Skip to main content Accessibility help
×
Hostname: page-component-788cddb947-wgjn4 Total loading time: 0 Render date: 2024-10-19T19:01:32.829Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Peter Li
Affiliation:
University of California, Irvine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Geometric Analysis , pp. 399 - 403
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[A] F., Almgren Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein's Theorem, Ann. Math. 84(1966), 277–292.Google Scholar
[An] M., Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, J. Diff. Geom. 18(1983), 701–721.Google Scholar
[B] S., Bochner, Vector fields and Ricci curvature, AMS Bull. 52(1946), 776–797.Google Scholar
[BC] R., Bishop and R., Crittenden, Geometry of manifolds, Academic Press, New York, 1964.Google Scholar
[BDG] E., Bombieri, E., De Giorgi, and E., Guisti, Minimal cones and the Bernstein problem, Invent. Math. 7(1969), 243–268.Google Scholar
[BGS] W., Ballmann, M., Gromov, and V., Schroeder, Manifolds of nonpositive curvature, vol. 61, Progr. Math, Birkhäuser, Berlin, 1985.Google Scholar
[Bm] E., Bombieri, Theory of minimal surfaces and a counterexample to the Bernstein conjecture in high dimensions, Unpublished lecture notes (1970).
[Bo] A., Borbély, A note on the Dirichlet problem at infinity for manifolds of negative curvature, Proc. Amer. Math. Soc. 114(1992), 865–872.Google Scholar
[Br] R., Brooks, A relation between growth and the spectrum of the Laplacian, Math. Z. 178(1981), 501–508.Google Scholar
[Bu] P., Buser, On Cheeger's inequality λ1 ≥ h2/4, AMS Proc. Symp. Pure Math. 36(1980), 29–77.Google Scholar
[C] J., Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis, a symposium in honor of S. Bochner, Princeton University Press, Princeton, 1970, pp. 195–199.Google Scholar
[CCM] J., Cheeger, T., Colding, and W., Minicozzi, Linear growth harmonic functions on complete manifolds with nonnegative Ricci curvature, Geom. Func. Anal. 5(1995), 948–954.Google Scholar
[Cg1] S.Y., Cheng, Eigenvalue comparison theorems and its geometric application, Math. Z. 143(1975), 279–297.Google Scholar
[Cg2] S.Y., Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51(1976), 43–55.Google Scholar
[Cg3] S.Y., Cheng, Liouville theorem for harmonic maps, Proc. Symp. Pure Math. 36(1980), 147–151.Google Scholar
[CG1] J., Cheeger and D., Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. Math. 92(1972), 413–443.Google Scholar
[CG2] J., Cheeger and D., Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Diff. Geom. 6(1971), 119–127.Google Scholar
[CgY] S.Y., Cheng and S. T., Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 27, (1975), 333–354.Google Scholar
[CM1] T., Colding and W., Minicozzi, On function theory on spaces with a lower Ricci curvature bound, Math. Res. Lett. 3(1996), 241–246.Google Scholar
[CM2] T., Colding and W., Minicozzi, Generalized Liouville properties of manifolds, Math. Res. Lett. 3(1996), 723–729.Google Scholar
[CM3] T., Colding and W., Minicozzi, Harmonic functions with polynomial growth, J. Diff. Geom. 46(1997), 1–77.Google Scholar
[CM4] T., Colding and W., Minicozzi, Harmonic functions on manifolds, Ann. Math. 146(1997), 725–747.Google Scholar
[CM5] T., Colding and W., Minicozzi, Weyl type bounds for harmonic functions, Invent. Math. 131(1998), 257–298.Google Scholar
[CM6] T., Colding and W., Minicozzi, Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math. 51(1998), 113–138.Google Scholar
[Cn] R., Chen, Neumann eigenvalue estimate on a compact Riemannian manifold, Proc. Amer. Math. Soc. 108(1990), 961–970.Google Scholar
