Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-01T14:29:08.924Z Has data issue: false hasContentIssue false

12 - The Magnetosphere

from Part III - Spatial and Temporal Variations of the Geomagnetic Field

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Since the discovery of the magnetosphere-magnetotail system in the1950s-1960s), and the associated beginning of the satellite era, we have gained a well-informed understanding of this space plasma region permeated by the geomagnetic field and home to a variety of charged particle populations and plasma waves. Over the last six decades, IAGA has played an important role in supporting international magnetospheric research. Here we provide an overview of recent developments in energy transport from the solar wind into the Earth’s environment. Topics include, magnetosphere energy input, the role of the boundary layer. Solar wind interaction with the magnetosphere creates geomagnetic activity and the response of the region leading to sub-storms and steady magnetospheric convection are discussed. The charged particle energy (eV to MeV) inherent/contained in the magnetospheric ring current and Van Allen radiation belts establish many properties of the region, giving rise to boundary regions and waves. Results from recent state of the art and currently operating Earth orbiting satellites (Cluster, THEMIS, Van Allen Probes, Magnetosphere MultiScale), are providing exciting new results. Waves from magnetospheric scale ultra-low frequency (ULF) from a few milliHertz, up to upper hybrid waves and continuum radiation in the 1-2 MHz band. Finally, current understanding of the plasmasphere and associated boundary the plasmapause, are considered.

Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 160 - 180
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akasofu, S. I. (1964), ‘The development of the auroral substorm’, Planet. Space Sci., 12(4), 273–82. doi: 10.1016/0032-0633(64)90151-5Google Scholar
Akasofu, S. I., Chapman, S. and Meng, C. I. (1965), ‘Polar electrojet’, J. Atmos. Terr. Phys., 27(11–1), 1275. doi: 10.1016/0021-9169(65)90087-5Google Scholar
Anderson, B. J., and Hamilton, D. C. (1993), ‘Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions’, J. Geophys. Res., 98(A7). doi: 10.1029/93JA00605.Google Scholar
Angelopoulos, V. (2008), ‘The THEMIS mission’, Space Sci. Rev., 141(1–4), 534. doi: 10.1007/s11214-008-9336-1Google Scholar
Angelopoulos, V., et al. (2008), ‘Tail reconnection triggering substorm onset’, Science, 321(5891), 931–5. doi: 10.1126/science.1160495Google Scholar
Angelopoulos, V., et al. (2009), ‘Response to comment on “Tail reconnection triggering substorm onset”’, Science, 324(5933). doi: 10.1126/science.1168045Google Scholar
Baker, D. N., et al. (2013), ‘A long-lived relativistic electron storage ring embedded in Earth’s outer Van Allen belt’, Science, 6129, 186–90. doi: 10.1126/science.1233518Google Scholar
Baker, D. N., et al. (2014). ‘An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts’, Nat. Lett., 515, 531–4. doi: 10.1038/nature13956Google Scholar
Baker, D., Pulkkinen, T., Angelopoulos, V., Baumjohann, W. and McPherron, R. L. (1996), ‘Neutral line model of substorms: Past results and present view’, J. Geophys. Res., 101(A6), 1297513010. doi: 10.1029/95JA03753Google Scholar
Baker, D. N., et al. (2014), ‘An impenetrable barrier to ultra-relativistic electrons in the Van Allen radiation belts’, Nature, 515, 531–4.Google Scholar
