Skip to main content Accessibility help
×
Hostname: page-component-6d856f89d9-8l2sj Total loading time: 0 Render date: 2024-07-16T03:47:52.296Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  30 August 2017

Ingemar Bengtsson
Affiliation:
Stockholms Universitet
Karol Życzkowski
Affiliation:
Uniwersytet Jagiellonski, Poland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Geometry of Quantum States
An Introduction to Quantum Entanglement
, pp. 572 - 613
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] S., Aaronson. Quantum Computing since Democritus. Cambridge: Cambridge University Press, 2013.
[2] S., Abe. A note on the qdeformation- theoretic aspect of the generalized entropy in nonextensive physics. Phys. Lett., A 224:326, 1997.Google Scholar
[3] S., Abe and A. K., Rajagopal. Nonadditive conditional entropy and its significance for local realism. Physica, A 289:157, 2001.Google Scholar
[4] L., Accardi. Non-relativistic quantum mechanics as a noncommutative Markov process. Adv. Math., 20:329, 1976.Google Scholar
[5] L., Accardi. Topics in quantum probability. Phys. Rep., 77:169, 1981.Google Scholar
[6] A., Acín, A., Andrianov, E., Jané, and R., Tarrach. Three-qubit pure state canonical forms. J. Phys., A 34:6725, 2001.Google Scholar
[7] M., Adelman, J. V., Corbett, and C. A., Hurst. The geometry of state space. Found. Phys., 23:211, 1993.Google Scholar
[8] MacAdam, , J. Opt. Soc. Am., 32: 247, 1942.
[9] I., Affleck, T., Kennedy, E., Lieb, and H., Tasaki. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett., 59:799, 1987.Google Scholar
[10] G., Agarwal. Relation between atomic coherent-state representation state multipoles and generalized phase space distributions. Phys. Rev., A 24:2889, 1981.Google Scholar
[11] S. J., Akhtarshenas and M. A., Jafarizadeh. Robustness of entanglement for Bell decomposable states. E. Phys. J., D 25:293, 2003.Google Scholar
[12] S. J., Akhtarshenas and M. A., Jafarizadeh. Optimal Lewenstein- Sanpera decomposition for some bipartite systems. J. Phys., A 37: 2965, 2004.Google Scholar
[13] S., Alaca and K. S., Williams. Introductory Algebraic Number Theory. Cambridge UP, 2004.
[14] P. M., Alberti. A note on the transition probability over Calgebras. Lett. Math. Phys., 7:25, 1983.Google Scholar
[15] P. M., Alberti and A., Uhlmann. Dissipative Motion in State Spaces. Leipzig: Teubner, 1981.
[16] P. M., Alberti and A., Uhlmann. Stochasticity and Partial Order: Doubly Stochastic Maps and Unitary Mixing. Reidel, 1982.
[17] P. M., Alberti and A., Uhlmann. On Bures distance and algebraic transition probability between inner derived positive linear forms over walgebras. Acta Appl. Math., 60:1, 2000.Google Scholar
[18] S., Albeverio, K., Chen, and S.-M., Fei. Generalized reduction criterion for separability of quantum states. Phys. Rev., A 68:062313, 2003.Google Scholar
[19] E., Alfsen and F., Schultz. Unique decompositions, faces, and automorphisms of separable states. J. Math. Phys., 51:052201, 2010.Google Scholar
[20] E. M., Alfsen and F. W., Shultz. State Spaces of Operator Algebras. Boston: Birkhäuser, 2001.
[21] E. M., Alfsen and F. W., Shultz. Geometry of State Spaces of Operator Algebras. Boston: Birkhäuser, 2003.
[22] S. T., Ali, J.-P., Antoine, and J.-P., Gazeau. Coherent States, Wavelets and Their Generalizations. Springer-Verlag, 2000.
[23] R., Alicki. Comment on ‘Reduced dynamics need not be completely positive’. Phys. Rev. Lett., 75:3020, 1995.Google Scholar
[24] R., Alicki and M., Fannes. Quantum Dynamical Systems. Oxford University Press, 2001.
[25] R., Alicki and M., Fannes. Continuity of quantum conditional information. J. Phys., A 37:L55, 2004.Google Scholar
[26] R., Alicki and K., Lendi. Quantum Dynamical Semigroups and Applications. Springer-Verlag, 1987.
[27] R., Alicki, A., Łoziński, P., Pakoński, and K., Życzkowski. Quantum dynamical entropy and decoherence rate. J. Phys., A 37:5157, 2004.Google Scholar
[28] W. O., Alltop. Complex sequences with low periodic correlations. IEEE Trans. Inform. Theory., 26:350, 1980.Google Scholar
[29] N., Alon and L., Lovasz. Unextendible product bases. J. Combinat. Theor., A 95:169, 2001.Google Scholar
[30] S., Amari. Differential Geometrical Methods in Statistics. Springer- Verlag, 1985.
[31] L., Amico, R., Fazio, A., Osterloh, and V., Vedral. Entanglement in many-body systems. Rev. Mod. Phys., 80:517, 2008.Google Scholar
[32] G. G., Amosov, A. S., Holevo, and R. F., Werner. On some additivity problems in quantum information theory. Probl. Inform. Transm., 36:25, 2000.Google Scholar
[33] J., Anandan and Y., Aharonov. Geometry of quantum evolution. Phys. Rev. Lett., 65:1697, 1990.Google Scholar
[34] G. W., Anderson, A., Guionnet, and O., Zeitouni. An Introduction to Random Matrices. Cambridge: Cambridge University Press, 2010.
[35] D., Andersson, I., Bengtsson, K., Blanchfield, and H. B., Dang. States that are far from being stabilizer states. J. Phys., A 48:345301, 2015.Google Scholar
[36] O., Andersson and I., Bengtsson. Clifford tori and unbiased vectors. Rep. Math. Phys., 79:33, 2017.Google Scholar
[37] T., Ando. Majorization, doubly stochastic matrices, and comparison of eigenvalues. Linear Algebra Appl., 118:163, 1989.Google Scholar
[38] T., Ando. Majorizations and inequalities in matrix theory. Linear Algebra Appl., 199:17, 1994.Google Scholar
[39] T., Ando. Cones and norms in the tensor product of matrix spaces. Lin. Alg. Appl., 379:3, 2004.Google Scholar
[40] P., Aniello and C., Lupo. A class of inequalities inducing new separability criteria for bipartite quantum systems. J. Phys., A 41:355303, 2008.Google Scholar
[41] D. M., Appleby. Properties of the extended Clifford group with applications to SIC-POVMs and MUBs. preprint arXiv:0909.5233.
[42] D. M., Appleby. Symmetric informationally complete-positive operator measures and the extended Clifford group. J. Math. Phys., 46:052107, 2005.Google Scholar
[43] M., Appleby, T. -Y., Chien, S., Flammia, and S., Waldron, Constructing exact symmetric informationally complete measurements from numerical solutions. preprint arXiv:1703.05981.
[44] D. M., Appleby, H. B., Dang, and C. A., Fuchs. Symmetric informationally-complete quantum states as analogues to orthonormal bases and minimum-uncertainty states. Entropy, 16:1484, 2014.Google Scholar
[45] D. M., Appleby, S., Flammia, G., McConnell, and J., Yard. Generating ray class fields of real quadratic fields via complex equiangular lines. preprint arXiv:1604. 06098.
[46] D. M., Appleby, H., Yadsan- Appleby, and G., Zauner. Galois automorphisms of a symmetric measurement. Quant. Inf. Comp., 13:672, 2013.Google Scholar
[47] C., Aragone, G., Gueri, S., Salamó, and J. L., Tani. Intelligent spin states. J. Phys., A 7:L149, 1974.Google Scholar
[48] H., Araki. On a characterization of the state space of quantum mechanics. Commun. Math. Phys., 75:1, 1980.Google Scholar
[49] H., Araki and E., Lieb. Entropy inequalities. Commun. Math. Phys., 18:160, 1970.Google Scholar
[50] P., Aravind. The ‘twirl’, stella octangula and mixed state entanglement. Phys. Lett., A 233:7, 1997.Google Scholar
[51] P. K., Aravind. Geometry of the Schmidt decomposition and Hardy's theorem. Am. J. Phys., 64:1143, 1996.Google Scholar
[52] L., Arnaud and N., Cerf. Exploring pure quantum states with maximally mixed reductions. Phys. Rev., A 87:012319, 2013.Google Scholar
[53] V. I., Arnold. Symplectic geometry and topology. J. Math. Phys., 41:3307, 2000.Google Scholar
[54] V. I., Arnold. Dynamics, Statistics, and Projective Geometry of Galois Fields. Cambridge University Press, 2011.
[55] P., Arrighi and C., Patricot. A note on the correspondence between qubit quantum operations and special relativity. J. Phys., A 36:L287, 2003.Google Scholar
[56] P., Arrighi and C., Patricot. On quantum operations as quantum states. Ann. Phys. (N.Y.), 311:26, 2004.Google Scholar
[57] E., Arthurs and J. L., Kelly, Jr. On the simultaneous measurement of a pair of conjugate variables. Bell Sys. Tech. J., 44:725, 1965.Google Scholar
[58] S., Arunachalam, N., Johnston, and V., Russo. Is absolute separability determined by the partial transpose? Quant. Inf. Comput., 15:0694, 2015.Google Scholar
[59] W. B., Arveson. Sub-algebras of Calgebras. Acta Math., 123:141, 1969.Google Scholar
[60] Arvind, K. S., Mallesh, and N., Mukunda. A generalized Pancharatnam geometric phase formula for three-level quantum systems. J. Phys., A 30:2417, 1997.Google Scholar
[61] M., Aschbacher, A. M., Childs, and P., Wocjan. The limitations of nice mutually unbiased bases. J. Algebr. Comb., 25:111, 2007.Google Scholar
[62] A., Ashtekar and A., Magnon. Quantum fields in curved space-times. Proc. Roy. Soc. A, 346:375, 1975.Google Scholar
[63] A., Ashtekar and T. A., Schilling. Geometrical formulation of quantum mechanics. In A., Harvey, editor, On Einstein's Path, page 23. Springer, 1998.
[64] A., Aspect, J., Dalibard, and G., Roger. Experimental test of Bell's inequalities using timevarying analysers. Phys. Rev. Lett., 49:1804, 1982.Google Scholar
[65] M., Atiyah. The non-existent complex 6-sphere. preprint arXiv: 1610.09366.
[66] M. F., Atiyah. Convexity and commuting Hamiltonians. Bull. London Math. Soc., 14:1, 1982.Google Scholar
[67] G., Aubrun. Partial transposition of random states and non-centered semicircular distributions. Rand. Mat. Theor. Appl., 1:1250001, 2012.Google Scholar
[68] G., Aubrun, S., Szarek, and E., Werner. Hastings' additivity counterexample via Dvoretzky's theorem. Commun. Math. Phys., 305:85, 2011.Google Scholar
[69] G., Aubrun and S. J., Szarek. Alice and Bob Meet Banach. The Interface of Asymptotic Geometric Analysis and Quantum Information Theory. Amer. Math. Soc. book in preparation.
[70] K., Audenaert, J., Eisert, E., Jané, M. B., Plenio, S., Virmani, and B. D., Moor. Asymptotic relative entropy of entanglement. Phys. Rev. Lett., 87:217902, 2001.Google Scholar
[71] K., Audenaert, B. D., Moor, K. G. H., Vollbrecht, and R. F., Werner. Asymptotic relative entropy of entanglement for orthogonally invariant states. Phys. Rev., A 66:032310, 2002.Google Scholar
[72] K., Audenaert, F., Verstraete, and B. D., Moor. Variational characterizations of separability and entanglement of formation. Phys. Rev., A 64:052304, 2001.Google Scholar
[73] K. M. R., Audenaert and S., Scheel. On random unitary channels. New J. Phys., 10:023011, 2008.Google Scholar
[74] R., Augusiak, J., Grabowski,M., Kuś, and M., Lewenstein. Searching for extremal PPT entangled states. Opt. Commun., 283:805, 2010.Google Scholar
[75] R., Augusiak, J., Stasińska, and P., Horodecki. Beyond the standard entropic inequalities: Stronger scalar separability criteria and their applications. Phys. Rev., A 77:012333, 2008.Google Scholar
[76] M., Aulbach, D., Markham, and M., Murao. The maximally entangled symmetric state in terms of the geometric measure. New Jour. of Phys., 12:073025, 2010.Google Scholar
[77] L., Autonne. Sur les matrices hypohermitiennes et sur les matrices unitaires. Ann. Univ. Lyon Nouvelle Ser., 38:1, 1915.Google Scholar
[78] J. E., Avron, L., Sadun, J., Segert, and B., Simon. Chern numbers, quaternions, and Berry's phases in Fermi systems. Commun. Math. Phys., 124:595, 1989.Google Scholar
[79] N., Ay and W., Tuschmann. Dually flat manifolds and global information geometry. Open Sys. Inf. Dyn., 9:195, 2002.Google Scholar
[80] H., Bacry. Orbits of the rotation group on spin states. J. Math. Phys., 15:1686, 1974.Google Scholar
[81] P., Badziag, C., Brukner, W., Laskowski, T., Paterek, and M., Żukowski. Experimentally friendly geometrical criteria for entanglement. Phys. Rev. Lett., 100:140403, 2008.Google Scholar
[82] P., Badziag, P., Deaur, M., Horodecki, P., Horodecki, and R., Horodecki. Concurrence in arbitrary dimensions. J. Mod. Optics, 49:1289, 2002.Google Scholar
[83] P., Badziag, M., Horodecki, P., Horodecki, and R., Horodecki. Local environment can enhance fidelity of quantum teleportation. Phys. Rev., A 62:012311, 2000.Google Scholar
[84] J., Baez. Rényi entropy and free energy. preprint arXiv:1102.2098.
[85] D., Baguette, F., Damanet, O., Giraud, and J., Martin. Anticoherence of spin states with point group symmetries. Phys. Rev., A 92:052333, 2015.Google Scholar
[86] R., Balian, Y., Alhassid, and H., Reinhardt. Dissipation in manybody systems: A geometric approach based on information theory. Phys. Rep., 131:1, 1986.Google Scholar
[87] K. M., Ball. An elementary introduction to modern convex geometry. In S., Levy, editor, Flavors of Geometry, page 1. Cambridge University Press, 1997.
[88] S., Bandyopadhyay, P. O., Boykin, V., Roychowdhury, and F., Vatan. A new proof for the existence of mutually unbiased bases. Algorithmica, 34:512, 2002.Google Scholar
[89] M., Barbieri, F. D., Martini, G. D., Nepi, P., Mataloni, G., D'Ariano, and C., Macciavello. Detection of entanglement with polarized photons: Experimental realization of an entanglement witness. Phys. Rev. Lett., 91:227901, 2003.Google Scholar
[90] M., Barbut and L., Mazliak. Commentary on the notes for Paul Léevy's 1919 lectures on the probability calculus at the Ecole Polytechnique. El. J. Hist. Probab. Stat., 4, 2008.
[91] V., Bargmann. On a Hilbert space of analytic functions and an associated analytic transform. Commun. Pure Appl. Math., 14:187, 1961.Google Scholar
[92] V., Bargmann. Note on Wigner's theorem on symmetry operations. J. Math. Phys., 5:862, 1964.Google Scholar
[93] O. E., Barndorff-Nielsen and R. D., Gill. Fisher information in quantum statistics. J. Phys., A 33:4481, 2000.Google Scholar
[94] H., Barnum, C. M., Caves, C. A., Fuchs, R., Jozsa, and B., Schumacher. Non-commuting mixed states cannot be broadcast. Phys. Rev. Lett., 76:2818, 1996.Google Scholar
[95] H., Barnum, E., Knill, G., Ortiz, and L., Viola. Generalizations of entanglement based on coherent states and convex sets. Phys. Rev., A 68:032308, 2003.Google Scholar
[96] H., Barnum and N., Linden. Monotones and invariants for multiparticle quantum states. J. Phys., A 34:6787, 2001.Google Scholar
[97] N., Barros e Sá. Decomposition of Hilbert space in sets of coherent states. J. Phys., A 34:4831, 2001.Google Scholar
[98] N., Barros e Sá. Uncertainty for spin systems. J. Math. Phys., 42:981, 2001.Google Scholar
[99] T., Bastin, S., Krins, P., Mathonet, M., Godefroid, L., Lamata, and E., Solano. Operational families of entanglement classes for symmetric n–qubit states. Phys. Rev. Lett., 103:070503, 2009.Google Scholar
[100] R. J., Baxter. Dimers on a rectangular lattice. J. Math. Phys., 9:650, 1968.Google Scholar
[101] C., Beck and F., Schlögl. Thermodynamics of Chaotic Systems. Cambridge University Press, 1993.
[102] E. F., Beckenbach and R., Bellman. Inequalities. Springer, 1961.
[103] B., Belavkin and P., Staszewski. c algebraic generalization of relative entropy and entropy. Ann. Inst. H. Poincaré, A37:51, 1982.Google Scholar
[104] S. T., Belinschi, B., Collins, and I., Nechita. Almost one bit violation for the additivity of the minimum output entropy. Commun. Math. Phys., 341:885, 2016.Google Scholar
[105] J. S., Bell. On the Einstein–Podolsky–Rosen paradox. Physics, 1:195, 1964.Google Scholar
[106] J. S., Bell. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38:447, 1966.Google Scholar
[107] J. S., Bell. Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, 1987.
[108] A., Belovs. Welch bounds and quantum state tomography. MSc thesis, Univ. Waterloo, 2008.