[CnL] R., Chen and P., Li, On Poincaré type inequalities, Trans. AMS 349(1997), 1561–1585.Google Scholar
[CSZ] H., Cao, Y., Shen, and S., Zhu, The structure of stable minimal hypersurfaces in ℝn+1, Math. Res. Let. 4(1997), 637–644.Google Scholar
[CV] S., Cohn-Vossen, Kürzeste Wege and Totalkrümmung auf Flächen, Compositio Math. 2(1935), 69–133.Google Scholar
[CW] H. I., Choi and A.N., Wang, A first eigenvalue estimate for minimal hypersurfaces, J. Diff. Geom. 18(1983), 559–562.Google Scholar
[CY] J., Cheeger and S. T., Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math. 34(1981), 465–480.Google Scholar
[dCP] M., do Carmo and C.K., Peng, Stable complete minimal surfaces in ℝ3 are planes, Bull. AMS 1(1979), 903–906.Google Scholar
[D] E.B., Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989.Google Scholar
[De] E., De Giorgi, Una estensione del teorema di Bernstein, Ann. Scuola Nor. Sup. Pisa 19(1965), 79–85.Google Scholar
[E] J., Escobar, Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities and an eigenvalue estimate, Comm. Pure Appl. Math. 43(1990), 857–883.Google Scholar
[EO] P., Eberlein and B., O'Neill, Visibility manifolds, Pacific J. Math. 46(1973), 45–110.Google Scholar
[F] C., Faber, Beweiss, dass unter allen homogenen Membrane von gleicher Fläche und gleicher Spannung die kreisförmige die tiefsten Grundton gibt, Sitzungsber.–Bayer. Akad. Wiss, Math.-Phys. München, 1923, 169–172.Google Scholar
[Fl] W., Fleming, On the oriented plateau problem, Rend. Circ. Mat. Palerino 11(1962), 69–90.Google Scholar
[FC] D., Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three manifolds, Invent. Math. 82(1985), 121–132.Google Scholar
[FCS] D., Fischer-Colbrie and R., Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33(1980), 199–211.Google Scholar
[FF] H., Federer and W., Fleming, Normal and integral currents, Ann. Math. 72(1960), 458–520.Google Scholar
[G1] A., Grigor'yan, On stochastically complete manifolds, Soviet Math. Dokl. 34(1987), 310–313.Google Scholar
[G2] A., Grigor'yan, On the dimension of spaces of harmonic functions, Math. Notes 48(1990), 1114–1118.Google Scholar
[G3] A., Grigor'yan, The heat equation on noncompact Riemannian manifolds, Math. USSR Sbornik 72(1992), 47–77.Google Scholar
[Ge] T., Gelander, Homotopy type and volume of locally symmetric manifolds, Duke Math. J. 124(2004), 459–515.Google Scholar
[GM] S., Gallot and D., Meyer, Operateur de courbure et Laplacien des formes differentielles d'une variété Riemannienne, J. Math. Pures Appl. (9) 54(1975), 259–274.Google Scholar
[Gu1] R., Gulliver, Index and total curvature of complete minimal surfaces, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), Proc. Sympos. Pure Math. 44, Amer. Math. Soc., Providence, RI., 1986, pp. 207–211.Google Scholar
[Gu2] R., Gulliver, Minimal surfaces of finite index in manifolds of positive scalar curvature, Lecture Notes in Mathematics: Calculus of variations and partial differential equations (Trento, 1986), vol. 1340, Springer, Berlin, 1988, pp. 115–122.Google Scholar
[HK] P., Hajtasz and P., Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris Sr. I Math. 320(1995), 1211–1215.Google Scholar
[K] E., Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94(1925), 97–100.Google Scholar
[Ka] A., Kasue, A compactification of a manifold with asymptotically nonnegative curvature, Ann. Sci. Ecole. Norm. Sup. 21(1988), 593–622.Google Scholar
[KLZ] S., Kong, P., Li, and D., Zhou, Spectrum of the Laplacian on quaternionic Kähler manifolds, J. Diff. Geom. 78(2008), 295–332.Google Scholar
[KL] L., Karp and P., Li, The heat equation on complete Riemannian manifolds, http://math.uci.edu/pli/heat.pdf.