Baker, D. N. (2014). ‘New twists in Earth’s radiation belts’, Am. Sci., 102(5), 374381.Google Scholar
Baker, D.N., Kanekal, S. G., Li, X., Monk, S. P., Goldstein, J. and Burch, J. L. (2004), ‘An extreme distortion of the Van Allen belt arising from the “Hallowe’en” solar storm in 2003’, Nature, 432, 878–81. doi: 10.1038/nature03116Google Scholar
Baker, D. N., Kanekal, S. G., Hoxie, V. C., Henderson, M. G., Li, X., Spence, H. E., Elkington, S. R., Friedel, R. H., Goldstein, J., Hudson, M. K., Reeves, G. D., Thorne, R. M., Kletzing, C. A. and Claudepierre, S. G. (2013), ‘A long-lived relativistic electron storage ring embedded within the Earth’s outer Van Allen Radiation Zone’, Science, 340, 186–90. doi: 10.1126/science.1233518Google Scholar
Balikhin, M. A., et al. (2015), ‘Observations of discrete harmonics emerging from equatorial noise’, Nat. Comm., 6, 7703. doi: 10.1038/ncomms8703Google Scholar
Bandic, M., Verbanac, G., Moldwin, M., Pierrard, V. and Piredda, G. (2016), ‘MLT dependence in the relationship between plasmapause, solar wind and geomagnetic activity based on CRRES: 1990–1991’, J. Geophys. Res., 121, 43974408. doi: 10.1002/2015JA022278CrossRefGoogle Scholar
Bandic, M., Verbanac, G., Pierrard, V. and Cho, J. (2017), ‘Evidence of MLT propagation of the plasmapause inferred from THEMIS data’, J. Atmos. Sol. Terr. Phys., 161, 5563. doi: 10.1016/j.jastp.2017.05.005Google Scholar
Belian, R. D., Cayton, T. E. and Reeves, G. D. (1995), ‘Quasi-periodic, substorm associated, global flux variations observed at geosynchronus orbit’, in Space Plasmas: Coupling between Small and Medium Scale Processes, ed. Ashour-Abdalla, M., Chang, T. and Dusenbery, P., p. 143, American Geophysical Union, Washington, DC. doi: 10.1029/GM086p0143Google Scholar
Boardsen, S. A., et al. (2014), ‘Van Allen Probe observations of periodic rising frequencies of the fast magnetosonic mode’, Geophys. Res.Lett., 41, 8161–8. doi: 10.1002/2014GL062020Google Scholar
Burch, J. L., and Phan, T. D. (2016), ‘Magnetic reconnection at the dayside magnetopause: Advances with MMS’, Geophys. Res. Lett., 43, 16, 8327. doi: 10.1002/2016GL069787Google Scholar
Burch, J. L., et al. (2016), ‘Electron-scale measurements of magnetic reconnection in space’, Science, 352, aaf2939. doi: 10.1126/science.aaf2939Google Scholar
Caan, M. N., McPherron, R. L. and Russell, C. T. (1973), ‘Solar wind and substorm-related changes in the lobes of the geomagnetic tail’, J. Geophys. Res., 78(34), 8087–96. doi: 10.1029/JA078i034p08087Google Scholar
Cai, X., and Clauer, C. R. (2009), ‘Investigation of the period of sawtooth events’, J. Geophys. Res., 114, 9. doi: 10.1029/2008ja013764CrossRefGoogle Scholar
Carpenter, D. L., and Lemaire, J. (2004). ‘The plasmasphere boundary layer’, Ann. Geophys., 22, 4291–8. doi: 10.5194/angeo-22-4291Google Scholar
Cassak, P. A., and Shay, M. A. (2007), ‘Scaling of asymmetric magnetic reconnection: General theory and collisional simulations’, Phys. Plasmas, 14, 102114.Google Scholar
Cassak, P. A., and Fuselier, S. A. (2016), ‘Reconnection at Earth’s dayside magnetopause’, in Magnetic Reconnection, ed. Gonzalez, W. and Parker, E., pp. 213–76, Springer, Switzerland. doi: 10.1007/978-3-319-26432-5Google Scholar
Chapman, S. (1962), ‘Earth storms: Retrospect and prospect’, J. Phys. Soc. Jpn., 17(A-I), 6.Google Scholar
Chapman, S., and Ferraro, V. C. A. (1931), ‘A new theory of magnetic storms, Part I, The initial phase’, Terr. Mag. Atmos. Elect., 36, 7.Google Scholar