[109] F., Benatti, R., Floreanini, and M., Piani. Quantum dynamical semigroups and non-decomposable positive maps. Phys. Lett., A 326:187, 2004.Google Scholar
[110] F., Benatti and H., Narnhofer. Additivity of the entanglement of formation. Phys. Rev., A 63:042306, 2001.Google Scholar
[111] J., Bendat and S., Sherman. Monotone and convex operator functions. Trans. Amer. Math. Soc., 79:58, 1955.Google Scholar
[112] I., Bengtsson, J., Brännlund, and K., Życzkowski. CPn, or entanglement illustrated. Int. J. Mod. Phys., A 17:4675, 2002.Google Scholar
[113] I., Bengtsson and Å., Ericsson. How to mix a density matrix. Phys. Rev., A 67:012107, 2003.Google Scholar
[114] I., Bengtsson, S., Weis, and K., Życzkowski. Geometry of the set of mixed quantum states: An apophatic approach. In J., Kielanowski, editor, Geometric Methods in Physics, page 175. Springer, Basel, 2013. Trends in Mathematics.
[115] C. H., Bennett, H. J., Bernstein, S., Popescu, and B., Schumacher. Concentrating partial entanglement by local operations. Phys. Rev., A 53:2046, 1996.Google Scholar
[116] C. H., Bennett and G., Brassard. Quantum cryptography: public key distribution and coin tossing. In Int. Conf. on Computers, Systems and Signal Processing, Bangalore, page 175. IEEE, 1984.
[117] C. H., Bennett, G., Brassard, C., Crépeau, R., Jozsa, A., Peres, and W. K., Wootters. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett., 70:1895, 1993.Google Scholar
[118] C. H., Bennett, G., Brassard, S., Popescu, B., Schumacher, J. A., Smolin, and W. K., Wootters. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 76:722, 1996.Google Scholar
[119] C. H., Bennett, D. P., DiVincenzo, C. A., Fuchs, T., Mor, E., Rains, P. W., Shor, J. A., Smolin, and W. K., Wootters. Quantum non-locality without entanglement. Phys. Rev., A 59:1070, 1999.Google Scholar
[120] C. H., Bennett, D. P., DiVincenzo, T., Mor, P. W., Shor, J. A., Smolin, and B. M., Terhal. Unextendible product bases and bound entanglement. Phys. Rev. Lett., 82:5385, 1999.Google Scholar
[121] C. H., Bennett, D. P., DiVincenzo, J., Smolin, and W. K., Wootters. Mixed-state entanglement and quantum error correction. Phys. Rev., A 54:3824, 1996.Google Scholar
[122] C. H., Bennett, S., Popescu, D., Rohrlich, J. A., Smolin, and A. V., Thapliyal. Exact and asymptotic measures of multipartite purestate entanglement. Phys. Rev., A 63:012307, 2000.Google Scholar
[123] C. H., Bennett and S. J., Wiesner. Communication via one- and twoparticle operations on Einstein- Podolsky-Rosen states. Phys. Rev. Lett., 69:2881, 1992.Google Scholar
[124] M. K., Bennett. Affine and Projective Geometry. Wiley, 1995.
[125] S., Berceanu. Coherent states, phases and symplectic areas of geodesic triangles. In M., Schliechenmaier, S. T., Ali, A., Strasburger, and A., Odzijewicz, editors, Coherent States, Quantization and Gravity, page 129. Wydawnictwa Uniwersytetu Warszawskiego, 2001.
[126] S. N., Bernstein. Theory of Probabilities. Moscow: Gostechizdat, 1928.
[127] D. W., Berry and B. C., Sanders. Bounds on general entropy measures. J. Phys., A 36:12255, 2003.Google Scholar
[128] M. V., Berry. Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. A, 392:45, 1984.Google Scholar
[129] J., Bertrand and P., Bertrand. A tomographic approach to Wigner's function. Found. Phys., 17:397, 1987.Google Scholar
[130] R., Bhatia. Matrix Analysis. Springer-Verlag, 1997.
[131] R., Bhatia and P., Rosenthal. How and why to solve the operator equation AX - XB = Y. Bull. Lond. Math. Soc., 29:1, 1997.Google Scholar
[132] A., Bhattacharyya. On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc., 35:99, 1943.Google Scholar
[133] T., Bhosale, S., Tomsovic, and A., Lakshminarayan. Entanglement between two subsystems, the Wigner semicircle and extreme value statistics. Phys. Rev., A 85:062331, 2012.Google Scholar
[134] G., Björk, A. B., Klimov, P. de la, Hoz, M., Grassl, G., Leuchs, and L. L., Sanchez-Soto. Extremal quantum states and their Majorana constellations. Phys. Rev., A 92: 031801, 2015.Google Scholar
[135] P., Blanchard, L., Jakóbczyk, and R., Olkiewicz. Measures of entanglement based on decoherence. J. Phys., A 34:8501, 2001.Google Scholar
[136] K., Blanchfield. Orbits of mutually unbiased bases. J. Phys., A 47:135303, 2014.Google Scholar
[137] W., Blaschke and H., Terheggen. Trigonometria Hermitiana. Rend. Sem. Mat. Univ. Roma, Ser. 4, 3:153, 1939.Google Scholar
[138] I., Bloch, J., Dalibard, and W., Zwerger. Many–body physics with ultracold gases. Rev. Mod. Phys., 80:885, 2008.Google Scholar
[139] F. J., Bloore. Geometrical description of the convex sets of states for systems with spin−1/2 and spin−1. J. Phys., A 9:2059, 1976.Google Scholar
[140] B. G., Bodmann. A lower bound for the Wehrl entropy of quantum spin with sharp high-spin asymptotics. Commun. Math. Phys., 250:287, 2004.Google Scholar
[141] E., Bogomolny, O., Bohigas, and P., Leboeuf. Distribution of roots of random polynomials. Phys. Rev. Lett., 68:2726, 1992.Google Scholar
[142] E., Bogomolny, O., Bohigas, and P., Leboeuf. Quantum chaotic dynamics and random polynomials. J. Stat. Phys., 85:639, 1996.Google Scholar
[143] J. J., Bollinger, W. M., Itano, D. J., Wineland, and D. J., Heinzen. Optimal frequency measurements with maximally correlated states. Phys. Rev., A54:R4649, 1996.Google Scholar
[144] B., Bolt, T. G., Room, and G. E., Wall. On the Clifford collineation, transform and similarity groups I. J. Austral. Math. Soc., 2:60, 1960.Google Scholar
[145] L., Bombelli, R. K., Koul, J., Lee, and R. D., Sorkin. Quantum source of entropy for black holes. Phys. Rev., D 34:373, 1986.Google Scholar
[146] A., Bondal and I., Zhdanovskiy. Orthogonal pairs and mutually unbiased bases. preprint arXiv: 1510.05317.
[147] M., Born and E., Wolf. Principles of Optics. New York: Pergamon, 1987.
[148] A., Borras, A. R., Plastino, J., Batle, C., Zander, M., Casas, and A., Plastino. <At>Multi-qubit systems: highly entangled states and entanglement distribution. J. Phys., A 40:13407, 2007.Google Scholar
[149] S., Boucheron, G., Lugosi, and P., Massart. Concentration Inequalities. A Nonasymptotic Theory of Independence. Oxford: Oxford University Press, 2013.
[150] J., Bouda and V., Bužek. Purification and correlated measurements of bipartite mixed states. Phys. Rev., A 65:034304, 2002.Google Scholar
[151] M., Bourennane, M., Eibl, C., Kurtsiefer, H., Weinfurter, O., Guehne, P., Hyllus, D., Bruß, M., Lewenstein, and A., Sanpera. Witnessing multipartite entanglement. Phys. Rev. Lett., 92:087902, 2004.Google Scholar
[152] D., Bouwmeester, J. W., Pan, M., Daniell, H., Weinfurter, and A., Zeilinger. Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett., 82:1345, 1999.Google Scholar
[153] L. J., Boya, E. C. G., Sudarshan, and T., Tilma. Volumes of compact manifolds. Rep. Math. Phys., 52:401, 2003.Google Scholar
[154] L., Boyle. Perfect porcupines: ideal networks for low frequency gravitational wave astronomy. preprint arXiv:1003.4946.
[155] F. G. S. L., Brandão, M., Christandl, and J., Yard. Faithful squashed entanglement. Commun. Math. Phys., 306:805, 2011.Google Scholar
[156] F. G. S. L., Brandão and G., Gour. The general structure of quantum resource theories. Phys. Rev. Lett., 115:070503, 2015.Google Scholar
[157] F. G. S. L., Brandão and M., Horodecki. On Hastings' counterexamples to the minimum output entropy additivity conjecture. Open Syst. Inf. Dyn., 17:31, 2010.Google Scholar
[158] F. G. S. L., Brandão and M., Horodecki. An area law for entanglement from exponential decay of correlations. Nat. Phys., 9:721, 2013.Google Scholar
[159] D., Braun, O., Giraud, I., Nechita, C., Pellegrini, and M., Žnidarič. A universal set of qubit quantum channels. J. Phys., A 47:135302, 2014.Google Scholar
[160] D., Braun, M., Kuś, and K., Życzkowski. Time-reversal symmetry and random polynomials. J. Phys., A 30:L117, 1997.Google Scholar
[161] S. L., Braunstein. Geometry of quantum inference. Phys. Lett., A 219:169, 1996.Google Scholar
[162] S. L., Braunstein and C. M., Caves. Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 72:3439, 1994.Google Scholar
[163] S. L., Braunstein, C. M., Caves, R., Jozsa, N., Linden, S., Popescu, and R., Schack. Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett., 83:1054, 1999.Google Scholar
[164] S., Bravyi. Requirements for compatibility between local and multipartite quantum states. Quantum Inf. Comput., 4:12, 2004.Google Scholar
[165] S., Bravyi, M. B., Hastings, and F., Verstraete. Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett, 97:050401, 2006.Google Scholar
[166] S., Bravyi and A., Kitaev. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev., A71:022316, 2005.Google Scholar
[167] U., Brehm. The shape invariant of triangles and trigonometry in twopoint homogeneous spaces. Geometriae Dedicata, 33:59, 1990.Google Scholar
[168] G. K., Brennen. An observable measure of entanglement for pure states of multi-qubit systems. Quant. Inf. Comp., 3:619, 2003.Google Scholar
[169] H.-P., Breuer. Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett., 97:080501, 2006.Google Scholar
[170] H.-P., Breuer and F., Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 2002.
[171] E., Briand, J.-G., Luque, and J.-Y., Thibon. A complete set of covariants for the four qubit system. J. Phys., A 38:9915, 2003.Google Scholar
[172] H. J., Briegel and R., Raussendorf. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., A 86:910, 2001.Google Scholar
[173] S., Brierley and A., Higuchi. On maximal entanglement between two pairs in four-qubit pure states. J. Phys., A 40:8455, 2007.Google Scholar
[174] S., Brierley and S., Weigert. Maximal sets of mutually unbiased quantum states in dimension six. Phys. Rev., A 78:042312, 2008.Google Scholar
[175] J., Briët and P., Herremoës. Properties of classical and quantum Jensen–Shannon divergence. Phys. Rev., A 79:052311, 2009.Google Scholar
[176] M., Brion. Sur l'image de l'application moment. In M. P., Malliavin, editor, Séminaire d'Algebre Paul Dubreil et Marie- Paule Malliavin, page 177. Springer, 1987.
[177] D. C., Brody and L. P., Hughston. Geometric quantum mechanics. J. Geom. Phys., 38:19, 2001.Google Scholar
[178] D. C., Brody, L. P., Hughston, and D. M., Meier. Fragile entanglement statistics. J. Phys., A 48:425301, 2015.Google Scholar
[179] E., Bruening, H., Makela, A., Messina, and F., Petruccione. Parametrizations of density matrices. J. Mod. Opt., 59:1, 2012.Google Scholar
[180] N., Brunner, D., Cavalcanti, S., Pironio, V., Scarani, and S., Wehner. Bell nonlocality. Rev. Mod. Phys., 86:419, 2014.Google Scholar
[181] D., Bruß. Characterizing entanglement. J. Math. Phys., 43:4237, 2002.Google Scholar
[182] W., Bruzda, V., Cappellini, H.-J., Sommers, and K., Życzkowski. Random quantum operations. Phys. Lett., A 373:320, 2009.Google Scholar
[183] D. J. C., Bures. An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite w algebras. Trans. Am. Math. Soc., 135:199, 1969.Google Scholar
[184] P., Busch, P., Lahti, and P., Mittelstaedt. The Quantum Theory of Measurement. Springer-Verlag, 1991.
[185] P., Caban, J., Rembieliński, K. A., Smoliński, and Z., Walczak. Classification of two-qubit states. Quant. Infor. Process., 14:4665, 2015.Google Scholar
[186] A., Cabello, J. M., Estebaranz, and G., García-Alcaine. Bell–Kochen–Specker theorem: A proof with 18 vectors. Phys. Lett., A 212:183, 1996.Google Scholar
[187] A., Cabello, S., Severini, and A., Winter. Graph theoretic approach to quantum correlations. Phys. Rev. Lett., 112:040401, 2014.Google Scholar
[188] K., Cahill and R., Glauber. Density operators and quasi-probability distributions. Phys. Rev., 177:1882, 1969.Google Scholar
[189] P., Calabrese and J., Cardy. Entanglement entropy and conformal field theory. J. Phys., A 42:504005, 2009.Google Scholar
[190] A. R., Calderbank, P. J., Cameron, W. M., Kantor, and J. J., Seidel. Z4- Kerdock codes, orthogonal spreads, and extremal Euclidean line sets. Proc. London Math. Soc., 75:436, 1997.Google Scholar
[191] A. R., Calderbank, E. M., Rains, P. W., Shor, and N. J. A., Sloane. Quantum error correction and orthogonal geometry. Phys. Rev. Lett., 78:405, 1997.Google Scholar
[192] L. L., Campbell. An extended Čencov characterization of the information metric. Proc. Amer. Math. Soc., 98:135, 1986.Google Scholar
[193] B., Carlson and J. M., Keller. Eigenvalues of density matrices. Phys. Rev., 121:659, 1961.Google Scholar
[194] H. A., Carteret, A., Higuchi, and A., Sudbery. Multipartite generalization of the Schmidt decomposition. J. Math. Phys., 41:7932, 2000.Google Scholar
[195] C. M., Caves. Measures and volumes for spheres, the probability simplex, projective Hilbert spaces and density operators. http://info.phys.unm.edu/caves/reports
[196] C. M., Caves, C. A., Fuchs, and P., Rungta. Entanglement of formation of an arbitrary state of two rebits. Found. Phys. Lett., 14:199, 2001.Google Scholar
[197] C. M., Caves, C. A., Fuchs, and R., Schack. Unknown quantum states: The quantum de Finetti representation. J. Math. Phys., 43:4537, 2001.Google Scholar
[198] A., Cayley. On the theory of linear transformations. Camb. Math. J., 4:193, 1845.Google Scholar
[199] N. N., Čencov. Statistical Decision Rules and Optimal Inference. American Mathematical Society, 1982.
[200] N. J., Cerf and C., Adami. Quantum extension of conditional probability. Phys. Rev., A 60:893, 1999.Google Scholar
[201] N. J., Cerf, C., Adami, and R. M., Gingrich. Reduction criterion for separability. Phys. Rev., A 60:898, 1999.Google Scholar
[202] N. J., Cerf, M., Bourennane, A., Karlsson, and N., Gisin. Security of quantum key distribution using d-level systems. Phys. Rev. Lett., 88:127902, 2002.Google Scholar
[203] H. F., Chau. Unconditionally secure key distribution in higher dimensions by depolarization. IEEE Trans. Inf. Theory, 51:1451, 2005.Google Scholar
[204] K., Chen, S., Albeverio, and S.-M., Fei. Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett., 95:040504, 2005.Google Scholar
[205] K., Chen and L.-A., Wu. The generalized partial transposition criterion for separability of multipartite quantum states. Phys. Lett., A 306:14, 2002.Google Scholar
[206] K., Chen and L.-A., Wu. A matrix realignment method for recognizing entanglement. Quant. Inf. Comp., 3:193, 2003.Google Scholar
[207] K., Chen and L.-A., Wu. Test for entanglement using physically observable witness operators and positive maps. Phys. Rev., A 69:022312, 2004.Google Scholar
[208] L., Chen and D. Ž., Djoković. Qubitqudit states with positive partial transpose. Phys. Rev., A 86:062332, 2012.Google Scholar
[209] L., Chen and D. Ž., Ðoković. Description of rank four PPT states having positive partial transpose. J. Math. Phys., 52:122203, 2011.Google Scholar
[210] L., Chen and L., Yu. Entanglement cost and entangling power of bipartite unitary and permutation operators. Phys. Rev., A 93:042331, 2016.Google Scholar
[211] P.-X., Chen, L.-M., Liang, C.-Z., Li, and M.-Q., Huang. A lower bound on entanglement of formation of 2n system. Phys. Lett., A 295:175, 2002.Google Scholar
[212] S., Chern. Complex Manifolds Without Potential Theory. Springer- Verlag, 1979.
[213] M.-T., Chien and H., Nakazato. Flat portions on the boundary of the Davis Wielandt shell of 3-by-3 matrices. Lin. Alg. Appl., 430:204, 2009.Google Scholar
[214] E., Chitambar, D., Leung, L., Mančinska, M., Ozols, and A., Winter. Everything you always wanted to know about LOCC (but were afraid to ask). Commun. Math. Phys., 328:303, 2014.Google Scholar
[215] S.-J., Cho, S.-H., Kye, and S. G., Lee. Generalized Choi map in 3-dimensional matrix algebra. Lin. Alg. Appl., 171:213, 1992.Google Scholar
[216] M.-D., Choi. Positive linear maps on Calgebras. Can. J. Math., 3:520, 1972.Google Scholar
[217] M.-D., Choi. Completely positive linear maps on complex matrices. Lin. Alg. Appl., 10:285, 1975.Google Scholar
[218] M.-D., Choi. Positive semidefinite biquadratic forms. Lin. Alg. Appl., 12:95, 1975.Google Scholar
[219] M.-D., Choi. Some assorted inequalities for positive maps on Calgebras. J. Operator Theory, 4:271, 1980.Google Scholar
[220] M.-D., Choi and T., Lam. Extremal positive semidefinite forms. Math. Ann., 231:1, 1977.Google Scholar
[221] D., Chruściński and A., Jamiołkowski. Geometric Phases in Classical and Quantum Mechanics. Birkhäuser, 2004.