[L1] P., Li, A lower bound for the first eigenvalue for the Laplacian on compact manifolds, Indiana U. Math. J. 27(1979), 1013–1019.Google Scholar
[L2] P., Li, On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Scient. Ecole. Norm. Sup. 4, T 13(1980), 451–469.Google Scholar
[L3] P., Li, Poincaré inequalities on Riemannian manifolds, Seminar on Differential Geometry, Annals of Math. Studies. Edited by S. T., Yau, vol. 102, Princeton University Press, Princeton, 1982, pp. 73–83.Google Scholar
[L4] P., Li, Uniqueness of L1 solutions for the Laplace equation and the heat equation on Riemannian manifolds, J. Diff. Geom. 20(1984), 447–457.Google Scholar
[L5] P., Li, Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature, Ann. Math. 124(1986), 1–21.Google Scholar
[L6] P., Li, Lecture notes on geometric analysis, Lecture Notes Series No. 6 - Research Institute of Mathematics and Global Analysis Research Center, Seoul National University, Seoul, 1993.Google Scholar
[L7] P., Li, Harmonic functions of linear growth on Kähler manifolds with nonnegative Ricci curvature, Math. Res. Lett. 2(1995), 79–94.Google Scholar
[L8] P., Li, Harmonic sections of polynomial growth, Math. Res. Lett. 4(1997), 35–44.Google Scholar
[L9] P., Li, Harmonic functions and applications to complete manifolds, XIV Escola de Geometria Diferencial: Em homenagem a Shiing-Shen Chern, IMPA, Rio de Janeiro, 2006.
[LoT] G., Liao and L. F., Tam, On the heat equation for harmonic maps from non-compact manifolds, Pacific J. Math. 153(1992), 129–145.Google Scholar
[LS] P., Li and R., Schoen, Lp and mean value properties of subharmonic functions on Riemannian manifolds, Acta Math. 153(1984), 279–301.Google Scholar
[LT1] P., Li and L. F., Tam, Positive harmonic functions on complete manifolds with nonnegative curvature outside a compact set., Ann. Math. 125(1987), 171–207.Google Scholar
[LT2] P., Li and L. F., Tam, Symmetric Green's functions on complete manifolds, Amer. J. Math. 109(1987), 1129–1154.Google Scholar
[LT3] P., Li and L. F., Tam, Linear growth harmonic functions on a complete manifold, J. Diff. Geom. 29(1989), 421–425.Google Scholar
[LT4] P., Li and L. F., Tam, Complete surfaces with finite total curvature, J. Diff. Geom. 33(1991), 139–168.Google Scholar
[LT5] P., Li and L. F., Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math. 105(1991), 1–46.Google Scholar
[LT6] P., Li and L. F., Tam, Harmonic functions and the structure of complete manifolds, J. Diff. Geom. 35(1992), 359–383.Google Scholar
[LW1] P., Li and J., Wang, Convex hull properties of harmonic maps, J. Diff. Geom. 48(1998), 497–530.Google Scholar
[LW2] P., Li and J. P., Wang, Mean value inequalities, Indiana Math. J. 48(1999), 1257–1273.Google Scholar
[LW3] P., Li and J. P., Wang, Counting massive sets and dimensions of harmonic functions, J. Diff. Geom. 53(1999), 237–278.Google Scholar
[LW4] P., Li and J. P., Wang, Minimal hypersurfaces with finite index, Math. Res. Lett. 9(2002), 95–103.Google Scholar
[LW5] P., Li and J. P., Wang, Complete manifolds with positive spectrum, J. Diff. Geom. 58(2001), 501–534.Google Scholar
[LW6] P., Li and J., Wang, Complete manifolds with positive spectrum, II., J. Diff. Geom. 62(2002), 143–162.Google Scholar
[LW7] P., Li and J. P., Wang, Stable minimal hypersurfaces in a nonnegatively curved manifold, J. Reine Angew. Math. (Crelles) 566(2004), 215–230.Google Scholar
[LW8] P., Li and J., Wang, Comparison theorem for Kähler manifolds and positivity of spectrum., J. Diff. Geom. 69(2005), 43–74.Google Scholar