Chappell, C. R. (1972), ‘Recent satellite measurements of the morphology and dynamics of the plasmasphere’, Rev. Geophys., 10(4), 951–79. doi: 10.1029/RG010i004p00951Google Scholar
Chaston, C. C., et al. (2015), ‘Extreme ionospheric ion energization and electron heating in Alfvén waves in the storm time inner magnetosphere’, Geophys. Res. Lett., 42, 10531–40. doi: 10.1002/2015GL066674Google Scholar
Coroniti, F. V., McPherron, R. L. and Parks, G. K. (1968), ‘Studies of magnetospheric substorm. 3. Concept of magnetospheric substorm and its relation to electron precipitation and micropulsations’, J. Geophys. Res., 73(5), 1715–22. doi: 10.1029/JA073i005p01715Google Scholar
Daglis, I. A., and Kozyra, J. U. (2002), ‘Outstanding issues of ring current dynamics’, J. Atmos. Sol. Terr. Phys., 64(2), 253–64. doi: 10.1016/S1364-6826(01)00087-6.CrossRefGoogle Scholar
Daglis, I. A., Thorne, R. M., Baumjohann, W. and Orsini, S. (1999), ‘The terrestrial ring current: Origin, formation, and decay’, Rev. Geophys., 37(4), 407–38. doi: 10.1029/1999RG900009Google Scholar
Darrouzet, F., De Keyser, J. and Pierrard, V. (2009), The Earth’s Plasmasphere: Cluster and IMAGE – A Modern Perspective, Springer, New York.Google Scholar
Darrouzet, F., et al. (2009), ‘Plasmaspheric density structures and dynamics: Properties observed by the CLUSTER and IMAGE missions’, Space Sci. Rev., 145(55). doi: 10.1007/s11214-008-9438-9Google Scholar
Darrouzet, F., Pierrard, V., Benck, S., Lointier, G., Cabrera, J., Borremans, K., Ganushkina, N., and De Keyser, J. (2013), ‘Links between the plasmapause and the radiation belts boundaries as observed by the instruments CIS, RAPID and WHISPER on CLUSTER’, J. Geophys. Res., 118, 4176–88. doi: 10.1002/jgra.50239Google Scholar
De La Beaujardiere, O., Lyons, L. R., Ruohomemi, J. M., Friss-Christensen, E., Danielsen, C., Rich, F. and Newell, P. (1994), ‘Quiet-time intensifications along the poleward auroral boundary near midnight’, J. Geophys. Res., 99(A1), 287–98. doi: 10.1029/93JA01947Google Scholar
DeJong, A. D., Ridley, A. J., Cai, X. and Clauer, C. R. (2009), ‘A statistical study of BRIs (SMCs), isolated substorms, and individual sawtooth injections’, J. Geophys. Res., 114. doi: 10.1029/2008ja013870Google Scholar
DeJong, A. D., and Clauer, C. R. (2005), ‘Polar UVI images to study steady magnetospheric convection events: Initial results’, Geophys. Res. Lett, 32(24), 4. doi: 10.1029/2005gl024498Google Scholar
DeJong, A. D., Cai, X., Clauer, R. C. and Spann, J. F. (2007), ‘Aurora and open magnetic flux during isolated substorms, sawteeth, and SMC events’, Ann. Geophys., 25(8), 1865–76. doi: 10.5194/angeo-25-1865-2007Google Scholar
Dungey, J. W. (1961), ‘Interplanetary magnetic field and the auroral zones’, Phys. Res. Lett., 6, 47–8.Google Scholar
Eastman, T. E. (2003), ‘Historical review (pre-1980) of magnetospheric boundary layers and the low-latitude boundary layer’, in Earth’s Low-Latitude Boundary Layer, Geophys. Monograph 133, ed. Newell, P. T. and Onsager, T., pp. 112, American Geophysical Union, Washington, DC.Google Scholar
Elvey, C. T. (1957), ‘Problems of auroral morphology’, Proc. Natl. Acad. Sci. USA, 43(1), 6375.Google Scholar
Fairfield, D. H., and Cahill, L. J. Jr (1966), ‘Transition region magnetic field and polar magnetic disturbances’, J. Geophys. Res., 71(1), 155–69.Google Scholar
Fear, R. C., et al. (2014), ‘Direct observation of closed magnetic flux trapped in the high latitude magnetosphere’, Science, 346, 6216. doi: 10.1126/science.1257377Google Scholar