[222] D., Chruściński, J., Jurkowski, and A., Kossakowski. Quantum states with strong positive partial transpose. Phys. Rev., A 77:022113, 2008.Google Scholar
[223] D., Chruściński and G., Sarbicki. Entanglement witnesses: construction, analysis and classification. J. Phys., A 47:483001, 2014.Google Scholar
[224] O., Chterental and D. Ž., Ðoković. Normal forms and tensor ranks of pure states of four qubits. In G. D., Ling, editor, Linear Algebra Research Advances, page 133. Nova Science Publishers, 2007.
[225] L., Clarisse. The distillability problem revisited. Quantum Inf. Comput., 6:539, 2006.Google Scholar
[226] J. F., Clauser and A., Shimony. Bell's theorem; experimental tests and implications. Rep. Prog. Phys., 41:1881, 1978.Google Scholar
[227] R., Clifton and H., Halvorson. Bipartite mixed states of infinite dimensional systems are generically non-separable. Phys. Rev., A 61:012108, 2000.Google Scholar
[228] R., Clifton, B., Hepburn, and C., Wuthrich. Generic incomparability of infinite-dimensional entangled states. Phys. Lett., A 303:121, 2002.Google Scholar
[229] B., Coecke. Kindergarten quantum mechanics. In G., Adenier, A., Khrennikov, and T., Nieuwenhuizen, editors, Quantum Theory— Reconsideration of Foundations–3, page 81. AIP Conf. Proc. 810, 2006.
[230] V., Coffman, J., Kundu, and W. K., Wootters. Distributed entanglement. Phys. Rev., A 61:052306, 2000.Google Scholar
[231] A., Coleman and V. I., Yukalov. Reduced Density Matrices. Springer, 2000.
[232] A. J., Coleman. The structure of fermion density matrices. Rev. Mod. Phys., 35:668, 1963.Google Scholar
[233] B., Collins and I., Nechita. Random matrix techniques in quantum information theory. J. Math. Phys., 57:015215, 2016.Google Scholar
[234] T., Constantinescu and V., Ramakrishna. Parametrizing quantum states and channels. Quant. Inf. Proc., 2:221, 2003.Google Scholar
[235] J., Cortese. Relative entropy and single qubit Holevo–Schumacher–Westmoreland channel capacity. preprint quant-ph/0207128.
[236] C. A., Coulson. Present state of molecular structure calculations. Rev. Mod. Phys., 32:170, 1960.Google Scholar
[237] T. M., Cover and J. A., Thomas. Elements of Information Theory. Wiley, 1991.
[238] P., Cromwell. Polyhedra. Cambridge University Press, 1997.
[239] T., Cubitt, A., Montanaro, and A., Winter. On the dimension of subspaces with bounded Schmidt rank. J. Math. Phys., 49:022107, 2008.Google Scholar
[240] D. G., Currie, T. F., Jordan, and E. C. G., Sudarshan. Relativistic invariance and Hamiltonian theories of interacting particles. Rev. Mod. Phys., 35:350, 1963.Google Scholar
[241] T., Curtright, D. B., Fairlie, and C., Zachos. A Concise Treatise on Quantum Mechanics in Phase Space. World Scientific, 2014.
[242] L., Dabrowski and A., Jadczyk. Quantum statistical holonomy. J. Phys., A 22:3167, 1989.Google Scholar
[243] S., Daftuar and P., Hayden. Quantum state transformations and the Schubert calculus. Ann. Phys. (N. Y.), 315:80, 2005.Google Scholar
[244] S., Daftuar and M., Klimesh. Mathematical structure of entanglement catalysis. Phys. Rev., A 64:042314, 2001.Google Scholar
[245] O. C. O., Dahlsten, R., Oliveira, and M. B., Plenio. Emergence of typical entanglement in two-party random processes. J. Phys., A 40:8081, 2007.Google Scholar
[246] C., Dankert. Efficient Simulation of Random Quantum States and Operators. MSc thesis, Univ. Waterloo, 2005.
[247] N., Datta, T., Dorlas, R., Jozsa, and F., Benatti. Properties of subentropy. J. Math. Phys., 55:062203, 2014.Google Scholar
[248] E. B., Davies. Quantum Theory of Open Systems. London: Academic Press, 1976.
[249] C., Davis. The Toeplitz–Hausdorff theorem explained. Canad. Math. Bull., 14:245, 1971.Google Scholar
[250] R. I. A., Davis, R., Delbourgo, and P. D., Jarvis. Covariance, correlation and entanglement. J. Phys., A 33:1895, 2000.Google Scholar
[251] L. De, Lathauwer, B. D., Moor, and J., Vandewalle. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl., 21:1253, 2000.Google Scholar
[252] T. R. de, Oliveira, M. F., Cornelio, and F. F., Fanchini. Monogamy of entanglement of formation. Phys. Rev., A 89:034303, 2014.Google Scholar
[253] J. I. de, Vicente. Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput., 7:624, 2007.Google Scholar
[254] R., Delbourgo. Minimal uncertainty states for the rotation group and allied groups. J. Phys., A 10:1837, 1977.Google Scholar
[255] R., Delbourgo and J. R., Fox. Maximum weight vectors possess minimal uncertainty. J. Phys., A 10:L233, 1977.Google Scholar
[256] M., Delbrück and G., Molière. Statistische Quantenmechanik und Thermodynamik. Ab. Preuss. Akad. Wiss., 1:1, 1936.Google Scholar
[257] B., DeMarco, A., Ben-Kish, D., Leibfried, V., Meyer, M., Rowe, B. M., Jelenkovic, W. M., Itano, J., Britton, C., Langer, T., Rosenband, and D., Wineland. Experimental demonstration of a controlled-NOT wave-packet gate. Phys. Rev. Lett., 89:267901, 2002.Google Scholar
[258] I., Devetak and A., Winter. Distillation of secret key and entanglement from quantum states. Proc. Royal Soc. Lond. A Math.-Phys., 461:207, 2005.Google Scholar
[259] S. J., Devitt, W. J., Munro, and K., Naemoto. Quantum error correction for beginners. Rep. Prog. Phys., 76:076001, 2013.Google Scholar
[260] P., Diaconis. What is … a random matrix? Notices of the AMS, 52:1348, 2005.Google Scholar
[261] R. H., Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93:99, 1954.Google Scholar
[262] J., Dittmann. On the Riemannian metric on the space of density matrices. Rep. Math. Phys., 36:309, 1995.Google Scholar
[263] J., Dittmann. Explicit formulae for the Bures metric. J. Phys., A 32:2663, 1999.Google Scholar
[264] J., Dittmann. The scalar curvature of the Bures metric on the space of density matrices. J. Geom. Phys., 31:16, 1999.Google Scholar
[265] D., DiVincenzo, C. A., Fuchs, H., Mabuchi, J. A., Smolin, A., Thapliyal, and A., Uhlmann. Entanglement of assistance. Lecture Notes Comp. Sci., 1509:247, 1999.Google Scholar
[266] D., DiVincenzo, D. W., Leung, and B., Terhal. Quantum data hiding. IEEE Trans. Inf. Theory, 48:580, 2002.Google Scholar
[267] D. P., DiVincenzo. Two-bit gates are universal for quantum computation. Phys. Rev., A 50:1015, 1995.Google Scholar
[268] D. P., DiVincenzo, T., Mor, P. W., Shor, J. A., Smolin, and B. M., Terhal. Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys., 238:379, 2003.Google Scholar
[269] A. C., Doherty, P. A., Parillo, and F. M., Spedalieri. Distinguishing separable and entangled states. Phys. Rev. Lett., 88:187904, 2002.Google Scholar
[270] A. C., Doherty, P. A., Parillo, and F. M., Spedalieri. Complete family of separability criteria. Phys. Rev., A 69:022308, 2004.Google Scholar
[271] D. Ž., Doković and A., Osterloh. On polynomial invariants of several qubits. J. Math. Phys., 50:033509, 2009.Google Scholar
[272] M. J., Donald. Further results on the relative entropy. Math. Proc. Cam. Phil. Soc., 101:363, 1987.Google Scholar
[273] M. J., Donald and M., Horodecki. Continuity of relative entropy of entanglement. Phys. Lett., A 264:257, 1999.Google Scholar
[274] M. J., Donald, M., Horodecki, and O., Rudolph. The uniqueness theorem for entanglement measures. J. Math. Phys., 43:4252, 2002.Google Scholar
[275] J. P., Dowling, G. S., Agarwal, and W. P., Schleich. Wigner function of a general angular momentum state: Applications to a collection of twolevel atoms. Phys. Rev., A 49:4101, 1994.Google Scholar
[276] C. F., Dunkl, P., Gawron, J. A., Holbrook, J. A., Miszczak, Z., Puchała, and K., Życzkowski. Numerical shadow and geometry of quantum states. Phys. Rev., A 61:042314, 2000.Google Scholar
[277] W., Dür and J. I., Cirac. Equivalence classes of non-local operations. Q. Inform. Comput., 2:240, 2002.Google Scholar
[278] W., Dür, G., Vidal, and J. I., Cirac. Three qubits can be entangled in two inequivalent ways. Phys. Rev., A 62:062314, 2000.Google Scholar
[279] A., Dvoretzky. Some results on convex bodies and Banach spaces. In Proc. Internat. Sympos. Linear Spaces, Jerusalem, 1960, page 123, 1961.Google Scholar
[280] F., Dyson. The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys., 3:1199, 1962.Google Scholar
[281] C., Eckart and G., Young. The approximation of one matrix by one of lower rank. Psychometrica, 1:211, 1936.Google Scholar
[282] A., Edelman and E., Kostlan. How many zeros of a random polynomial are real? Bull. Amer. Math. Soc., 32:1, 1995.Google Scholar
[283] H. G., Eggleston. Convexity. Cambridge University Press, 1958.
[284] A., Einstein. Autobiographical notes. In P. A., Schilpp, editor, Albert Einstein: Philosopher –Scientist, page 1. Cambridge University Press, 1949.
[285] A., Einstein, B., Podolsky, and N., Rosen. Can quantum mechanical description of reality be considered complete? Phys. Rev., 47:777, 1935.Google Scholar
[286] J., Eisert. Entanglement in quantum information theory. Ph.D. Thesis, University of Potsdam, 2001.
[287] J., Eisert, K., Audenaert, and M. B., Plenio. Remarks on entanglement measures and non-local state distinguishability. J. Phys., A 36:5605, 2003.Google Scholar
[288] J., Eisert and H. J., Briegel. Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev., A 64:022306, 2001.Google Scholar
[289] J., Eisert, M., Cramer, and M. B., Plenio. Area laws for the entanglement entropy –a review. Rev. Mod. Phys., 82:277, 2010.Google Scholar
[290] J., Eisert, P., Hyllus, O., Guhne, and M., Curty. Complete hierarchies of efficient approximations to problems in entanglement theory. Phys. Rev., A 70:062317, 2004.Google Scholar
[291] J., Eisert and M. B., Plenio. A comparison of entanglement measures. J. Mod. Opt., 46:145, 1999.Google Scholar
[292] A., Ekert and P. L., Knight. Entangled quantum systems and the Schmidt decomposition. Am. J. Phys., 63:415, 1995.Google Scholar
[293] C., Eltschka and J., Siewert. Monogamy equalities for qubit entanglement from lorentz invariance. Phys. Rev. Lett., 114: 140402, 2015.Google Scholar
[294] G. G., Emch. Algebraic Methods in Statistical Mechanics and Quantum Field Theory. Wiley Interscience, 1972.
[295] D. M., Endres and J. E., Schindelin. A new metric for probability distributions. IEEE Trans. Inf. Theory, 49:1858, 2003.Google Scholar
[296] B.-G., Englert and Y., Aharonov. The mean king's problem: Prime degrees of freedom. Phys. Lett., 284:1, 2001.Google Scholar
[297] B.-G., Englert and N., Metwally. Remarks on 2-q-bit states. Appl. Phys., B 72:35, 2001.Google Scholar
[298] T., Erber and G. M., Hockney. Complex systems: equilibrium configurations of N equal charges on a sphere (2 ≤ N ≤ 112). Adv. Chem. Phys., 98:495, 1997.Google Scholar
[299] P., Erdös. On an elementary proof of some asymptotic formulas in the theory of partitions. Phys. Rev. Lett., 43:437, 1942.Google Scholar
[300] Å., Ericsson. Separability and the stella octangula. Phys. Lett., A 295:256, 2002.Google Scholar
[301] M., Ericsson, E., Sjöqvist, J., Brännlund, D. K. L., Oi, and A. K., Pati. Generalization of the geometric phase to completely positive maps. Phys. Rev., A 67:020101(R), 2003.Google Scholar
[302] G., Etesi. Complex structure on the six dimensional sphere from a spontaneous symmetry breaking. J. Math. Phys., 56:043508, 2015.Google Scholar
[303] D. E., Evans. Quantum dynamical semigroups. Acta Appl. Math., 2:333, 1984.Google Scholar
[304] H., Everett. ‘Relative state’ formulation of quantum mechanics. Rev. Mod. Phys., 29:454, 1957.Google Scholar
[305] G., Ewald. Combinatorial Convexity and Algebraic Geometry. New York: Springer, 1996.
[306] P., Facchi, G., Florio, G., Parisi, and S., Pascazio. Maximally multipartite entangled states. Phys. Rev., A 77:060304 R, 2008.Google Scholar
[307] D. K., Faddejew. Zum Begriff der Entropie eines endlichen Wahrscheinlichkeitsschemas. In H., Grell, editor, Arbeiten zur Informationstheorie I, page 86. Deutscher Verlag der Wissenschaften, 1957.
[308] M., Fannes. A continuity property of the entropy density for spin lattices. Commun. Math. Phys., 31:291, 1973.Google Scholar
[309] M., Fannes, F. de, Melo, W., Roga, and K., Życzkowski. Matrices of fidelities for ensembles of quantum states and the holevo quantity. Quant. Inf. Comp., 12:472, 2012.Google Scholar
[310] M., Fannes, B., Nachtergaele, and R. F., Werner. Finitely correlated states on quantum spin chains. Commun. Math. Phys., 144:443, 1992.Google Scholar
[311] U., Fano. Pairs of two-level systems. Rev. Mod. Phys., 55:855, 1983.Google Scholar
[312] R. A., Fisher. Theory of statistical estimation. Proc. Cambr. Phil. Soc., 22:700, 1925.Google Scholar
[313] R. A., Fisher. The Design of Experiments. Oliver and Boyd, 1935.
[314] J., Fiurášek. Structural physical approximations of unphysical maps and generalized quantum measurements. Phys. Rev., A 66:052315, 2002.Google Scholar
[315] S. K., Foong and S., Kanno. Proof of Page's conjecture on the average entropy of a subsystem. Phys. Rev. Lett., 72:1148, 1994.Google Scholar
[316] L. R., Ford. Automorphic Functions. Chelsea, New York, 1951.
[317] P. J., Forrester. Log–Gases and Random matrices. Princeton University Press, 2010.
[318] G., Fubini. Sulle metriche definite da una forma Hermitiana. Atti Instituto Veneto, 6:501, 1903.Google Scholar
[319] C. A., Fuchs. Distinguishability and Accessible Information in Quantum Theory. PhD Thesis, Univ. of New Mexico, Albuquerque, 1996.
[320] C. A., Fuchs and C. M., Caves. Mathematical techniques for quantum communication theory. Open Sys. Inf. Dyn, 3:345, 1995.Google Scholar
[321] C. A., Fuchs, M. C., Hoang, A. J., Scott, and B. C., Stacey. SICs: More numerical solutions. see www.physics.umb.edu/Research/Qbism/
[322] C. A., Fuchs and R., Schack. Quantum-Bayesian coherence. Rev. Mod. Phys., 85:1693, 2013.Google Scholar
[323] C. A., Fuchs and J. van de, Graaf. Cryptographic distinguishability measures for quantum mechanical states. IEEE Trans. Inf. Th., 45:1216, 1999.Google Scholar
[324] A., Fujiwara and P., Algoet. Oneto- one parametrization of quantum channels. Phys. Rev., A 59:3290, 1999.Google Scholar
[325] M., Fukuda. Revisiting additivity violation of quantum channels. Commun. Math. Phys., 332:713, 2014.Google Scholar
[326] W., Ganczarek, M., Kuś, and K., Życzkowski. Barycentric measure of quantum entanglement. Phys. Rev., A 85:032314, 2012.Google Scholar
[327] I. M., Gelfand, M. M., Kapranov, and Z. V., Zelevinsky. Discriminants, Resultants, and Multidimensional Determinants. Birkhauser, 1994.
[328] E., Gerjuoy. Lower bound on entanglement of formation for the qubit–qudit system. Phys. Rev., A 67:052308, 2003.Google Scholar
[329] S., Gharibian. Strong NP-Hardness of the quantum separability problem. Quantum Infor. Comput., 10:343, 2010.Google Scholar
[330] G. W., Gibbons. Typical states and density matrices. J. Geom. Phys., 8:147, 1992.Google Scholar
[331] G. W., Gibbons and H., Pohle. Complex numbers, quantum mechanics and the beginning of time. Nucl. Phys., B 410:375, 1993.Google Scholar
[332] P., Gibilisco and T., Isola. Wigner–Yanase information on quantum state space: The geometric approach. J. Math. Phys., 44:3752, 2003.Google Scholar
[333] R., Gill. Time, finite statistics, and Bell's fifth position. In A., Khrennikov, editor, Foundations of Probability and Physics –2, page 179. Växjö University Press, 2003.Google Scholar
[334] R., Gilmore. Lie Groups, Lie Algebras, and Some of Their Applications. New York: Wiley, 1974.