[LY1] P., Li and S. T., Yau, Eigenvalues of a compact Riemannian manifold., AMS Proc. Symp. Pure Math. 36(1980), 205–239.Google Scholar
[LY2] P., Li and S. T., Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156(1986), 153–201.Google Scholar
[Lz] A., Lichnerowicz, Géometrie des groupes de transformations, Dunod, Paris, 1958.Google Scholar
[M] B., Malgrange, Existence et approximation des solutions der équations aux dérivées partielles et des équations de convolution, Annales de l'Inst. Fourier 6(1955), 271–355.Google Scholar
[MS] J. H., Michael and L., Simon, Sobolev and mean-value inequalities on generalized submanifolds of ℝn, Comm. Pure Appl. Math. 26(1973), 361–379.Google Scholar
[NT] L., Ni and L., Tam, Kähler–Ricci flow and the Poincaré–Lelong equation, Comm. Anal. Geom. 12(2004), 111–141.Google Scholar
[O] M., Obata, Certain conditions for a Riemannian manifold to be isometric to the sphere, J. Math. Soc. Japan 14(1962), 333–340.Google Scholar
[R] R., Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana U. Math. J. 26(1977), 459–472.Google Scholar
[Ro] H., Royden, Harmonic functions on open Riemann surfaces, Trans. AMS 73(1952), 40–94.Google Scholar
[S] J., Simons, Minimal varieties in Riemannian manifolds, Ann. Math. 80(1964), 1–21.Google Scholar
[SC] L., Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom. 36(1992), 417–450.Google Scholar
[Sh] Y., Shen, A Liouville theorem for harmonic maps, Amer. J. Math. 117(1995), 773–785.Google Scholar
[Si] L., Simon, Lectures on geometric measure theory, Proc. Centre for Mathematical Analysis, Australian National University, Canberra, 1984.Google Scholar
[St] E., Stein, Singular integrals and differentiability properties of functions, Princeton mathematical series no. 30, Princeton University Press, Princeton, 1970.Google Scholar
[STW] C. J., Sung, L. F., Tam, and J. P., Wang, Spaces of harmonic functions, J. London Math. Soc. 61(2000), 789–806.Google Scholar
[SY1] R., Schoen and S. T., Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds of nonnegative Ricci curvature, Comm. Math. Helv. 39(1976), 333–341.Google Scholar
[SY2] R., Schoen and S. T., Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, vol. I, International Press., Cambridge.
[T] L. F., Tam, Liouville properties of harmonic maps, Math. Res. Lett. 2(1995), 719–735.Google Scholar
[V] N., Varopoulos, Hardy–Littlewood theory for semigroups, J. Funct. Anal. 63(1985), 240–260.Google Scholar
[WZ] J., Wang and L., Zhou, Gradient estimate for eigenforms of Hodge Laplacian, preprint.
[Y1] S. T., Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 27(1975), 201–228.Google Scholar
[Y2] S. T., Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana U. Math. J. 25(1976), 659–670.Google Scholar
[Y3] S. T., Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Scient. Ecole. Norm. Sup. 4(1985), 487–507.Google Scholar
[ZY] J. Q., Zhong and H. C., Yang, On the estimate of first eigenvalue of a compact Riemannian manifold, Sci. Sinica Ser. A 27(1984), 1265–1273.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Peter Li, University of California, Irvine
  • Book: Geometric Analysis
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139105798.036
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Peter Li, University of California, Irvine
  • Book: Geometric Analysis
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139105798.036
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Peter Li, University of California, Irvine
  • Book: Geometric Analysis
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139105798.036
Available formats
×