Fennell, J. F., et al. (2015), ‘Van Allen Probes show the inner radiation zone contains no MeV electrons: ECT/MagEIS data’, Geophys. Res. Lett., 42, 1283–9. doi: 10.1002/2014GL062874Google Scholar
Fennell, J. F., Claudepierre, S. G., Blake, J. B., O’Brien, T. P., Clemmons, J. H., Baker, D. N., Spence, H. E. and Reeves, G. D. (2015), ‘Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data’, Geophys. Res. Lett., 31(5), 1283–9. doi: 10.1002/2014GL062874Google Scholar
Ferrero, V. C. A. (1952), ‘On the theory of the first phase of a geomagnetic storm I the new illustrative calculation based on an idealized (plane not cylindrical) model field distribution’, J. Geophys. Res., 57(15), 1952.Google Scholar
Frank, L., Ackerson, K. and Lepping, R. (1976), ‘On hot tenuous plasmas, fireballs, and boundary layers in the Earth’s magnetotail’, J. Geophys. Res., 81(34), 5859–81. doi: 10.1029/JA081i034p05859Google Scholar
Friedrich, E., Samson, J., Voronkov, I. and Rostoker, G. (2001), ‘Dynamics of the substorm expansive phase’, J. Geophys. Res., 106(A7), 13145–63. doi: 10.1029/2000JA000292CrossRefGoogle Scholar
Fuselier, S. A., Burch, J. L., Mukherjee, J., Genestreti, K. J., Vines, S. K., Gomez, R., Goldstein, J., Trattner, K. J., Petrinec, S. M., Lavraud, B. and Strangeway, R. J. (2017), ‘Magnetospheric ion influence at the dayside magnetopause’, J. Geophys. Res., 122, 8617–31. doi: 10.1002/2017JA02415Google Scholar
Gallagher, D. L., and Comfort, R. H. (2016), ‘Unsolved problems in plasmasphere refilling’, J. Geophys. Res., 121, 1447–51. doi: 10.1002/2015JA022279Google Scholar
Gkioulidou, M., Ukhorskiy, A. Y., Mitchell, D. G., Sotirelis, T., Mauk, B. H. and Lanzerotti, L. J. (2014), ‘The role of small-scale ion injections in the buildup of Earth’s ring current pressure: Van Allen Probes observations of the 17 March 2013 storm’, J. Geophys. Res., 119, 7327–42. doi: 10.1002/2014JA020096Google Scholar
Goldstein, J., Sandel, B. R., Forrester, W. T., Thomsen, M. F. and Hairston, M. R. (2005), ‘Global plasmasphere evolution 22–23 April 2001’, J. Geophys. Res., 110, A12218. doi: 10.1029/2005JA011282Google Scholar
Haerendel, G., Paschmann, G., Sckopke, N., Rosenbauer, H. and Hedgecock, P. C. (1978), ‘The frontside boundary layer of the magnetosphere and the problem of reconnection’, J. Geophys. Res., 83, 3195.Google Scholar
Hirshberg, J., and Colburn, D. S. (1969), ‘Interplanetary field and geomagnetic variations-A unified view’, Planet. Space Sci., 17, 11831206.Google Scholar
Hubert, B., Gerard, J. C., Milan, S. E. and Cowley, S. W. H. (2017), ‘Magnetic reconnection during steady magnetospheric convection and other magnetospheric modes’, Ann. Geophys., 35(3), 505–24. doi: 10.5194/angeo-35-505-2017Google Scholar
Hultqvist, B., Øieroset, M., Paschmann, G. and Treumann, R. (Eds.) (1999), Magnetospheric Plasma Source and Losses, Kluwer, Dordrecht.Google Scholar
Jacobs, J. A. (Ed.) (1987), Geomagnetism. 2 vols. Academic Press, New York.Google Scholar
Jelly, D., and Brice, N. (1967), ‘Changes In Van Allen radiation associated with polar substorms’, J. Geophys. Res., 72(23), 5919–31.Google Scholar
Keika, K., Kistler, L. M. and Brandt, P. C. (2013), ‘Energization of O+ ions in the Earth’s inner magnetosphere and the effects on ring current buildup: A review of previous observations and possible mechanisms’, J. Geophys. Res., 118, 4441–64. doi: 10.1002/jgra.50371Google Scholar
Kim, H.-J., and Chan, A. A. (1997), ‘Fully adiabatic changes in storm time relativistic electron fluxes’, J. Geophys. Res., 102(A10), 22107–16. doi: 10.1029/97JA01814Google Scholar