[335] R., Gilmore. Lie Groups, Physics, and Geometry: an Introduction for Physicists, Engineers and Chemists. Cambridge UP, 2008.
[336] J., Ginibre. Statistical ensembles of complex quaternion and real matrices. J. Math. Phys., 6:440, 1965.Google Scholar
[337] V., Giovannetti, S., Mancini, D., Vitali, and P., Tombesi. Characterizing the entanglement of bipartite quantum systems. Phys. Rev., A 67:022320, 2003.Google Scholar
[338] N., Gisin. Stochastic quantum dynamics and relativity. Helv. Phys. Acta, 62:363, 1989.Google Scholar
[339] N., Gisin. Bell inequality holds for all non-product states. Phys. Lett., A 154:201, 1991.Google Scholar
[340] N., Gisin and H., Bechmann- Pasquinucci. Bell inequality, Bell states and maximally entangled states for n qubits? Phys. Lett., A 246:1, 1998.Google Scholar
[341] N., Gisin and S., Massar. Optimal quantum cloning machines. Phys. Rev. Lett., 79:2153, 1997.Google Scholar
[342] D., Gitman and A. L., Shelepin. Coherent states of SU(N) groups. J. Phys., A 26:313, 1993.Google Scholar
[343] M., Giustina et al. Significantloophole- free test of Bell's theorem with entangled photons. Phys. Rev. Lett., 115:250401, 2015.Google Scholar
[344] R. J., Glauber. Coherent and incoherent states of the radiation field. Phys. Rev., 131:2766, 1963.Google Scholar
[345] A. M., Gleason. Measures on the closed subspaces of a Hilbert space. J. Math. Mech., 6:885, 1957.Google Scholar
[346] S., Gnutzmann, F., Haake, and M., Kuś. Quantum chaos of SU(3) observables. J. Phys., A 33:143, 2000.Google Scholar
[347] S., Gnutzmann and M., Kuś. Coherent states and the classical limit on irreducible SU(3) representations. J. Phys., A 31:9871, 1998.Google Scholar
[348] S., Gnutzmann and K., Życzkowski. Rényi-Wehrl entropies as measures of localization in phase space. J. Phys., A 34:10123, 2001.Google Scholar
[349] C., Godsil and A., Roy. Equiangular lines, mutually unbiased bases, and spin models. Eur. J. Comb., 30:246, 2009.Google Scholar
[350] S., Golden. Lower bounds for the Helmholtz function. Phys. Rev., B 137:1127, 1965.Google Scholar
[351] V., Gorini, A., Kossakowski, and E. C. G., Sudarshan. Completely positive dynamical semigroups of n-level systems. J. Math. Phys., 17:821, 1976.Google Scholar
[352] D., Gottesman. Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology, 1997.
[353] G., Gour. Family of concurrence monotones and its applications. Phys. Rev., A 71:012318, 2004.Google Scholar
[354] G., Gour and N. R., Wallach. All maximally entangled four-qubit states. J. Math. Phys., 51:112201, 2010.Google Scholar
[355] S. K., Goyal, B. N., Simon, R., Singh, and S., Simon. Geometry of the generalized Bloch sphere for qutrit. J. Phys., A 49:165203, 2016.Google Scholar
[356] D., Goyeneche, D., Alsina, J. I., Latorre, A., Riera, and K., Życzkowski. Absolutely maximally entangled states, combinatorial designs and multi-unitary matrices. Phys. Rev., A 92:032316, 2015.Google Scholar
[357] D., Goyeneche and K., Życzkowski. Genuinely multipartite entangled states and orthogonal arrays. Phys. Rev., A 90:022316, 2014.Google Scholar
[358] J., Grabowski, A., Ibort, M., Kuś, and G., Marmo. Convex bodies of states and maps. J. Phys., A 46:425301, 2013.Google Scholar
[359] M. R., Grasseli and R. F., Streater. On the uniqueness of the Chentsov metric in quantum information geometry. Inf. Dim. Analysis, Quantum Prob., 4:173, 2001.Google Scholar
[360] M., Grassl. On SIC-POVMs and MUBs in dimension 6. preprint quant-ph/040675.
[361] M., Grassl, M., Rötteler, and T., Beth. Computing local invariants of qubit systems. Phys. Rev., A 58:1833, 1998.Google Scholar
[362] J., Gray. The Hilbert Challenge. Oxford UP, 2000.
[363] D. M., Greenberger, M., Horne, and A., Zeilinger. Going beyond Bell's theorem. In M., Kafatos, editor, Bell's theorem, quantum theory and conceptions of the Universe, page 69. Dordrecht: Kluwer, 1989.
[364] D. M., Greenberger, M. A., Horne, A., Shimony, and A., Zeilinger. Bell's theorem without inequalities. Am. J. Phys., 58:1131, 1990.Google Scholar
[365] J., Griffiths and J., Harris. Principles of Algebraic Geometry. Wiley, 1978.
[366] D., Gross. Hudson's theorem for finite-dimensional quantum systems. J. Math. Phys., 47:122107, 2006.Google Scholar
[367] D., Gross, K., Audenaert, and J., Eisert. Evenly distributed unitaries: on the structure of unitary designs. J. Math. Phys., 48:052104, 2007.Google Scholar
[368] B., Grünbaum. Convex Polytopes, II ed. New York: Springer Verlag, 2003.
[369] J., Gruska. Quantum Computing. New York: McGraw-Hill, 1999.
[370] O., Gühne. Characterizing entanglement via uncertainty relations. Phys. Rev. Lett., 92:117903, 2004.Google Scholar
[371] O., Gühne, P., Hyllus, D., Bruß, A., Ekert, M., Lewenstein, C., Macchiavello, and A., Sanpera. Detection of entanglement with few local measurements. Phys. Rev., A 66:062305, 2002.Google Scholar
[372] O., Gühne, P., Hyllus, D., Bruß, A., Ekert, M., Lewenstein, C., Macchiavello, and A., Sanpera. Experimental detection of entanglement via witness operators and local measurements. J. Mod. Opt., 50:1079, 2003.Google Scholar
[373] O., Gühne, P., Hyllus, O., Gittsovich, and J., Eisert. Covariance matrices and the separability problem. Phys. Rev. Lett., 99:130504, 2007.Google Scholar
[374] O., Gühne and M., Lewenstein. Entropic uncertainty relations and entanglement. Phys. Rev., A 70:022316, 2004.Google Scholar
[375] O., Gühne and G., Tóth. Entanglement detection. Physics Reports, 474:1, 2009.Google Scholar
[377] V., Guillemin and S., Sternberg. Symplectic Techniques in Physics. Cambridge University Press, 1984.
[376] V., Guillemin and R., Sjamaar. Convexity theorems for varieties invariant under a Borel subgroup. Pure Appl. Math. Q., 2:637, 2006.Google Scholar
[378] F., Gürsey and H. C., Tze. Complex and quaternionic analyticity in chiral and gauge theories, I. Ann. of Phys., 128:29, 1980.Google Scholar
[379] L., Gurvits. Classical complexity and quantum entanglement. J. Comput. Syst. Sciences, 69:448, 2004.Google Scholar
[380] L., Gurvits and H., Barnum. Largest separable balls around the maximally mixed bipartite quantum state. Phys. Rev., A 66:062311, 2002.Google Scholar
[381] L., Gurvits and H., Barnum. Separable balls around the maximally mixed multipartite quantum states. Phys. Rev., A 68:042312, 2003.Google Scholar
[382] K. E., Gustafson and D. K. M., Rao. Numerical Range: The Field of Values of Linear Operators and Matrices. New York: Springer-Verlag, 1997.
[383] E., Gutkin. The Toeplitz–Hausdorff theorem revisited: relating linear algebra and geometry. Math. Intelligencer, 26:8, 2004.Google Scholar
[384] E., Gutkin, E. A., Jonckheere, and M., Karow. Convexity of the joint numerical range: topological and differential geometric viewpoints. Lin. Alg. Appl., 376:143, 2004.Google Scholar
[385] E., Gutkin and K., Życzkowski. Joint numerical ranges, quantum maps, and joint numerical shadows. Lin. Alg. Appl., 438:2394, 2013.Google Scholar
[386] K.-C., Ha. Atomic positive linear maps in matrix algebra. Publ. RIMS Kyoto Univ., 34:591, 1998.Google Scholar
[387] K.-C., Ha. Separability of qubitqudit quantum states with strong positive partial transposes. Phys. Rev., A 87:024301, 2013.Google Scholar
[388] K.-C., Ha and S.-H., Kye. Optimality for indecomposable entanglement witnesses. Phys. Rev., A 86:034301, 2012.Google Scholar
[389] K.-C., Ha, S.-H., Kye, and Y.-S., Park. Entangled states with positive partial transposes arising from indecomposable positive linear maps. Phys. Lett., A 313:163, 2003.Google Scholar
[390] F., Haake. Quantum Signatures of Chaos, 3nd. ed. Springer, 2010.
[391] J., Hadamard. Résolution d'une question relative aux déterminants. Bull. Sci. Math., 17:240, 1893.Google Scholar
[392] M. J. W., Hall. Random quantum correlations and density operator distributions. Phys. Lett., A 242: 123, 1998.Google Scholar
[393] W., Hall. A new criterion for indecomposability of positive maps. J. Phys., 39:14119, 2006.Google Scholar
[394] K., Hammerer, G., Vidal, and J. I., Cirac. Characterization of non-local gates. Phys. Rev., A 66:062321, 2002.Google Scholar
[395] Y.-J., Han, Y.-S., Zhang, and G.-C., Guo. Compatible conditions, entanglement, and invariants. Phys. Rev., A70:042309, 2004.Google Scholar
[396] T., Hangan and G., Masala. A geometrical interpretation of the shape invariant geodesic triangles in complex projective spaces. Geometriae Dedicata, 49:129, 1994.Google Scholar
[397] J. H., Hannay. Exact statistics for 2j points on a sphere: The Majorana zeros for random spin state. J. Phys., A 29:L101, 1996.Google Scholar
[398] J. H., Hannay. The Berry phase for spin in theMajorana representation. J. Phys., A 31:L53, 1998.Google Scholar
[399] L. O., Hansen, A., Hauge, J., Myrheim, and P., Ø. Sollid. Extremal entanglement witnesses. Int. J. Quantum Inform., 13: 1550060, 2015.Google Scholar
[400] R. H., Hardin and N. J. A., Sloane. McLaren's improved snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom., 15:429, 1996.Google Scholar
[401] G. H., Hardy, J. E., Littlewood, and G., Pólya. Some simple inequalities satisfied by convex functions. Messenger Math., 58:145, 1929.Google Scholar
[402] G. H., Hardy and S., Ramanujan. Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc., 17:75, 1918.Google Scholar
[403] L., Hardy. Quantum theory from five reasonable axioms. preprint quantph/ 0101012.
[404] L., Hardy. Method of areas for manipulating the entanglement properties of one copy of a twoparticle pure entangled state. Phys. Rev., A 60:1912, 1999.Google Scholar
[405] P., Harremoës and F., Topsøe. Inequalities between entropy and index of coincidence derived from information diagrams. IEEE Trans. Inform. Theory, 47:2944, 2001.Google Scholar
[406] J. E., Harriman. Geometry of density matrices 1. Phys. Rev., A 17:1249, 1978.Google Scholar
[407] J., Harris. Algebraic Geometry. A First Course. Springer, 1992.
[408] R. V. L., Hartley. Transmission of information. Bell Sys. Tech. J., 7:535, 1928.Google Scholar
[409] M. B., Hastings. An area law for one dimensional quantum systems. J. Stat. Mech., page P08024, 2007.
[410] M. B., Hastings. Superadditivity of communication capacity using entangled inputs. Nat. Phys., 5:255, 2009.Google Scholar
[411] F., Hausdorff. Der Wertvorrat einer Bilinearform. Math. Z., 3:314, 1919.Google Scholar
[412] T. F., Havel. Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups. J. Math. Phys., 44:534, 2003.Google Scholar
[413] T. F., Havel, Y., Sharf, L., Viola, and D. G., Cory. Hadamard products of product operators and the design of gradient: Diffusion experiments for simulating decoherence by NMR spectroscopy. Phys. Lett., A 280:282, 2001.Google Scholar
[414] J., Havrda and F., Charvát. Quantification methods of classification processes: Concept of structural α entropy. Kybernetica, 3:30, 1967.Google Scholar
[415] M., Hayashi, S., Ishizaka, A., Kawachi, G., Kimura, and T., Ogawa. Introduction to Quantum Information Science. Springer Verlag, 2015.
[416] P., Hayden, R., Jozsa, D., Petz, and A., Winter. Structure of states which satisfy strong subadditivity of qantum entropy with equality. Commun. Math. Phys., 246:359, 2003.Google Scholar
[417] P., Hayden, D., Leung, and A., Winter. Aspects of generic entanglement. Commun. Math. Phys., 265:95, 2006.Google Scholar
[418] P., Hayden, D. W., Leung, and A., Winter. Aspects of generic entanglement. Commun. Math. Phys., 269:95, 2006.Google Scholar
[419] P., Hayden, B. M., Terhal, and A., Uhlmann. On the LOCC classification of bipartite density matrices. preprint quant-ph/0011095.
[420] P., Hayden and A., Winter. Counterexamples to the maximal p–norm multiplicativity conjecture for all p > 1. Commun. Math. Phys., 284:263, 2008.Google Scholar
[421] P. M., Hayden, M., Horodecki, and B. M., Terhal. The asymptotic entanglement cost of preparing a quantum state. J. Phys., A 34:6891, 2001.Google Scholar
[422] C. W., Helstrom. Quantum Detection and Estimation Theory. London: Academic Press, 1976. Mathematics in Science and Engineering vol. 123.
[423] W., Helwig. Absolutely maximally entangled qudit graph states. preprint arxiv:1306.2879.
[424] W., Helwig and W., Cui. Absolutely maximally entangled states: existence and applications. preprint arXiv:1306.2536.
[425] W., Helwig, W., Cui, J. I., Latorre, A., Riera, and H.-K., Lo. Absolute maximal entanglement and quantum secret sharing. Phys. Rev., A 86:052335, 2012.Google Scholar
[426] L., Henderson and V., Vedral. Information, relative entropy of entanglement and irreversibility. Phys. Rev. Lett., 84:2263, 2000.Google Scholar
[427] D., Henrion. Semidefinite geometry of the numerical range. Electr. J. Lin. Alg., 20:322, 2010.Google Scholar
[428] D., Henrion. Semidefinite representation of convex hulls of rational varieties. Acta Appl. Math., 115:319, 2011.Google Scholar
[429] B., Hensen et al. Loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km. Nature, 526:682, 2015.Google Scholar
[430] N., Herbert. FLASH—A superluminal communicator based upon a new kind of quantum measurement. Found. Phys., 12:1171, 1982.Google Scholar
[431] O., Hesse.Über dieWendepunkte der Curven Dritten Ordnung. J. Reine Angew. Math., 28:97, 1844.Google Scholar
[432] F., Hiai, M., Ohya, and M., Tsukada. Sufficiency, KMS condition and relative entropy in von Neumann algebras. Pacific J. Math., 96:99, 1981.Google Scholar
[433] F., Hiai and D., Petz. The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys., 143:99, 1991.Google Scholar
[434] A., Higuchi. On the one-particle reduced density matrices of a pure three-qutrit quantum state. preprint arXiv:quant-ph/0309186.
[435] A., Higuchi and A., Sudbery. How entangled can two couples get? Phys. Lett., A 272:213, 2000.Google Scholar
[436] A., Higuchi, A., Sudbery, and J., Szulc. One-qubit reduced states of a pure many-qubit state: polygon inequalities. Phys. Rev. Lett., 90:107902, 2003.Google Scholar
[437] R., Hildebrand. Positive partial transpose from spectra. Phys. Rev., A 76:052325, 2007.Google Scholar
[438] S., Hill and W. K., Wootters. Entanglement of a pair of quantum bits. Phys. Rev. Lett., 78:5022, 1997.Google Scholar
[439] W., Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Stat. Assoc., 58:13, 1963.Google Scholar
[440] H. F., Hofmann and S., Takeuchi. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev., A 68:032103, 2003.Google Scholar
[441] S. G., Hoggar. t-designs in projective spaces. Europ. J. Combin., 3:233, 1982.Google Scholar
[442] S. G., Hoggar. 64 lines from a quaternionic polytope. Geometriae Dedicata, 69:287, 1998.Google Scholar
[443] A. S., Holevo. Information theoretical aspects of quantum measurements. Prob. Inf. Transmission USSR, 9:177, 1973.Google Scholar
[444] A. S., Holevo. Some estimates for information quantity transmitted by quantum communication channels. Probl. Pered. Inf., 9:3, 1973. English tranl.: Probl. Inf. Transm. 9:177, 1973.Google Scholar
[445] A. S., Holevo. Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, 1982.
[446] A. S., Holevo. The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theor., 44:269, 1998.Google Scholar
[447] A. S., Holevo. Statistical Structure of Quantum Theory. Springer, 2001.
[448] K. J., Horadam. Hadamard Matrices and Their Applications. Princeton University Press, 2007.
[449] A., Horn. Doubly stochastic matrices and the diagonal of rotation. Am. J. Math., 76:620, 1954.Google Scholar
[450] R., Horn and C., Johnson. Matrix Analysis. Cambridge University Press, 1985.
