integration and germline transmission of plasmid injected into crustacean Daphnia magna eggs. PLoS One 7: e45318.CrossRefGoogle ScholarPubMed
Kato, Y, Shiga, Y, Kobayashi, K, et al. 2011. Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Dev Genes Evol 220: 337345.CrossRefGoogle ScholarPubMed
Kayukawa, T, Tateishi, K, Shinoda, T. 2013. Establishment of a versatile cell line for juvenile hormone signaling analysis in Tribolium castaneum. Sci Rep 3: 1570.CrossRefGoogle ScholarPubMed
Kronhamn, J, Frei, E, Daube, M, et al. 2002. Headless flies produced by mutations in the paralogous Pax6 genes eyeless and twin of eyeless. Development 129: 10151026.CrossRefGoogle ScholarPubMed
Miner, BE, De Meester, L, Pfrender, ME, Lampert, W, Hairston, NG. 2012. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc Biol Sci 279: 18731882.Google ScholarPubMed
Naitou, A, Kato, Y, Nakanishi, T, Matsuura, T, Watanabe, H. 2015. Heterodimeric TALENs induce targeted heritable mutations in the crustacean Daphnia magna. Biol Open 4: 364369.CrossRefGoogle ScholarPubMed
Nakajima, K, Yaoita, Y. 2013. Comparison of TALEN scaffolds in Xenopus tropicalis. Biol Open 2: 13641370.CrossRefGoogle ScholarPubMed
Nakanishi, T, Kato, Y, Matsuura, T, Watanabe, H. 2014. CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna. PLoS One 9: e98363.CrossRefGoogle ScholarPubMed
Nakanishi, T, Kato, Y, Matsuura, T, Watanabe, H. 2015. TALEN-mediated homologous recombination in Daphnia magna. Sci Rep 5: 18312.CrossRefGoogle ScholarPubMed
Nakanishi, T, Kato, Y, Matsuura, T, Watanabe, H. 2016. TALEN-mediated knock-in via non-homologous end joining in the crustacean Daphnia magna. Sci Rep 6: 36252.CrossRefGoogle ScholarPubMed
Orsini, L, Decaestecker, E, De Meester, L, Pfrender, ME, Colbourne, JK. 2011. Genomics in the ecological arena. Biol Lett 7: 23.CrossRefGoogle ScholarPubMed
Pan, Y, Xiao, L, Li, ASS, et al. 2013. Biological and biomedical applications of engineered nucleases. Mol Biotechnol 55: 5462.CrossRefGoogle ScholarPubMed
Piña, B, Barata, C. 2011. A genomic and ecotoxicological perspective of DNA array studies in aquatic environmental risk assessment. Aquat Toxicol 105: 4049.CrossRefGoogle ScholarPubMed
Quiring, R, Walldorf, U, Kloter, U, Gehring, WJ. 1994. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265: 785789.CrossRefGoogle Scholar
Sagawa, K, Yamagata, H, Shiga, Y. 2005. Exploring embryonic germ line development in the water flea, Daphnia magna, by zinc-finger-containing VASA as a marker. Gene Expr Patterns 5: 669678.CrossRefGoogle ScholarPubMed
Streubel, J, Blucher, C, Landgraf, A, Boch, J. 2012. TAL effector RVD specificities and efficiencies. Nat Biotechnol 30: 593595.CrossRefGoogle ScholarPubMed
Törner, K, Nakanishi, T, Matsuura, T, Kato, Y, Watanabe, H. 2014. Optimization of mRNA design for protein expression in the crustacean Daphnia magna. Mol Genet Genomics 289: 707715.CrossRefGoogle ScholarPubMed
Turner, DL, Weintraub, H. 1994. Expression of achaete-scute homolog-3 in xenopus-embryos converts ectodermal cells to a neural fate. Genes Dev 8: 14341447.CrossRefGoogle ScholarPubMed
Watanabe, H, Takahashi, E, Nakamura, Y, et al. 2007. Development of a Daphnia magna DNA microarray for evaluating the toxicity of environmental chemicals. Environ Toxicol Chem 26: 669676.CrossRefGoogle ScholarPubMed
Watanabe, H, Tatarazako, N, Oda, S, et al. 2005. Analysis of expressed sequence tags of the water flea Daphnia magna. Genome 48: 606609.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×