Kissinger, J., Wilder, F. D., McPherron, R. L., Hsu, T. S., Baker, J. B. H. and Kepko, L. (2013), ‘Statistical occurrence and dynamics of the Harang discontinuity during steady magnetospheric convection’, J. Geophys. Res., 118(8), 5127–35. doi: 10.1002/jgra.50503Google Scholar
Kissinger, J., McPherron, R. L., Hsu, T. S. and Angelopoulos, V. (2011b), ‘Steady magnetospheric convection and stream interfaces: Relationship over a solar cycle’, J. Geophys. Res., 116. doi: 10.1029/2010ja015763Google Scholar
Kissinger, J., McPherron, R. L., Hsu, T. S. and Angelopoulos, V. (2012b), ‘Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric convection’, J. Geophys. Res., 117(A5), A05206. doi: 10.1029/2012ja017579Google Scholar
Kissinger, J., McPherron, R. L., Hsu, T.-S. and Angelopoulos, V. (2011a), ‘Steady magnetospheric convection and stream interfaces: Relationship over a solar cycle’, J. Geophys. Res., 116(13), 111. doi: 10.1029/2010JA015763Google Scholar
Kissinger, J., McPherron, R. L., Hsu, T.-S., Angelopoulos, V. and Chu, X. (2012a), ‘Necessity of substorm expansions in the initiation of steady magnetospheric convection’, Geophys. Res. Lett., 39(L15105), 15. doi: 10.1029/2012GL052599Google Scholar
Kletzing, C. A., et al. (2017), ‘Phase sorting wave-particle correlator’, J. Geophys. Res., 122, 2069–78. doi: 10.1002/2016JA023334Google Scholar
Kletzing, C. A., et al. (2013), ‘The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP’, Space Sci. Rev. doi: 10.1007/s11214-013-9993-6Google Scholar
Kotova, G., Verigin, M., Lemaire, J., Pierrard, V., Bezrukikh, V. and Smilauer, J. (2018), ‘Experimental study of the plasmasphere boundary layer using MAGION 5 data’, J. Geophys. Res., 123, 1251–9. doi: 10.1002/2017JA024590Google Scholar
Kurth, W. S., et al. (2015), ‘Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes’, J. Geophys. Res., 120, 904–14, doi: 10.1002/2014JA020857Google Scholar
Lemaire, J., and Pierrard, V. (2008), ‘Comparison between two theoretical mechanisms for the formation of the plasmapause and relevant observations’, Geomagn. Aeron., 48(5), 553–70. doi: 10.1134/S0016793208050010Google Scholar
Li, X., Baker, D. N., Temerin, M., Larson, D., Lin, R. P., Reeves, G. D., Looper, M., Kanekal, S. G. and Mewaldt, R. A. (1997a), ‘Are energetic electrons in the solar wind the source of the outer radiation belt?’, Geophys. Res. Lett., 24(8), 923–6. doi: 10.1029/97GL00543Google Scholar
Li, X., Baker, D. N., Temerin, M., Cayton, T. D., Reeves, E. G. D., Christensen, R. A., Blake, J. B., Looper, M. D., Nakamura, R. and Kanekal, S. G. (1997b), ‘Multisatellite observations of the outer zone electron variation during the November 3–4, 1993, magnetic storm’, J. Geophys. Res., 102(A7), 14123–40. doi: 10.1029/97JA01101Google Scholar
Li, X., Baker, D. N., O’Brien, T. P., Xie, L. and Zong, Q. G. (2006), ‘Correlation between the inner edge of outer radiation belt electrons and the innermost plasmapause location’, Geophys. Res. Lett., 33(14). doi: 10.1029/2006GL026294Google Scholar
Li, X., Selesnick, R. S., Baker, D. N., Jaynes, A. N., Kanekal, S. G., Schiller, Q., Blum, L., Fennell, J. and Blake, J. B. (2015), ‘Upper limit on the inner radiation belt MeV electron intensity’, J. Geophys. Res., 120(2), 1215–28. doi: 10.1002/2014JA020777Google Scholar
Lui, A. T. Y. (2009), ‘Comment on “Tail reconnection triggering substorm onset”’, Science, 324(5933), 3. doi: 10.1126/science.1167726Google Scholar