[451] R., Horn and C., Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.
[452] K., Horodecki, M., Horodecki, P., Horodecki, and J., Oppenheim. Secure key from bound entanglement. Phys. Rev. Lett., 94: 160502, 2005.Google Scholar
[453] M., Horodecki. Entanglement measures. Quant. Inf. Comp., 1:3, 2001.Google Scholar
[454] M., Horodecki and P., Horodecki. Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev., A 59:4206, 1999.Google Scholar
[455] M., Horodecki, P., Horodecki, and R., Horodecki. Separability of mixed states: Necessary and sufficient conditions. Phys. Lett., A 223:1, 1996.Google Scholar
[456] M., Horodecki, P., Horodecki, and R., Horodecki. Inseparable two spin- 1/2 density matrices can be distilled to a singlet form. Phys. Rev. Lett., 78:574, 1997.Google Scholar
[457] M., Horodecki, P., Horodecki, and R., Horodecki. Mixed-state entanglement and distillation: Is there a ‘bound’ entanglement in nature? Phys. Rev. Lett., 80:5239, 1998.Google Scholar
[458] M., Horodecki, P., Horodecki, and R., Horodecki. Limits for entanglement measures. Phys. Rev. Lett., 84:2014, 2000.Google Scholar
[459] M., Horodecki, P., Horodecki, and R., Horodecki. Mixed-state entanglement and quantum communication. In G., Alber and M., Weiner, editors, Quantum Information –Basic Concepts and Experiments, page 1. Springer, 2000.
[460] M., Horodecki, P., Horodecki, and R., Horodecki. Separability of mixed quantum states: Linear contractions and permutations criteria. Open Sys. & Information Dyn., 13:103, 2006.Google Scholar
[461] M., Horodecki, P., Horodecki, and J., Oppenheim. Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev., A 67:062104, 2003.Google Scholar
[462] M., Horodecki and J., Oppenheim. (Quantumness in the context of) resource theories. Int. J. Mod. Phys., B27:1345019, 2013.Google Scholar
[463] M., Horodecki, P. W., Shor, and M. B., Ruskai. Entanglement breaking channels. Rev. Math. Phys., 15:621, 2003.Google Scholar
[464] P., Horodecki. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett., A 232:333, 1997.Google Scholar
[465] P., Horodecki and A., Ekert. Method for direct detection of quantum entanglement. Phys. Rev. Lett., 89:127902, 2002.Google Scholar
[466] P., Horodecki, M., Horodecki, and R., Horodecki. Bound entanglement can be activated. Phys. Rev. Lett., 82:1056, 1999.Google Scholar
[467] P., Horodecki, M., Lewenstein, G., Vidal, and I., Cirac. Operational criterion and constructive checks for the separability of low rank density matrices. Phys. Rev., A 62:032310, 2000.Google Scholar
[468] R., Horodecki and M., Horodecki. Information-theoretic aspects of quantum inseparability of mixed states. Phys. Rev., A 54:1838, 1996.Google Scholar
[469] R., Horodecki and P., Horodecki. Quantum redundancies and local realism. Phys. Lett., A 194:147, 1994.Google Scholar
[470] R., Horodecki, P., Horodecki, and M., Horodecki. Quantum α-entropy inequalities: Independent condition for local realism? Phys. Lett., A 210:377, 1996.Google Scholar
[471] R., Horodecki, P., Horodecki, M., Horodecki, and K., Horodecki. Quantum entanglement. Rev. Mod. Phys., 81:865, 2009.Google Scholar
[472] S. D., Howard, A. R., Calderbank, and W., Moran. The finite Heisenberg-Weyl groups in radar and communications. EURASIP J. Appl. Sig. Process., 2006:85865, 2006.Google Scholar
[473] J. M., Howie. Fields and Galois Theory. Springer, 2006.
[474] L. K., Hua. Harmonic Analysis of Functions of Several Variables in the Classical Domains. American Mathematical Society, 1963. Chinese original 1958, Russian translation, Moskva 1959.
[475] R., Hübener, M., Kleinmann, T.-C., Wei, C., González-Guillén, and O., Gühne. The geometric measure of entanglement for symmetric states. Phys. Rev., A 80:032324, 2009.Google Scholar
[476] F., Huber, O., Gühne, and J., Siewert. Absolutely maximally entangled states of seven qubits do not exist. Phys. Rev. Lett. 118:200502, 2017.
[477] M., Hübner. Explicit computation of the Bures distance for density matrices. Phys. Lett., A 163:239, 1992.Google Scholar
[478] T., Huckle, K., Waldherr, and T., Schulte-Herbrüggen. Computations in quantum tensor networks. Lin. Alg. Appl., 438:750, 2013.Google Scholar
[479] R., Hudson. When is the Wigner quasi-probability density nonnegative? Rep. Math. Phys., 6:249, 1974.Google Scholar
[480] L. P., Hughston. Geometric aspects of quantum mechanics. In S. Huggett, editor, Twistor Theory. S. Marcel Dekker, p. 59, 1995.
[481] L. P., Hughston, R., Jozsa, and W. K., Wootters. A complete classification of quantum ensembles having a given density matrix. Phys. Lett., A 183:14, 1993.Google Scholar
[482] L. P., Hughston and S. M., Salamon. Surverying points on the complex projective plane. Adv. Math., 286:1017, 2016.Google Scholar
[483] F., Hulpke and D., Bruß. A twoway algorithm for the entanglement problem. J. Phys., A 38:5573, 2005.Google Scholar
[484] W., Hunziker. A note on symmetry operations in quantum mechanics. Helv. Phys. Acta, 45:233, 1972.Google Scholar
[485] K., Husimi. Some formal properties of density matrices. Proc. Phys. Math. Soc. Japan, 22:264, 1940.Google Scholar
[486] P., Hyllus, O., Gühne, D., Bruß, and M., Lewenstein. <At>Relations between entanglement witnesses and Bell inequalities. Phys. Rev., A 72:012321, 2005.Google Scholar
[487] R., Ingarden, A., Kossakowski, and M., Ohya. Information Dynamics and Open Systems. Dordrecht: Kluwer, 1997.
[488] R. S., Ingarden. Information geometry in functional spaces of classical and quantum finite statistical systems. Int. J. Engng. Sci., 19:1609, 1981.Google Scholar
[489] S., Ishizaka. Analytical formula connecting entangled state and the closest disentangled state. Phys. Rev., A 67:060301, 2003.Google Scholar
[490] S., Ishizaka and T., Hiroshima. Maximally entangled mixed states under non-local unitary operations in two qubits. Phys. Rev., A 62:022310, 2000.Google Scholar
[491] I. D., Ivanović. Geometrical description of quantal state determination. J. Phys., A 14:3241, 1981.Google Scholar
[492] L., Jakóbczyk and M., Siennicki. Geometry of Bloch vectors in two-qubit system. Phys. Lett., A 286:383, 2001.Google Scholar
[493] P., Jaming, M., Matolsci, P., Móra, F., Szöllʺosi, and M., Weiner. A generalized Pauli problem an infinite family of MUB-triplets in dimension 6. J. Phys., A 42:245305, 2009.Google Scholar
[494] A., Jamiołkowski. Linear transformations which preserve trace and positive semi-definiteness of operators. Rep. Math. Phys., 3:275, 1972.Google Scholar
[495] A., Jamiołkowski. An effective method of investigation of positive maps on the set of positive definite operators. Rep. Math. Phys., 5:415, 1975.Google Scholar
[496] R. A., Janik and M. A., Nowak. Wishart and anti-Wishart random matrices. J.Phys., A 36:3629, 2003.Google Scholar
[497] J. M., Jauch. Foundations of Quantum Mechanics. Addison-Wesley, 1968.
[498] J. M., Jauch and C., Piron. Generalized localizability. Helv. Phys. Acta, 45:559, 1967.Google Scholar
[499] E. T., Jaynes. Probability Theory. The Logic of Science. Cambridge University Press, 2003.
[500] H., Jeffreys. Theory of Probability. Oxford: Clarendon Press, 1961.
[501] A., Jenčova. Generalized relative entropies as contrast functionals on density matrices. Int. J. Theor. Phys., 43:1635, 2004.Google Scholar
[502] J. G., Jensen and R., Schack. A simple algorithm for local conversion of pure states. Phys. Rev., A 63:062303, 2001.Google Scholar
[503] N., Johnston. Non-positive-partialtranspose subspaces can be as large as any entangled subspace. Phys. Rev., A 87:064302, 2013.Google Scholar
[504] D., Jonathan and M. B., Plenio. Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett., 83:3566, 1999.Google Scholar
[505] D., Jonathan and M. B., Plenio. Minimial conditions for local pure-state entanglement manipulation. Phys. Rev. Lett., 83:1455, 1999.Google Scholar
[506] K. R. W., Jones. Entropy of random quantum states. J. Phys., A 23:L1247, 1990.Google Scholar
[507] N. S., Jones and N., Linden. Parts of quantum states. Phys. Rev., A 71:012324, 2005.Google Scholar
[508] P., Jordan, J. von, Neumann, and E. P., Wigner. On an algebraic generalization of the quantum mechanical formalism. Ann. Math., 56:29, 1934.Google Scholar
[509] R., Jozsa. Fidelity for mixed quantum states. J. Mod. Opt., 41:2315, 1994.Google Scholar
[510] R., Jozsa, D., Robb, and W. K., Wootters. Lower bound for accessible information in quantum mechanics. Phys. Rev., A 49:668, 1994.Google Scholar
[511] R., Jozsa and B., Schumacher. A new proof of the quantum noiseless coding theorem. J. Mod. Opt., 41:2343, 1994.Google Scholar
[512] M., Kac. On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc., 49:314, 1943.Google Scholar
[513] W. K., Kantor. MUBs inequivalence and affine planes. J. Math. Phys., 53:032204, 2012.Google Scholar
[514] L. V., Kantorovich. On translocation of masses. Doklady Acad. Sci. URSS, 37:199, 1942.Google Scholar
[515] J., Kapur. Measures of Information and Their Applications. New York: John Wiley & Sons, 1994.
[516] B. R., Karlsson. Three-parameter complex Hadamard matrices of order 6. Linear Alg. Appl., 434:247, 2011.Google Scholar
[517] S., Karnas and M., Lewenstein. Separable approximations of density matrices of composite quantum systems. J. Phys., A 34:6919, 2001.Google Scholar
[518] D. S., Keeler, L., Rodman, and I. M., Spitkovsky. The numerical range of 3 × 3 matrices. Linear Alg. Appl., 252:115, 1997.Google Scholar
[519] J., Kempe. Multiparticle entanglement and its applications to cryptography. Phys. Rev., A 60:910, 1999.Google Scholar
[520] V., Kendon, V. K., Nemoto, and W., Munro. Typical entanglement in multiple-qubit systems. J. Mod. Opt., 49:1709, 2002.Google Scholar
[521] V. M., Kendon, K., Zyczkowski, and W. J., Munro. Bounds on entanglement in qudit subsystems. Phys. Rev., A 66:062310, 2002.Google Scholar
[522] N., Khaneja, R., Brockett, and S. J., Glaser. Time optimal control in spin systems. Phys. Rev., A 63:0323308, 2001.Google Scholar
[523] M., Khatirinejad. On Weyl–Heisenberg orbits of equiangular lines. J. Algebra. Comb., 28:333, 2008.Google Scholar
[524] A. I., Khinchin. Mathematical Foundations of Information Theory. Dover, 1957.
[525] T. W. B., Kibble. Geometrization of quantum mechanics. Commun. Math. Phys., 65:189, 1979.Google Scholar
[526] H.-J., Kim and S.-H., Kye. Indecomposable extreme positive linear maps in matrix algebras. Bull. London Math. Soc., 26:575, 1994.Google Scholar
[527] J. S., Kim, A., Das, and B. C., Sanders. Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev., A 79:012329, 2009.Google Scholar
[528] J. S., Kim, G., Gour, and B. C., Sanders. Limitations to sharing entanglement. Contemp. Phys., 53:417, 2012.Google Scholar
[529] G., Kimura. The Bloch vector for n-level systems. Phys. Lett., A 314:339, 2003.Google Scholar
[530] C., King. Additivity for unital qubit channels. J. Math. Phys., 43:4641, 2002.Google Scholar
[531] C., King and M. B., Ruskai. Minimal entropy of states emerging from noisy channels. IEEE Trans. Inf. Th., 47:192, 2001.Google Scholar
[532] R., Kippenhahn. Ueber den Wertevorrat einer Matrix. Math. Nachricht., 6:193, 1951.Google Scholar
[533] F. C., Kirwan. Convexity properties of the moment mapping. Invent. Math., 77:547, 1984.Google Scholar
[534] A., Klappenecker and M., Rötteler. Beyond stabilizer codes I: Nice error bases. IEEE Trans. Inform. Theory, 48:2392, 2002.Google Scholar
[535] A., Klappenecker and M., Rötteler. Constructions of mutually unbiased bases. Lect. Not. Computer Science, 2948:137, 2004.Google Scholar
[536] A., Klappenecker and M., Rötteler. Mutually Unbiased Bases are complex projective 2–designs. In Proc ISIT, page 1740. Adelaide, 2005.
[537] A., Klappenecker and M., Rötteler. On the monomiality of nice error bases. IEEE Trans. Inform. Theory, 51:1084, 2005.Google Scholar
[538] J. R., Klauder. The action option and a Feynman quantization of spinor fields in terms of ordinary cnumbers. Ann. Phys. (N.Y), 11:60, 1960.Google Scholar
[539] J. R., Klauder. Are coherent states the natural language of quantum theory? In V., Gorini and A., Frigerio, editors, Fundamental Aspects of Quantum Theory, page 1. Plenum, 1985.
[540] J. R., Klauder and B.-S., Skagerstam. Coherent States. Applications in Physics and Mathematical Physics. Singapore: World Scientific, 1985.
[541] J. R., Klauder and E. C. G., Sudarshan. Fundamentals of Quantum Optics. New York: W. A. Benjamin, 1968.
[542] O., Klein. Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre. Z. f. Physik, 72:767, 1931.Google Scholar
[543] A., Klimov, J. L., Romero, G., Björk, and L. L., Sanchez-Soto. Discrete phase space structure of n-qubit mutually unbiased bases. Ann. Phys., 324:53, 2009.Google Scholar
[544] A., Klyachko. Quantum marginal problem and representations of the symmetric group. preprint quantph/ 0409113.
[545] A. A., Klyachko. Stable bundles, representation theory and Hermitian operators. SelectaMath., 4:419, 1998.Google Scholar
[546] A. A., Klyachko and A. S., Shumovsky. General entanglement. J. Phys. Conf. Ser., 36:87, 2006.Google Scholar
[547] E., Knill. Group representations, error bases and quantum codes. preprint quant-ph/9608049.
[548] E., Knill and R., Laflamme. Power of one bit of quantum information. Phys. Rev. Lett., 81:5672, 1998.Google Scholar
[549] A., Knutson. The symplectic and algebraic geometry of Horn's problem. Linear Algebra Appl., 319:61, 2000.Google Scholar
[550] S., Kobayashi and K., Nomizu. Foundations of Differential Geometry I. Wiley Interscience, 1963.
[551] S., Kochen and E., Specker. The problem of hidden variables in quantum mechanics. J. Math. Mech., 17: 59, 1967.Google Scholar
[552] T. G., Kolda and B. W., Bader. Tensor decompositions and applications. SIAM Rev., 51:455, 2009.Google Scholar
[553] H. J., Korsch, C., Müller, and H., Wiescher. On the zeros of the Husimi distribution. J. Phys., A 30:L677, 1997.Google Scholar
[554] A., Kossakowski. Remarks on positive maps of finite-dimensional simple Jordan algebras. Rep. Math. Phys., 46:393, 2000.Google Scholar
[555] A., Kossakowski. A class of linear positive maps in matrix algebras. Open Sys. & Information Dyn., 10:1, 2003.Google Scholar
[556] A. I., Kostrikin and P. I., Tiep. Orthogonal Decompositions and Integral Lattices. de Gruyter, 1994.
[557] B., Kraus. Local unitary equivalence and entanglement of multipartite pure states. Phys. Rev., A82:032121, 2010.
[558] B., Kraus and J. I., Cirac. Optimal creation of entanglement using a two-qubit gate. Phys. Rev., A 63:062309, 2001.Google Scholar
[559] K., Kraus. General state changes in quantum theory. Ann. Phys.(N.Y.), 64:311, 1971.Google Scholar
[560] K., Kraus. States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer-Verlag, 1983.
[561] F., Kubo and T., Ando. Means of positive linear operators. Math. Ann., 246:205, 1980.Google Scholar
[562] R., Kueng and D., Gross. Qubit stabilizer states are complex projective 3-designs. preprint arXiv:1510.02767.
[563] S., Kullback and R. A., Leibler. On information and sufficiency. Ann. Math. Stat., 22:79, 1951.Google Scholar
[564] M., Kuś, J., Mostowski, and F., Haake. Universality of eigenvector statistics of kicked tops of different symmetries. J. Phys., A 21:L1073, 1988.
[565] M., Kuś and K., Zyczkowski. Geometry of entangled states. Phys. Rev., A 63:032307, 2001.Google Scholar
[566] S.-H., Kye. Facial structures for unital positive linear maps in the twodimensional matrix algebra. Lin. Alg. Appl., 362:57, 2003.Google Scholar
[567] R., Laflamme, C., Miquel, J. P., Paz, and W., Zurek. Perfect quantum error correcting code. Phys. Rev. Lett., 77:198, 1996.Google Scholar
[568] A., Laing, T., Lawson, E. M., López, and J. L., O'Brien. Observation of quantum interference as a function of Berry's phase in a complex Hadamard network. Phys. Rev. Lett., 108:260505, 2012.Google Scholar
[569] C. W. H., Lam. The search for a finite projective plane of order 10. Amer. Math. Mon., 98:305, 1991.Google Scholar
[570] P. W., Lamberti, A. P., Majtey, A., Borras, M., Casas, and A., Plastino. Metric character of the quantum Jensen-Shannon divergence. Phys. Rev., A77:052311, 2008.
[571] L., Landau. Das Dämpfungsproblem in der Wellenmechanik. Z. Phys., 45:430, 1927.Google Scholar
[572] L. J., Landau and R. F., Streater. On Birkhoff's theorem for doubly stochastic completely positive maps of matrix algebras. Lin. Algebra Appl., 193:107, 1993.Google Scholar
[573] O., Lanford and D., Robinson. Mean entropy of states in quantum statistical ensembles. J. Math. Phys., 9:1120, 1968.Google Scholar
[574] J., Å. Larsson. Loopholes in Bell inequality tests of local realism. J. Phys., A 47:424003, 2014.Google Scholar
[575] J. I., Latorre and A., Riera. A short review on entanglement in quantum spin systems. J. Phys., A 42:504002, 2009.Google Scholar
[576] H. B., Lawson. Lectures on Minimal Submanifolds. Publish and Perish, Inc, 1980.
[577] P., Leboeuf. Phase space approach to quantum dynamics. J. Phys., A 24:4575, 1991.Google Scholar
[578] P., Leboeuf and P., Shukla. Universal fluctuations of zeros of chaotic wavefunctions. J. Phys., A 29:4827, 1996.Google Scholar
[579] P., Leboeuf and A., Voros. Chaosrevealing multiplicative representation of quantum eigenstates. J. Phys., A 23:1765, 1990.Google Scholar
[580] M., Ledoux. The Concentration of Measure Phenomenon. Providence: AMS Publishing, 2001.
[581] C. T., Lee. Wehrl's entropy of spin states and Lieb's conjecture. J. Phys., A 21:3749, 1988.Google Scholar
[582] S., Lee, D. P., Chi, S. D., Oh, and J., Kim. Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev., A 68:062304, 2003.Google Scholar
[583] J. M., Leinaas, J., Myrheim, and E., Ovrum. Geometrical aspects of entanglement. Phys. Rev., A 74:012313, 2006.Google Scholar
[584] J. M., Leinaas, J., Myrheim, and P., Ø. Sollid. Low-rank extremal positivepartial- transpose states and unextendible product bases. Phys. Rev., A 81:062330, 2010.Google Scholar
[585] J. M., Leinaas, J., Myrheim, and P., Ø. Sollid. Numerical studies of entangled positive-partial-transpose states in composite quantum systems. Phys. Rev., A 81:062329, 2010.Google Scholar
[586] P. W. H., Lemmens and J. J., Seidel. Equiangular lines. J. Algebra, 24:494, 1973.Google Scholar
[587] U., Leonhardt. Measuring the Quantum State of Light. Cambridge University Press, 1997.
[588] A., Lesniewski and M. B., Ruskai. Monotone Riemannian metrics and relative entropy on noncommutative probability spaces. J. Math. Phys., 40:5702, 1999.Google Scholar
[589] P., Lévay. The geometry of entanglement: Metrics, connections and the geometric phase. J. Phys., A 37:1821, 2004.Google Scholar
[590] P., Lévay. On the geometry of four-qubit invariants. J. Phys., A 39:9533, 2006.Google Scholar
[591] P., Lévy. Leçons d'analyse fonctionnelle. Paris: Gauthier-Villars, 1922.
[592] M., Lewenstein, R., Augusiak, D., Chruściński, S., Rana, and J., Samsonowicz. Sufficient separability criteria and linear maps. Phys. Rev., A 93:042335, 2016.Google Scholar
[593] M., Lewenstein, D., Bruß, J. I., Cirac, B., Kraus, M., Kuś, J., Samsonowicz, A., Sanpera, and R., Tarrach. Separability and distillability in composite quantum systems: A primer. J. Mod. Opt., 47:2841, 2000.Google Scholar
[594] M., Lewenstein, B., Kraus, J. I., Cirac, and P., Horodecki. Optimization of entanglement witnesses. Phys. Rev., A 62:052310, 2000.Google Scholar
[595] M., Lewenstein and A., Sanpera. Separability and entanglement of composite quantum systems. Phys. Rev. Lett., 80:2261, 1998.Google Scholar
[596] C. K., Li. A simple proof of the elliptical range theorem. Proc. Am. Math. Soc., 124:1985, 1996.Google Scholar
[597] C.-K., Li and Y.-T., Poon. Convexity of the joint numerical range. SIAM J. Matrix Anal., A 21:668, 2000.Google Scholar
[598] E. H., Lieb. The classical limit of quantum spin systems. Commun. Math. Phys., 31:327, 1973.Google Scholar
[599] E. H., Lieb. Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math., 11:267, 1973.Google Scholar
[600] E. H., Lieb. Some convexity and subadditivity properties of entropy. Bull. AMS, 81:1, 1975.Google Scholar
[601] E. H., Lieb. Proof of an entropy conjecture of Wehrl. Commun. Math. Phys., 62:35, 1978.Google Scholar
[602] E. H., Lieb and D. W., Robinson. The finite group velocity of quantum spin systems. Commun. Math. Phys., 28:251, 1972.Google Scholar
[603] E. H., Lieb and M. B., Ruskai. Proof of the strong subadditivity of quantum mechanical entropy. J. Math. Phys., 14:1938, 1973.Google Scholar
[604] E. H., Lieb and J. S., Solovej. Proof of an entropy conjecture for Bloch coherent states and its generalizations. Acta Math., 212:379, 2014.Google Scholar
[605] E. H., Lieb and J. S., Solovej. Proof of the Wehrl-type entropy conjecture for symmetric SU(N) coherent states. Commun. Math. Phys., 348:567, 2016.Google Scholar
[606] J., Lin. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory, 37:145, 1991.Google Scholar
[607] G., Lindblad. An entropy inequality for quantum measurements. Commun. Math. Phys., 28:245, 1972.Google Scholar
[608] G., Lindblad. Entropy, information and quantum measurement. Commun. Math. Phys., 33:305, 1973.Google Scholar
[609] G., Lindblad. Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys., 39:111, 1974.Google Scholar
[610] G., Lindblad. Completely positive maps and entropy inequalities. Commun. Math. Phys., 40:147, 1975.Google Scholar
[611] G., Lindblad. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 48:119, 1976.Google Scholar
[612] G., Lindblad. Quantum entropy and quantum measurements. In C., B. et al., editor, Quantum Aspects of Optical Communication, page 36. Springer-Verlag, Berlin, 1991. Lecture Notes in Physics 378.
[613] N., Linden, S., Popescu, and A., Sudbery. Non-local properties of multi-particle density matrices. Phys. Rev. Lett., 83:243, 1999.Google Scholar
[614] N., Linden, S., Popescu, and W. K., Wootters. Almost every pure state of three qubits is completely determined by its two-particle reduced density matrices. Phys. Rev. Lett., 89:207901, 2002.Google Scholar
[615] N., Linden and A., Winter. A new inequality for the von Neumann entropy. Commun. Math. Phys., 259:129, 2005.Google Scholar
[616] S., Lloyd. Almost any quantum logic gate is universal. Phys. Rev. Lett., 75:346, 1995.Google Scholar
[617] S., Lloyd and H., Pagels. Complexity as thermodynamic depth. Ann. Phys. (N.Y.), 188:186, 1988.Google Scholar
[618] H.-K., Lo and S., Popescu. Concentrating entanglement by local actions: Beyond mean values. Phys. Rev., A 63:022301, 1998.Google Scholar
[619] R., Lockhart. Optimal ensemble length of mixed separable states. J. Math. Phys., 41:6766, 2000.Google Scholar
[620] R. B., Lockhart and M. J., Steiner. Preserving entanglement under perturbation and sandwiching all separable states. Phys. Rev., A 65:022107, 2002.Google Scholar
[621] R. B., Lockhart, M. J., Steiner, and K., Gerlach. Geometry and product states. Quant. Inf. Comp., 2:333, 2002.Google Scholar
[622] L., Lovász. Semidefinite programs and combinatorial optimization. In B. A., Reed and C. L., Sales, editors, Recent Advances in Algorithms and Combinatorics, page 137. Springer, 2003.
[623] K., Löwner. Über monotone Matrixfunktionen. Math. Z., 38:177, 1934.Google Scholar
[624] A., Łoziński, A., Buchleitner, K., Zyczkowski, and T., Wellens. Entanglement of 2 × k quantum systems. Europhys. Lett., A 62:168, 2003.Google Scholar
[625] E., Lubkin. Entropy of an n-system from its correlation with a kreservoir. J. Math. Phys., 19:1028, 1978.Google Scholar
[626] G., Lüders. Über die Zustandsänderung durch den Messprozeß. Ann. Phys. (Leipzig), 8:322, 1951.Google Scholar
[627] S., Luo. A simple proof of Wehrl's conjecture on entropy. J. Phys., A 33:3093, 2000.Google Scholar
[628] J.-G., Luque and J.-Y., Thibon. Polynomial invariants of four qubits. Phys. Rev., A 67:042303, 2003.Google Scholar
[629] J.-G., Luque and J.-Y., Thibon. Algebraic invariants of five qubits. J. Phys., A 39:371, 2006.Google Scholar
[630] X.-S., Ma et al. Quantum teleportation over 143 kilometres using active feed–forward. Nature, 489:269, 2012.Google Scholar
[631] H., Maassen and J. B. M., Uffink. Generalized entropic uncertainty relations. Phys. Rev. Lett., 60:1103, 1988.Google Scholar
[632] D. L., MacAdam, Visual sensitivities to color differences in daylight. J. Opt. Soc. Am., 32:247, 1942.Google Scholar
[633] A. J., MacFarlane, A., Sudbery, and P. H., Weisz. On Gell–Mann's ƛ-matrices, d- and f -tensors, octets and parametrization of SU(3) . Commun. Math. Phys., 11:77, 1968.Google Scholar
[634] H. F., MacNeish. Euler squares. Ann. Math., 23:221, 1921.Google Scholar
[635] F. J., MacWilliams and N. J. A., Sloane. The Theory of Error–Correcting Codes. North-Holland, 1977.
[636] G., Mahler and V. A., Weberruß. Quantum Networks. Springer, 1995, (2nd. ed.) 1998.
[637] W. A., Majewski. Transformations between quantum states. Rep. Math. Phys., 8:295, 1975.Google Scholar
[638] W. A., Majewski and M., Marciniak. On characterization of positive maps. J. Phys., A 34:5863, 2001.Google Scholar
[639] E., Majorana. Atomi orientati in campo magnetico variabile. Nuovo Cimento, 9:43, 1932.Google Scholar
[640] Y., Makhlin. Non-local properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quant. Inf. Proc., 1:243, 2002.Google Scholar
[641] L. C., Malacarne, R. S., Mandes, and E. K., Lenzi. Average entropy of a subsystem from its average Tsallis entropy. Phys. Rev., E 65:046131, 2002.Google Scholar
[642] L., Mandel and E., Wolf. Optical Coherence and Quantum Optics. Cambridge University Press, 1995.
[643] V. A., Marchenko and L. A., Pastur. The distribution of eigenvalues in certain sets of random matrices. Math. Sb., 72:507, 1967.Google Scholar
[644] D. J. H., Markham. Entanglement and symmetry in permutation symmetric states. Phys. Rev., A 83:042332, 2011.Google Scholar
[645] A. W., Marshall and I., Olkin. Inequalities: Theory of Majorization and its Applications. New York: Academic Press, 1979.
[646] J., Martin, O., Giraud, P. A., Braun, D., Braun, and T., Bastin. Multiqubit symmetric states with high geometric entanglement. Phys. Rev., A 81:062347, 2010.Google Scholar
[647] L., Masanes. An area law for the entropy of low-energy states. Phys. Rev., A 80:052104, 2009.Google Scholar
[648] P., Mathonet, S., Krins, M., Godefroid, L., Lamata, E., Solano, and T., Bastin. Entanglement equivalence of n-qubit symmetric states. Phys. Rev., A 81: 052315, 2010.
[649] M., Matolcsi. A Fourier analytic approach to the problem of unbiased bases. Studia Sci. Math. Hungarica, 49:482, 2012.Google Scholar
[650] K., McCrimmon. Jordan algebras and their applications. Bull. AMS., 84:612, 1978.Google Scholar
[651] M., Mehta. Random Matrices, 2nd. ed. New York: Academic Press, 1991.
[652] M. L., Mehta. Matrix Theory. Delhi: Hindustan Publishing, 1989.
[653] C. B., Mendl and M. M., Wolf. Unital quantum channels convex structure and revivals of Birkhoff's theorem. Commun. Math. Phys., 289:1057, 2009.Google Scholar
[654] N. D., Mermin. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys., 65:803, 1993.Google Scholar
[655] N. D., Mermin. The Ithaca interpretation of quantum mechanics. Pramana, 51:549, 1998.Google Scholar
[656] D. A., Meyer and N. R., Wallach. Global entanglement in multiparticle systems. J. Math. Phys., 43:4273, 2002.Google Scholar
[657] F., Mezzadri. How to generate random matrices from the classical compact groups. Notices of the AMS, 54:592, 2007.Google Scholar
[658] B., Mielnik. Theory of filters. Commun. Math. Phys., 15:1, 1969.Google Scholar
[659] B., Mielnik. Quantum theory without axioms. In C. J., Isham, R., Penrose, and D. W., Sciama, editors, Quantum Gravity II. A Second Oxford Symposium, page 638. Oxford University Press, 1981.
[660] B., Mielnik. Nonlinear quantum mechanics: A conflict with the Ptolomean structure? Phys. Lett., A 289:1, 2001.Google Scholar
[661] P., Migdał, J., Rodriguez-Laguna, and M., Lewenstein. Entanglement classes of permutation-symmetric qudit states: symmetric operations suffice. Phys. Rev., A 88:012335, 2013.Google Scholar
[662] V. D., Milman and G., Schechtman. Asymptotic theory of finite dimensional normed spaces. Springer-Verlag, 1986. Lecture Notes in Math. 1200.
[663] F., Mintert, M., Kuś, and A., Buchleitner. Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett., 92:167902, 2004.Google Scholar
[664] F., Mintert and K., Zyczkowski. Wehrl entropy, Lieb conjecture and entanglement monotones. Phys. Rev., A 69:022317, 2004.Google Scholar
[665] A., Miranowicz and A., Grudka. A comparative study of relative entropy of entanglement, concurrence and negativity. J. Opt. B: Quantum Semiclass. Opt., 6:542, 2004.Google Scholar
[666] A., Miranowicz, M., Piani, P., Horodecki, and R., Horodecki. Inseparability criteria based on matrices of moments. Phys. Rev., A 80:052303, 2009.Google Scholar
[667] B., Mirbach and H. J., Korsch. A generalized entropy measuring quantum localization. Ann. Phys. (N.Y.), 265:80, 1998.Google Scholar
[668] J. A., Miszczak, Z., Puchała, P., Horodecki, A., Uhlmann, and K., Zyczkowski. Sub–and super–fidelity as bounds for quantum fidelity. Quantum Inf. Comp., 9:103, 2009.Google Scholar
[669] A., Miyake. Classification of multipartite entangled states by multidimensional determinants. Phys. Rev., A 67:012108, 2003.Google Scholar
[670] L., Molnár. Fidelity preserving maps on density operators. Rep. Math. Phys., 48:299, 2001.Google Scholar
[671] C., Monroe, D. M., Meekhof, B. E., King, W. M., Itano, and D. J., Wineland. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett., 75:4714, 1995.Google Scholar
[672] T., Monz, P., Schindler, J. T., Barreiro, M., Chwalla, D., Nigg, W. A., Coish, M., Harlander, W., Hänsel, M., Hennrich, and R., Blatt. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett., 106:130506, 20011.Google Scholar
[673] E. A., Morozova and N. N., Cencov. Markov invariant geometry on state manifolds (in Russian). Itogi Nauki i Tehniki, 36:69, 1990.Google Scholar
[674] R., Mosseri and R., Dandoloff. Geometry of entangled states, Bloch spheres and Hopf fibrations. J. Phys., A 34:10243, 2001.Google Scholar
[675] N., Mukunda, Arvind, S., Chaturvedi, and R., Simon. Generalized coherent states and the diagonal representation of operators. J. Math. Phys., 44:2479, 2003.Google Scholar
[676] N., Mukunda and R., Simon. Quantum kinematic approach to the geometric phase. 1. General formalism. Ann. Phys. (N. Y), 228:205, 1993.Google Scholar
[677] M. E., Muller. A note on a method for generating points uniformly on N-dimensional spheres. Comm. Assoc. Comp. Mach., 2:19, 1959.Google Scholar
[678] M. P., Müller and C., Ududec. Structure of reversible computation determines the self-duality of quantum theory. Phys. Rev. Lett., 108:130401, 2012.Google Scholar
[679] D., Mumford. Tata Lectures on Theta. Birkhäuser, Boston, 1983.
[680] W. J., Munro, D. F. V., James, A. G., White, and P. G., Kwiat. Maximizing the entanglement of two mixed qubits. Phys. Rev., A 64:030302, 2001.Google Scholar
[681] F. D., Murnaghan. On the field of values of a square matrix. Proc. Natl. Acad. Sci., 18:246, 1932.Google Scholar
[682] M. K., Murray and J. W., Rice. Differential Geometry and Statistics. Chapman and Hall, 1993.
[683] B., Musto and J., Vicary. Quantum Latin squares and unitary error bases. Quantum Inf. Comp. 16: 1318, 2016.