Lui, A. T. Y., Meng, C.-I. and Akasofu, S.-I. (1976), ‘Search for the magnetic neutral line in the near-Earth plasma sheet, 1. Critical reexamination of earlier studies on magnetic field observations’, J. Geophys. Res., 81(34), 5934–40. doi: 10.1029/JA081i034p05934Google Scholar
Lui, A. T. Y., Chang, C.-L., Mankofsky, A., Wong, H.-K. and Winske, D. (1991), ‘A cross-field current instability for substorm expansions’, J. Geophys. Res., 96(A7), 11389–401. doi: 10.1029/91JA00892Google Scholar
Lui, A. T. Y., Lopez, R. E., Krimigis, S. M., McEntire, R. W., Zanetti, L. J. and Potemra, T. A. (1988), ‘A case study of magnetotail current sheet disruption and diversion’, Geophys. Res. Lett, 15(7), 721–4. doi: 10.1029/GL015i007p00721Google Scholar
Lyons, L. R., Nishimura, Y., Shi, Y., Zou, S., Kim, H. J., Angelopoulos, V., Heinselman, C., Nicolls, M. J. and Fornacon, K. H. (2010), ‘Substorm triggering by new plasma intrusion: Incoherent-scatter radar observations’, J. Geophys. Res., 115(13). doi: 10.1029/2009ja015168Google Scholar
Malakit, K., Shay, M. A., Cassak, P. A. and Ruffolo, D. (2013), ‘New electric field in asymmetric magnetic reconnection’, Phys. Rev. Lett., 111, 135001.Google Scholar
McPherron, R. L. (1970), ‘Growth phase of magnetospheric substorms’, J. Geophys. Res., 75(28), 5592–9. doi: 10.1029/JA075i028p05592CrossRefGoogle Scholar
McPherron, R. L. (1991), ‘Physical processes producing magnetospheric substorms and magnetic storms’, in Geomagnetism, vol. 4, ed. Jacobs, J., pp. 593739, Academic Press, London.CrossRefGoogle Scholar
McPherron, R. L. (2015), ‘Earth’s Magnetotail’, in Magnetotails in the Solar System, ed. Keiling, A., Jackman, C. M. and Delamere, P. A., pp. 6184, Blackwell Science, Oxford. doi: 10.1002/9781118842324.ch4Google Scholar
McPherron, R. L., and Chu, X. (2017), ‘The mid-latitude positive bay and the MPB Index of substorm activity’, Space Sci. Rev., 206(1–4), 91122. doi: 10.1007/s11214-016-0316-6Google Scholar
McPherron, R. L., Russell, C. T. and Aubry, M. (1973), ‘Satellite studies of magnetospheric substorms on August 15, 1968, 9. Phenomenological model for substorms’, J. Geophys. Res., 78(16), 3131–49.Google Scholar
McPherron, R. L., Weygand, J. M. and Hsu, T. S. (2008), ‘Response of the Earth’s magnetosphere to changes in the solar wind’, J. Atmos. Sol. Terr. Phys., 70(2–4), 303–15. doi: 10.1016/j.jastp.2007.08.040Google Scholar
McPherron, R. L., O’Brien, T. P. and Thompson, S. M. (2005), ‘Solar wind drivers for steady magnetospheric convection’, in Multiscale Coupling of Sun-Earth Processes, ed. Lui, A. T. Y., Kamide, Y. and Consolini, G., pp. 113–24, Elsevier, Amsterdam. doi: 10.1016/B978-044451881-1/50009-5Google Scholar
McPherron, R. L., Hsu, T. S., Kissinger, J., Chu, X. and Angelopoulos, V. (2011), ‘Characteristics of plasma flows at the inner edge of the plasma sheet’, J. Geophys. Res., 116. doi: 10.1029/2010ja015923Google Scholar
McPherron, R. L., Hsu, T.-S. and Chu, X. (2015), ‘An optimum solar wind coupling function for the AL index’, J. Geophys. Res., 120(4), 24942515. doi: 10.1002/2014ja020619Google Scholar
Meredith, N. P., et al. (2003), ‘Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES’, J. Geophys. Res., 208, 1250.Google Scholar
Murakami, G., Yoshioka, K., Yamazaki, A., Nishimura, Y., Yoshikawa, I. and Fujimoto, M. (2016), ‘The plasmapause formation seen from meridian perspective by KAGUYA’, J. Geophys. Res., 121(11), 97311984. doi: 10.1002/2016JA023377Google Scholar
Nishida, A. (1994), ‘The Geotail mission’, Geophys. Res. Lett, 21(25), 2871–3. doi: 10.1029/94gl01223Google Scholar
Nishimura, Y., et al. (2014), ‘Day-night coupling by a localized flow channel visualized by polar cap patch propagation’, Geophys. Res. Lett, 41(11), 3701–9. doi: 10.1002/2014gl060301Google Scholar
Nishimura, Y., Lyons, L., Zou, S., Angelopoulos, V. and Mende, S. (2010), ‘Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations’, J. Geophys. Res., 115(A7), A07222. doi: 10.1029/2009ja015166Google Scholar
Nishimura, Y., Lyons, L. R., Angelopoulos, V., Kikuchi, T., Zou, S. and Mende, S. B. (2011), ‘Relations between multiple auroral streamers, pre-onset thin arc formation, and substorm auroral onset’, J. Geophys. Res., 116(10). doi: 10.1029/2011ja016768Google Scholar
O’Brien, T. P., Thompson, S. M. and McPherron, R. L. (2002), ‘Steady magnetospheric convection: Statistical signatures in the solar wind and AE’, Geophys. Res. Lett., 29(7). doi: 10.1029/2001GL014641Google Scholar
Ohtani, S. (2004), ‘Flow bursts in the plasma sheet and auroral substorm onset: observational constraints on connection between midtail and near-Earth substorm processes’, Space Sci. Rev., 113(1–2), 7796. doi: 10.1023/B:SPAC.0000042940.59358.2 fGoogle Scholar
Pierrard, V., and Cabrera, J. (2006), ‘Dynamical simulations of plasmapause deformations’, Space Sci. Rev., 122(1–4), 119–26. doi: 10.1007/s11214-005-5670-8Google Scholar
Pierrard, V., Goldstein, J., André, N., Jordanova, V. K., Kotova, G. A., Lemaire, J. F., Liemohn, M. W. and Matsui, H. (2009), ‘Recent progress in physics-based models of the plasmasphere’, Space Sci. Rev., 145, 193229. doi: 10.1007/s11214-008-9480-7Google Scholar
Pierrard, V., Khazanov, G., Cabrera, J. and Lemaire, J. (2008), ‘Influence of the convection electric field models on predicted plasmapause positions during the magnetic storms’, J. Geophys. Res., 113, A08212, 121. doi: 10.1029/2007JA012612Google Scholar
Pierrard, V., and Voiculescu, M. (2011), ‘The 3D model of the plasmasphere coupled to the ionosphere’, Geophys. Res. Lett., 38, L12104. doi: 10.1029/2011GL047767Google Scholar
Poppe, A. R., et al. (2016), ‘ARTEMIS observations of terrestrial ionospheric molecular ion outflow at the Moon’, Geophys. Res. Lett., 43, 6749–58, doi: 10.1002/2016GL069715Google Scholar
Pytte, T., McPherron, R. L., Hones, E. W. and West, H. L. (1978), ‘Multiple satellite studies of magnetospheric substorms: Distinction between polar magnetic substorms and convection-driven bays’, J. Geophys. Res., 83(Na2), 663–79. doi: 10.1029/JA083iA02p00663Google Scholar
Reeves, G. D., et al. (2013), ‘Electron acceleration in the heart of the Van Allen radiation belts’, Science, 1237743. doi: 10.1126/science.1237743Google Scholar
Rosenbauer, H., Grünwaldt, H., Montgomery, M. D., Paschmann, G. and Sckopke, N. (1975), ‘Heos 2 plasma obserations in the distant polar magnetosphere: The plasma mantle’, J. Geophys. Res., 80, 2723–37.Google Scholar
Russell, A. J. B., Karlsson, T. and Wright, A. N. (2015), ‘Magnetospheric signatures of ionospheric density cavities observed by Cluster’, J. Geophys. Res., 120, 1876–87.Google Scholar
Schroeder, J. W. R., et al. (2016), ‘Direct measurement of electron sloshing of an inertial Alfvén wave’, Geophys. Res. Lett., 43, 4701–7. doi: 10.1002/2016GL068865Google Scholar
Selesnick, R. S., Baker, D. N., Jaynes, A. N., Li, X., Kanekal, S. G., Hudson, M. K. and Kress, B. T. (2014), ‘Observations of the inner radiation belt: CRAND and trapped solar protons’, J. Geophys. Res., 119. doi: 10.1002/2014JA020188Google Scholar