[684] M., Musz, M., Kuś, and K., Zyczkowski. Unitary quantum gates, perfect entanglers, and unistochastic maps. Phys. Rev., A 87:022111, 2013.Google Scholar
[685] L., Ness. A stratification of the null cone via the moment map [with an appendix by D. Mumford]. Amer. J. Math., 106:1281, 1984.Google Scholar
[686] M., Neuhauser. An explicit construction of the metaplectic representation over a finite field. Journal of Lie Theory, 12:15, 2002.Google Scholar
[687] D., Newman. A simplified proof of the partition formula. Michigan Math. J., 9:283, 1962.Google Scholar
[688] M. A., Nielsen. An introduction to majorization and its applications to quantum mechanics. Course notes, October 2002, http://michaelnielsen.org/blog.
[689] M. A., Nielsen. Conditions for a class of entanglement transformations. Phys. Rev. Lett., 83:436, 1999.Google Scholar
[690] M. A., Nielsen. Continuity bounds for entanglement. Phys. Rev., A 61:064301, 2000.Google Scholar
[691] M. A., Nielsen. A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett., 303:249, 2002.Google Scholar
[692] M. A., Nielsen and I. L., Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
[693] M. A., Nielsen, C., Dawson, J., Dodd, A., Gilchrist, D., Mortimer, T., Osborne, M., Bremner, A., Harrow, and A., Hines. Quantum dynamics as physical resource. Phys. Rev., A 67:052301, 2003.Google Scholar
[694] M. A., Nielsen and J., Kempe. Separable states are more disordered globally than locally. Phys. Rev. Lett., 86:5184, 2001.Google Scholar
[695] M. A., Nielsen and G., Vidal. Majorization and the interconversion of bipartite states. Quantum Infor. Comput., 1:76, 2001.Google Scholar
[696] D., Nion and L. D., Lathauwer. An enhanced line search scheme for complex-valued tensor decompositions. Signal Processing, 88:749, 2008.Google Scholar
[697] G., Nogues, A., Rauschenbeutel, S., Osnaghi, P., Bertet, M., Brune, J., Raimond, S., Haroche, L., Lutterbach, and L., Davidovich. Measurement of the negative value for the Wigner function of radiation. Phys. Rev., A 62:054101, 2000.Google Scholar
[698] S., Nonnenmacher. Crystal properties of eigenstates for quantum cat maps. Nonlinearity, 10:1569, 1989.Google Scholar
[699] M., Ohya and D., Petz. Quantum Entropy and Its Use. Springer, 1993. Second edition, Springer 2004.
[700] D. K. L., Oi. The geometry of single qubit maps. preprint quantph/ 0106035.
[701] P. J., Olver. Classical Invariant Theory. Cambridge U P, 1999.
[702] A., Orłowski. Classical entropy of quantum states of light. Phys. Rev., A 48:727, 1993.Google Scholar
[703] R., Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys., 349:117, 2014.Google Scholar
[704] H., Osaka. Indecomposable positive maps in low-dimensional matrix algebra. Lin. Alg. Appl., 153:73, 1991.Google Scholar
[705] T., Osborne and F., Verstraete. General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett., 96:220503, 2006.Google Scholar
[706] V. A., Osipov, H.-J., Sommers, and K., Zyczkowski. Random Bures mixed states and the distribution of their purity. J. Phys., A 43:055302, 2010.Google Scholar
[707] A., Osterloh. Classification of qubit entanglement: SL(2,C) versus SU(2) invariance. Appl. Phys., B 98:609, 2010.
[708] A., Osterloh and J., Siewert. Entanglement monotones and maximally entangled states in multipartite qubit systems. Int. J. Quant. Inf., 4:531, 2006.Google Scholar
[709] S., Östlund and S., Rommer. Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett., 75:3537, 1995.Google Scholar
[710] Y., Ou. Violation of monogamy inequality for higher-dimensional objects. Phys. Rev., A 75:034305, 2007.Google Scholar
[711] C. J., Oxenrider and R. D., Hill. On the matrix reordering and. Lin. Alg. Appl., 69:205, 1985.Google Scholar
[712] M., Ozawa. Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett., A 268:158, 2001.Google Scholar
[713] D. N., Page. Average entropy of a subsystem. Phys. Rev. Lett., 71:1291, 1993.Google Scholar
[714] R. E. A. C., Paley. On orthogonal matrices. J. Math.and Phys., 12:311, 1933.Google Scholar
[715] Ł., Pankowski, M., Piani, M., Horodecki, and P., Horodecki. A few steps more towards NPT bound entanglement. IEEE Trans. Inform. Theory, 56:4085, 2010.Google Scholar
[716] M. H., Partovi. Universal measure of entanglement. Phys. Rev. Lett., 92:077904, 2004.Google Scholar
[717] F., Pastawski, B., Yoshida, D., Harlow, and J., Preskill. Holographic quantum error-correcting codes: toy models for the bulk/ boundary correspondence. JHEP, 06:149, 2015.Google Scholar
[718] T., Paterek, M., Pawłowski, M., Grassl, and C, Brukner. On the connection between mutually unbiased bases and orthogonal Latin squares. Phys. Scr., T140:014031, 2010.
[719] R., Penrose. A spinor approach to general relativity. Ann. of Phys. (N. Y.), 10:171, 1960.Google Scholar
[720] R., Penrose. Applications of negative dimensional tensors. In D. J. A., Welsh, editor, Combinatorial Mathematics and its Appplications, page 221. Academic Press, 1971.
[721] R., Penrose. The Road to Reality. London: Jonathan Cape, 2004.
[722] R., Penrose and W., Rindler. Spinors and Spacetime: Vol. 1. Cambridge U P, 1984.
[723] R., Penrose and W., Rindler. Spinors and Spacetime: Vol. 2. Cambridge U P, 1986.
[724] A. M., Perelomov. Generalized coherent states and some of their applications. Sov. Phys. Usp., 20:703, 1977.Google Scholar
[725] A., Peres. Quantum Theory: Concepts and Methods. Dordrecht: Kluwer, 1995.
[726] A., Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77:1413, 1996.Google Scholar
[727] A., Peres and D. R., Terno. Convex probability domain of generalized quantum measurements. J. Phys., A 31:L671, 1998.
[728] A., Peres and W. K., Wootters. Optimal detection of quantum information. Phys. Rev. Lett., 66:1119, 1991.Google Scholar
[729] D., Perez-Garcia, F., Verstraete, M. M., Wolf, and J. I., Cirac. Matrix product state representations. Quant. Inf. Comput., 7:401, 2007.Google Scholar
[730] D., Petz. Geometry of canonical correlation on the state space of a quantum system. J. Math. Phys., 35:780, 1994.Google Scholar
[731] D., Petz. Monotone metrics on matrix spaces. Lin. Alg. Appl., 244:81, 1996.Google Scholar
[732] D., Petz. Information-geometry of quantum states. Quantum Prob. Commun., X:135, 1998.
[733] D., Petz. Quantum Information Theory and Quantum Statistics. Springer Verlag, 2008.
[734] D., Petz and C., Sudár. Geometries of quantum states. J. Math. Phys., 37:2662, 1996.Google Scholar
[735] D., Petz and R., Temesi. Means of positive numbers and matrices. SIAM J. Matrix Anal. Appl., 27:712, 2005.Google Scholar
[736] R. F., Picken. The Duistermaat–Heckman integration formula on flag manifolds. J. Math. Phys., 31:616, 1990.Google Scholar
[737] M., Pinsker. Information and Information Stability of Random Variables and Processes. San Francisco: Holden-Day, 1964.
[738] J., Pipek and I., Varga. Universal scheme for the spacial-localization properties of one-particle states in finite d-dimensional systems. Phys. Rev., A 46:3148, 1992.Google Scholar
[739] I., Pitowsky. Infinite and finite Gleason's theorems and the logic of indeterminacy. J. Math. Phys., 39:218, 1998.Google Scholar
[740] A. O., Pittenger. Unextendible product bases and the construction of inseparable states. Lin. Alg. Appl., 359:235, 2003.Google Scholar
[741] A. O., Pittenger and M. H., Rubin. Separability and Fourier representations of density matrices. Phys. Rev., A 62:032313, 2000.Google Scholar
[742] A. O., Pittenger and M. H., Rubin. Convexity and the separability problem of quantum mechanical density matrices. Lin. Alg. Appl., 346:47, 2002.Google Scholar
[743] A. O., Pittenger and M. H., Rubin. Geometry of entanglement witnesses and local detection of entanglement. Phys. Rev., A 67:012327, 2003.Google Scholar
[744] M. B., Plenio and S., Virmani. An introduction to entanglement measures. Quantum Inf. Comput, 7:1, 2007.Google Scholar
[745] V., Pless. Introduction to the Theory of Error–Correcting Codes. Wiley, 1982.
[746] Y.-T., Poon and N.-K., Tsing. Inclusion relations between orthostochastic matrices and products of pinching matrices. Lin. Multilin. Algebra, 21:253, 1987.Google Scholar
[747] S., Popescu and D., Rohrlich. Generic quantum nonlocality. Phys. Lett., A 166:293, 1992.Google Scholar
[748] S., Popescu and D., Rohrlich. Thermodynamics and the measure of entanglement. Phys. Rev., A 56:R3319, 1997.
[749] D., Poulin, R., Blume–Kohout, R., Laflamme, and H., Olivier. Exponential speedup with a single bit of quantum information. Phys. Rev. Lett., 92:177906, 2004.Google Scholar
[750] M., Pozniak, K., Życzkowski, and M., Kuś. Composed ensembles of random unitary matrices. J. Phys., A 31:1059, 1998.Google Scholar
[751] J., Preskill. Lecture notes on quantum computation, 1998.See www.theory.caltech.edu/people/preskill/ph229/.
[752] J., Preskill. Reliable quantum computers. Proc. R. Soc. Lond., A 454:385, 1998.Google Scholar
[753] T., Prosen. Exact statistics of complex zeros for Gaussian random polynomials with real coefficients. J. Phys., A 29:4417, 1996.Google Scholar
[754] T., Prosen. Parametric statistics of zeros of Husimi representations of quantum chaotic eigenstates and random polynomials. J. Phys., A 29:5429, 1996.Google Scholar
[755] Z., Puchała, J. A., Miszczak, P., Gawron, C. F., Dunkl, J. A., Holbrook, and K., Życzkowski. Restricted numerical shadow and geometry of quantum entanglement. J. Phys., A 45:415309, 2012.Google Scholar
[756] E. M., Rabei, Arvind R., Simon, and N., Mukunda. Bargmann invariants and geometric phases –a generalized connection. Phys. Rev., A 60:3397, 1990.Google Scholar
[757] S. T., Rachev. Probability Metrics and the Stability of Stochastic Models. New York: Wiley, 1991.
[758] S. T., Rachev and L., Rüschendorf. Mass Transportation Problems. Vol. 1: Theory. Springer, 1998.
[759] J. M., Radcliffe. Some properties of coherent spin states. J. Phys., A 4:313, 1971.Google Scholar
[760] E. M., Rains. Bound on distillable entanglement. Phys. Rev., A 60:179, 1999.Google Scholar
[761] E. M., Rains. Rigorous treatment of distillable entanglement. Phys. Rev., A 60:173, 1999.Google Scholar
[762] E. M., Rains. A semidefinite program for distillable entanglement. IEEE Trans. Inform. Theory, 47:2921, 2001.Google Scholar
[763] A. K., Rajagopal and R. W., Rendell. Separability and correlations in composite states based on entropy methods. Phys. Rev., A 66:022104, 2002.Google Scholar
[764] M., Ramana and A. J., Goldman. Some geometric results in semidefinite programming. J. Global Optim., 7:33, 1995.Google Scholar
[765] S., Rana. Negative eigenvalues of partial transposition of arbitrary bipartite states. Phys. Rev., A 87:05430, 2013.Google Scholar
[766] C. R., Rao. Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc., 37:81, 1945.Google Scholar
[767] P., Raynal, X., , and B.-G., Englert. Mutually unbiased bases in dimension 6: The four most distant bases. Phys. Rev., A 83:062303, 2011.Google Scholar
[768] M., Reck, A., Zeilinger, H. J., Bernstein, and P., Bertani. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73:58, 1994.Google Scholar
[769] J., Rěhácěk and Z., Hradil. Quantification of entanglement by means of convergent iterations. Phys. Rev. Lett., 90:127904, 2003.Google Scholar
[770] C., Reid. Hilbert. Springer, 1970.
[771] M., Reimpell and R. F., Werner. A meaner king uses biased bases. Phys. Rev., A 75:062334, 2008.Google Scholar
[772] J. M., Renes, R., Blume-Kohout, A. J., Scott, and C. M., Caves. Symmetric informationally complete quantum measurements. J. Math. Phys., 45:2171, 2004.Google Scholar
[773] A., Rényi. On measures of entropy and information. In Proc. of the Fourth Berkeley Symp. Math. Statist. Prob. 1960, Vol. I, page 547. Berkeley: University of California Press, 1961.
[774] P., Ribeiro and R., Mosseri. Entanglement in the symmetric sector of n qubits. Phys. Rev. Lett., 106:180502, 2011.Google Scholar
[775] A. G., Robertson. Automorphisms of spin factors and the decomposition of positive maps. Quart. J. Math. Oxford, 34:87, 1983.Google Scholar
[776] W., Roga, M., Fannes, and K., Zyczkowski. Universal bounds for the Holevo quantity, coherent information and the Jensen- Shannon divergence. Phys. Rev. Lett., 105:040505, 2010.Google Scholar
[777] R., Rossignoli and N., Canosa. Generalized entropic criterion for separability. Phys. Rev., A 66:042306, 2002.Google Scholar
[778] A., Roy and A. J., Scott. Unitary designs and codes. Des. Codes Cryptogr., 53:13, 2009.Google Scholar
[779] O., Rudolph. A new class of entanglement measures. J. Math. Phys., A 42:5306, 2001.Google Scholar
[780] O., Rudolph. On the cross norm criterion for separability. J. Phys., A 36:5825, 2003.Google Scholar
[781] O., Rudolph. Some properties of the computable cross norm criterion for separability. Physical Review, A 67:032312, 2003.Google Scholar
[782] P., Rungta, V., Bužek, C. M., Caves, M., Hillery, and G. J., Milburn. Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev., A 64:042315, 2001.Google Scholar
[783] P., Rungta and C. M., Caves. Concurrence-based entanglement measures for isotropic states. Phys. Rev., A 67:012307, 2003.Google Scholar
[784] M. B., Ruskai. Inequalities for quantum entropy: A review with conditions for equality. J. Math. Phys., 43:4358, 2002.Google Scholar
[785] M. B., Ruskai, S., Szarek, and E., Werner. An analysis of completely-positive tracepreserving maps on 2 × 2 matrices. Lin. Alg. Appl., 347:159, 2002.Google Scholar
[786] E. B., Saff and A. B. J., Kuijlaars. Distributing many points on a sphere. Math. Intelligencer, 19:5, 1997.Google Scholar
[787] T., Salvemini. Sul calcolo degli indici di concordanza tra due caratteri quantitativi. Atti della VI Riunione della Soc. Ital. di Statistica, 1943.
[788] J., Sánchez-Ruiz. Simple proof of Page's conjecture on the average entropy of a subsystem. Phys. Rev., E 52:5653, 1995.
[789] Y., Sanders and G., Gour. Necessary conditions on entanglement catalysts. Phys. Rev., A 79:054302, 2008.Google Scholar
[790] I. N., Sanov. On the probability of large deviations of random variables (in Russian). Mat. Sbornik, 42:11, 1957.Google Scholar
[791] A., Sanpera, R., Tarrach, and G., Vidal. Local description of quantum inseparability. Phys. Rev., A 58:826, 1998.Google Scholar
[792] G., Sarbicki and I., Bengtsson. Dissecting the qutrit. J. Phys., A 46:035306, 2013.Google Scholar
[793] A., Sawicki, A., Huckleberry, and M., Kuś. Symplectic geometry of entanglement. Commun. Math. Phys., 305:421, 2011.Google Scholar
[794] A., Sawicki, M., Oszmaniec, and M., Kuś. Convexity of momentum map, Morse index and quantum entanglement. Rev. Math. Phys., 26:1450004, 2014.Google Scholar
[795] A., Sawicki, M., Walter, and M., Kuś. When is a pure state of three qubits determined by its single-particle reduced density matrices? J. Phys., A 46:055304, 2013.Google Scholar
[796] J., Scharlau and M. P., Müller. Quantum Horn lemma, finite heat baths, and the third law of thermodynamics. preprint arxiv:1605.06092.
[797] R., Schatten. A Theory of Crossspaces. Princeton University Press, 1950.
[798] S., Schirmer, T., Zhang, and J. V., Leahy. Orbits of quantum states and geometry of Bloch vectors for nlevel systems. J. Phys., A 37:1389, 2004.Google Scholar
[799] E., Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann., 63:433, 1907.Google Scholar
[800] U., Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Phys., 326:96, 2011.Google Scholar
[801] E., Schrödinger. Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften, 14:664, 1926.Google Scholar
[802] E., Schrödinger. Die Gesichtsempfindungen. In O., Lummer, editor, Müller-Pouillets Lehrbuch der Physik, 11th edn, Vol. 2, pages 456–560. Friedr. Vieweg und Sohn, 1926.
[803] E., Schrödinger. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 32:446, 1935.Google Scholar
[804] E., Schrödinger. Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc., 31:555, 1935.Google Scholar
[805] E., Schrödinger. Probability relations between separated systems. Proc. Camb. Phil. Soc., 32:446, 1936.Google Scholar
[806] E., Schrödinger. Space–Time Structure. Cambridge University Press, 1950.