Sergeev, V. A., Pellinen, R. J. and Pulkkinen, T. I. (1996), ‘Steady magnetospheric convection: a review of recent results’, Space Sci. Rev., 75(3–4), 551604.CrossRefGoogle Scholar
Shiokawa, K., et al. (1998), ‘High-speed ion flow, substorm current wedge, and multiple Pi 2 pulsations’, J. Geophys. Res., 103(A3), 44914507. doi: 10.1029/97ja01680Google Scholar
Shiokawa, K., Baumjohann, W. and Haerendel, G. (1997), ‘Braking of high-speed flows in the near-Earth tail’, Geophys. Res. Lett, 24(10), 1179–82. doi: 10.1029/97gl01062Google Scholar
Shprits, Y. Y., Thorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker, D. N. and Kanekal, S. G. (2006), ‘Outward radial diffusion driven by losses at magnetopause’, J. Geophys. Res., 111, A11214. doi: 10.1029/2006JA011657Google Scholar
Singh, S., and Horwitz, J. L. (1992), ‘Plasmasphere refilling: Recent observations and modeling’, J. Geophys. Res., 97, 1049–79. doi: 10.1029/91JA02602Google Scholar
Stewart, B. (1861), ‘On the great magnetic disturbance of 28 Aug. to 7 Sep. 1859’, Philos. Trans. London, 151, 423–30.Google Scholar
Summers, D., Ni, B. and Meredith, N. P. (2007), ‘Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves’, J. Geophys. Res., 112, A04207. doi: 10.1029/2006JA011993Google Scholar
Thorne, R. L., et. al. (2013), ‘Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus’, Nature, 504(7480), 411. doi: 10.1038/nature12889Google Scholar
Thorne, R. M., Smith, E. J., Burton, R. K. and Holzer, R. E. (1973), ‘Plasmaspheric hiss’, J. Geophys. Res., 78(10), 1581–96. doi: 10.1029/JA078i010p01581Google Scholar
Torbert, R. B., et al. (2016), ‘Estimates of terms in Ohm’s law during an encounter with an electron diffusion region’, Geophys. Res. Lett., 43, 5918. doi: 10.1002/2016GL069553Google Scholar
Ukhorskiy, A. Y., Anderson, B. J., Brandt, P. C. and Tsyganenko, N. A. (2006), ‘Storm time evolution of the outer radiation belt: Transport and losses’, J. Geophys. Res., 111, A11S03. doi: 10.1029/2006JA011690Google Scholar
Van Allen, J. A., Ludwig, G. H., Ray, E. C. and McIlwain, C. E. (1958), ‘Observations of high intensity radiation by satellites 1958 Alpha and Gamma’, Jet Propul., 28, 588–92.Google Scholar
Verbanac, G., Bandic, M. and Pierrard, V. (2018), ‘MLT plasmapause characteristics: comparison between THEMIS observations and numerical simulations’, J. Geophys. Res., 123, 20002017. doi: 10.1002/2017JA024573Google Scholar
Verbanac, G., Pierrard, V., Bandic, M., Darrouzet, F., Rauch, J.-L. and Décréau, P. (2015), ‘Relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 2011 using Cluster data’, Ann. Geophys., 33, 1271–83. doi: 10.5194/angeo-33-1271-2015Google Scholar
Walsh, B. M., et al. (1974), ‘Simultaneous ground- and space-based observations of the plasmaspheric plume and reconnection’, Science, 343(6175), 1122–5. doi: 10.1126/science.1247212Google Scholar
Walsh, B. M., Phan, T. D., Siebeck, D. G. and Souza, V. M. (2014), ‘The plasmaspheric plume and magnetopause reconnection’, Geophys. Res. Lett., 41(2), 223–8. doi: 10.1002/2013GL058802Google Scholar
Weimer, D. R. (1992), ‘Characteristic time scale of substorm expansion and recovery’, Proc. Int. Conf. Substorms, ICS-1, 581–6.Google Scholar
Wilson, L. B. III (2016), ‘Relativistic electrons produced by foreshock disturbances observed upstream of the Earth’s bow shock’, Phys. Rev. Lett., 117(21). doi: 10.1103/PhysRevLett.117.215101CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×