[807] N., Schuch, M. M., Wolf, F., Verstraete, and J. I., Cirac. Computational complexity of projected entangled pair states. Phys. Rev. Lett., 98:140506, 2007.Google Scholar
[808] B., Schumacher. Quantum coding. Phys. Rev., A 51:2738, 1995.Google Scholar
[809] B., Schumacher. Sending entanglement through noisy quantum channels. Phys. Rev., A 54:2614, 1996.Google Scholar
[810] B., Schumacher and M., Nielsen. Quantum data processing and error correction. Phys. Rev., A 54:2629, 1996.Google Scholar
[811] B., Schumacher and M., Westmoreland. Relative entropy in quantum information theory. preprint quantph/0004045.
[812] B., Schumacher and M. D., Westmoreland. Sending classical information via noisy quantum channels. Phys. Rev., A 56:131, 1997.Google Scholar
[813] P., Schupp. On Lieb's conjecture for the Wehrl entropy of Bloch coherent states. Commun. Math. Phys., 207:481, 1999.Google Scholar
[814] J., Schur. Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzber. Berl. Math. Ges., 22:9, 1923.Google Scholar
[815] J., Schwinger. Unitary operator bases. Proc. Natl. Acad. Sci., 46:570, 1960.Google Scholar
[816] J., Schwinger. On angular momentum. In L. C., Biedenharn and H. van, Dam, editors, Quantum Theory of Angular Momentum, page 229. Academic Press, 1965.
[817] J., Schwinger. Quantum Mechanics —Symbolism of Atomic Measurements. Springer, 2003.
[818] A. J., Scott. SICs: Extending the list of solutions. preprint arXiv: 1703.03993.
[819] A. J., Scott. Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev., A 69:052330, 2004.Google Scholar
[820] A. J., Scott. Tight informationally complete measurements. J. Phys., A 39:13507, 2006.Google Scholar
[821] A. J., Scott and M., Grassl. SICPOVMs: A new computer study. J. Math. Phys., 51:042203, 2010.Google Scholar
[822] H., Scutaru. On Lieb's conjecture. preprint FT-180 (1979) Bucharest and math-ph/9909024.
[823] I. E., Segal. Postulates for general quantum mechanics. Ann. Math., 48:930, 1947.Google Scholar
[824] C., Segre. Remarques sur les transformations uniformes des courbes elliptiques en elles-mèmes. Math. Ann. 27:296, 1886.
[825] S., Sen. Average entropy of a quantum subsystem. Phys. Rev. Lett., 77:1, 1996.Google Scholar
[826] P. D., Seymour and T., Zaslawsky. Averaging sets: a generalization of mean values and spherical designs. Adv. Math., 52:213, 1984.Google Scholar
[827] L. K., Shalm et al. A strong loophole-free test of local realism. Phys. Rev. Lett., 115:250402, 2015.Google Scholar
[828] C. E., Shannon. A mathematical theory of communication. Bell Sys. Tech. J., 27:379, 623, 1948.Google Scholar
[829] C. E., Shannon and W., Weaver. The Mathematical Theory of Communication. Univ. of Illinois Press, 1949.
[830] A., Shapere and F., Wilczek. Geometric Phases in Physics. World Scientific, 1989.
[831] S.-Q., Shen, M., Li, and L., Li. A bipartite separable ball and its applications. J. Phys., A 48:095302, 2015.Google Scholar
[832] S.-Q., Shen, M.-Y., Wang, M., Li, and S.-M., Fei. Separability criteria based on the realignment of density matrices and reduced density matrices. Phys. Rev., A 92:042332, 2015.Google Scholar
[833] S.-Q., Shen, J., Yu, M., Li, and S.-M., Fei. Improved separability criteria based on Bloch representation of density matrices. Sci. Rep., 6:28850, 2016.Google Scholar
[834] A., Shimony. Degree of entanglement. Ann. NY. Acad. Sci., 755:675, 1995.Google Scholar
[835] P., Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev., A52:R2493, 1995.
[836] P. W., Shor. Additivity of the classical capacity of entanglementbreaking quantum channels. J. Math. Phys., 43:4334, 2002.Google Scholar
[837] P. W., Shor. Equivalence of additivity questions in quantum information theory. Commun. Math. Phys., 246:453, 2004.Google Scholar
[838] P. W., Shor, J. A., Smolin, and B. M., Terhal. Non-additivity of bipartite distillable entanglement follows from a conjecture on bound entangled Werner states. Phys. Rev. Lett., 86:2681, 2001.Google Scholar
[839] M., Sinołeçka, K., Życzkowski, and M., Kuś. Manifolds of equal entanglement for composite quantum systems. Acta Phys. Pol., B 33:2081, 2002.Google Scholar
[840] Ł., Skowronek. Three-by-three bound entanglement with general unextendible product bases. J. Math. Phys., 52:122202, 2011.Google Scholar
[841] Ł., Skowronek. There is no direct generalization of positive partial transpose criterion to the threeby- three case. J. Math. Phys., 57:112201, 2016.Google Scholar
[842] P. B., Slater. Hall normalization constants for the Bures volumes of the n-state quantum systems. J. Phys., A 32:8231, 1999.Google Scholar
[843] P. B., Slater. A priori probabilities of separable quantum states. J. Phys., A 32:5261, 1999.Google Scholar
[844] P. B., Slater. Silver mean conjectures for 15-d volumes and 14-d hyperareas of the separable two-qubit systems. J. Geom. Phys., 53:74, 2005.Google Scholar
[845] P. B., Slater. A concise formula for generalized two-qubit Hilbert–Schmidt separability probabilities. J. Phys., A 46:445302, 2013.Google Scholar
[846] W., Słomczyński. Subadditivity of entropy for stochastic matrices. Open Sys. & Information Dyn., 9:201, 2002.Google Scholar
[847] W., Słomczyński and K., Życzkowski. Mean dynamical entropy of quantum maps on the sphere diverges in the semiclassical limit. Phys. Rev. Lett., 80:1880, 1998.Google Scholar
[848] D. T., Smithey, M., Beck, M., Raymer, and A., Faridani. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett., 70:1244, 1993.Google Scholar
[849] H.-J., Sommers and K., Życzkowski. Bures volume of the set of mixed quantum states. J. Phys., A 36:10083, 2003.Google Scholar
[850] H.-J., Sommers and K., Życzkowski. Statistical properties of random density matrices. J. Phys., A 37: 8457, 2004.Google Scholar
[851] R. D., Sorkin. On the entropy of the vacuum outside a horizon. In B., Bertotti, F. de, Felice, and A., Pascolini, editors, 10th Iinternational Conference on General Relativity and Gravitation, Contributed Papers, vol. II, page 734. Roma, Consiglio Nazionale delle Richerche, 1983.
[852] J., Spanier and K. B., Oldham. An Atlas of Functions. Washington: Hemisphere Publishing Corporation, 1987.
[853] C., Spengler, M., Huber, S., Brierley, T., Adaktylos, and B. C., Hiesmayr. Entanglement detection via mutually unbiased bases. Phys. Rev., A 86:022311, 2012.Google Scholar
[854] J., Sperling and W., Vogel. Necessary and sufficient conditions for bipartite entanglement. Phys. Rev., A 79:022318, 2009.Google Scholar
[855] S. F., Springer. Symmetry in Mechanics. Birkhäuser, 2001.
[856] A. M., Steane. Error correcting codes in quantum theory. Phys. Rev. Lett., 77:793, 1996.Google Scholar
[857] A. M., Steane. Introduction to quantum error correction. Phil. Trans R. Soc. Lond., A356:1739, 1998.Google Scholar
[858] M., Steiner. Generalized robustness of entanglement. Phys. Rev., A 67:054305, 2003.Google Scholar
[859] W. F., Stinespring. Positive functions on C–algebras. Proc. Am. Math. Soc., 6:211, 1955.Google Scholar
[860] D. R., Stinson. Combinatorial Designs: Constructions and Analysis. Springer, 2004.
[861] E., Størmer. Positive linear maps of operator algebras. Acta Math., 110:233, 1963.Google Scholar
[862] E., Størmer. Decomposable positive maps on C–algebras. Proc. Amer. Math. Soc., 86:402, 1982.Google Scholar
[863] R. F., Streater. Statistical Dynamics. London: Imperial College Press, 1995.
[864] F., Strocchi. Complex coordinates and quantum mechanics. Rev. Mod. Phys., 38:36, 1966.Google Scholar
[865] E., Study. Kürzeste Wege in komplexen Gebiet. Math. Annalen, 60:321, 1905.Google Scholar
[866] E. C. G., Sudarshan. Equivalence of semiclassical and quantum mechanical descriptions of light beams. Phys. Rev. Lett., 10:277, 1963.Google Scholar
[867] E. C. G., Sudarshan, P. M., Mathews, and J., Rau. Stochastic dynamics of quantum-mechanical systems. Phys. Rev., 121:920, 1961.Google Scholar
[868] E. C. G., Sudarshan and A., Shaji. Structure and parametrization of stochastic maps of density matrices. J. Phys., A 36:5073, 2003.Google Scholar
[869] A., Sudbery. Computer-friendly dtensor identities for SU(n) . J. Phys., A 23:L705, 1990.Google Scholar
[870] A., Sudbery. On local invariants of pure three-qubit states. J. Phys., A 34:643, 2001.Google Scholar
[871] A., Sugita. Proof of the generalized Lieb–Wehrl conjecture for integer indices more than one. J. Phys., A 35:L621, 2002.Google Scholar
[872] A., Sugita. Moments of generalized Husimi distribution and complexity of many-body quantum states. J. Phys., A 36:9081, 2003.Google Scholar
[873] M. A., Sustik, J., Tropp, I. S., Dhillon, and R. W., Heath. On the existence of equiangular tight frames. Lin. Alg. Appl., 426:619, 2007.Google Scholar
[874] G., Svetlichny. Distinguishing threebody from two-body nonseparability by a Bell-type inequality. Phys. Rev., D35:3066, 1987.Google Scholar
[875] J., Sylvester. Sur l'equation en matrices px = xq . C. R. Acad. Sci. Paris, 99:67, 115, 1884.Google Scholar
[876] J. J., Sylvester. A word on nonions. John Hopkins Univ. Circulars., 1:1, 1882.Google Scholar
[877] S., Szarek. The volume of separable states is super-doubly-exponentially small. Phys. Rev., A 72:032304, 2005.Google Scholar
[878] S., Szarek, I., Bengtsson, and K., Życzkowski. On the structure of the body of states with positive partial transpose. J. Phys., A 39:L119, 2006.Google Scholar
[879] S., Szarek, E., Werner, and K., Życzkowski. Geometry of sets of quantum maps: A generic positive map acting on a high-dimensional system is not completely positive. J. Math. Phys., 49:032113, 2008.Google Scholar
[880] F., Szöllʺosi. Construction, classification and parametrization of complex Hadamard matrices. PhD thesis, CEU, Budapest, 2011.
[881] F., Szöllʺosi. Complex Hadamard matrices of order 6: a fourparameter family. J. London Math. Soc., 85:616, 2012.Google Scholar
[882] K., Szymański, S., Weis, and K., Życzkowski. Classification of joint numerical ranges of three hermitian matrices of size three. preprint arxiv:1603.06569.
[883] W., Tadej and K., Życzkowski. A concise guide to complex Hadamard matrices. Open Sys. Inf. Dyn., 13:133, 2006.Google Scholar
[884] T., Takagi. On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau. Japan J. Math., 1:83, 1925.Google Scholar
[885] M., Talagrand. New concentration inequalities in product spaces. Invent. Math., 126:505, 1996.Google Scholar
[886] M., Talagrand. A new look at independence. Ann. Probab., 24:1, 1996.Google Scholar
[887] K., Tanahashi and J., Tomiyama. Indecomposable positive maps in matrix algebra. Canad. Math. Bull., 31:308, 1988.Google Scholar
[888] W., Tang. On positive linear maps between matrix algebra. Lin. Alg. Appl., 79:33, 1986.Google Scholar
[889] B., Terhal, I., Chuang, D., DiVincenzo, M., Grassl, and J., Smolin. Simulating quantum operations with mixed environments. Phys. Rev., A 60:88, 1999.Google Scholar
[890] B., Terhal, M., Horodecki, D. W., Leung, and D., DiVincenzo. The entanglement of purification. J. Math. Phys., 43:4286, 2002.Google Scholar
[891] B. M., Terhal. Bell inequalities and the separability criterion. Phys. Lett., A 271:319, 2000.Google Scholar
[892] B. M., Terhal. A family of indecomposable positive linear maps based on entangled quantum states. Lin. Alg. Appl., 323:61, 2000.Google Scholar
[893] B. M., Terhal and K. G. H., Vollbrecht. Entanglement of formation for isotropic states. Phys. Rev. Lett., 85:2625, 2000.Google Scholar
[894] A. V., Thapliyal. On multi-particle pure states entanglement. Phys. Rev., A 59:3336, 1999.Google Scholar
[895] E., Thiele and J., Stone. A measure of quantum chaos. J. Chem. Phys., 80:5187, 1984.Google Scholar
[896] O., Toeplitz. Das algebraische Analogon zu einem Satze von Fejér. Math. Z., 2:187, 1918.Google Scholar
[897] F., Topsøe. Bounds for entropy and divergence for distributions over a two element set. J. Ineq. P. Appl. Math., 2:25, 2001.Google Scholar
[898] M., Tribus and E. C., McIrvine. Energy and information. Scient. Amer., 224:178, 1971.Google Scholar
[899] C., Tsallis. Entropic nonextensivity: a possible measure of complexity. Chaos, Solitons, Fract., 13:371, 2002.Google Scholar
[900] C., Tsallis, S., Lloyd, and M., Baranger. Peres criterion for separability through non-extensive entropy. Phys. Rev., A 63:042104, 2001.Google Scholar
[901] R. R., Tucci. All moments of the uniform ensemble of quantum density matrices. preprint quantph/0206193.
[902] R. R., Tucci. Relaxation method for calculating quantum entanglement. preprint quant-ph/0101123.
[903] J., Tura, A. B., Sainz, T., Grass, R., Augusiak, A., Acín, and M., Lewenstein. Entanglement and nonlocality in many-body systems: a primer. Proceedings of the International School of Physics “Enrico Fermi” 191, p. 505, Ed. by M. Inguscio et. al, IOS Press, Amsterdam 2016.
[904] A., Uhlmann. Endlich dimensionale Dichtematrizen. Wiss. Z. Karl- Marx-Univ., 20:633, 1971.Google Scholar
[905] A., Uhlmann. Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys., 54:21, 1977.Google Scholar
[906] A., Uhlmann. The metric of Bures and the geometric phase. In R., Gielerak, editor, Quantum Groups and Related Topics, page 267. Dordrecht: Kluwer, 1992.
[907] A., Uhlmann. Density operators as an arena for differential geometry. Rep. Math. Phys., 33:253, 1993.Google Scholar
[908] A., Uhlmann. Geometric phases and related structures. Rep. Math. Phys., 36:461, 1995.Google Scholar
[909] A., Uhlmann. Spheres and hemispheres as quantum state spaces. J. Geom. Phys., 18:76, 1996.Google Scholar
[910] A., Uhlmann. Entropy and optimal decompositions of states relative to a maximal commutative subalgebra. Open Sys. & Information Dyn., 5:209, 1998.Google Scholar
[911] A., Uhlmann. Fidelity and concurrence of conjugated states. Phys. Rev., A 62:032307, 2000.Google Scholar
[912] A., Uhlmann. Roofs and convexity. Entropy, 2010:1799, 2010.Google Scholar
[913] A., Uhlmann. Anti- (conjugate) linearity. Science China, 59:630301, 2016.Google Scholar
[914] H., Umegaki. Conditional expectation in an operator algebra IV: entropy and information. Ködai Math. Sem. Rep., 14:59, 1962.Google Scholar
[915] W. van, Dam and P., Hayden. Rényi-entropic bounds on quantum communication. preprint quant-ph/ 0204093.
[916] V. S., Varadarajan. Geometry of Quantum Theory. Springer, 1985.
[917] V., Vedral. The role of relative entropy in quantum information theory. Rev. Mod. Phys., 74:197, 2002.Google Scholar
[918] V., Vedral and E., Kashefi. Uniqueness of the entanglement measure for bipartite pure states and thermodynamics. Phys. Rev. Lett., 89:037903, 2002.Google Scholar
[919] V., Vedral and M. B., Plenio. Entanglement measures and purification procedures. Phys. Rev., A 57:1619, 1998.Google Scholar
[920] V., Vedral, M. B., Plenio, M. A., Rippin, and P. L., Knight. Quantifying entanglement. Phys. Rev. Lett., 78:2275, 1997.Google Scholar
[921] F., Verstraete, K., Audenaert, J., Dehaene, and B., DeMoor. A comparison of the entanglement measures negativity and concurrence. J. Phys., A 34:10327, 2001.Google Scholar
[922] F., Verstraete, K., Audenaert, and B., DeMoor. Maximally entangled mixed states of two qubits. Phys. Rev., A 64:012316, 2001.Google Scholar
[923] F., Verstraete and J. I., Cirac. Renormalization algorithms for quantum-many body systems in two and higher dimensions. preprint arxiv:0407066.
[924] F., Verstraete and J. I., Cirac. Matrix product states represent ground states faithfully. Phys. Rev., B 73:094423, 2006.Google Scholar
[925] F., Verstraete, J., Dahaene, and B., DeMoor. On the geometry of entangled states. J. Mod. Opt., 49:1277, 2002.Google Scholar
[926] F., Verstraete, J., Dahaene, B., DeMoor, and H., Verschelde. Four qubits can be entangled in nine different ways. Phys. Rev., A 65:052112, 2002.Google Scholar
[927] F., Verstraete, V., Murg, and J. I., Cirac. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys., 57:143, 2008.Google Scholar
[928] F., Verstraete and H., Verschelde. Fidelity of mixed states of two qubits. Phys. Rev., A 66:022307, 2002.Google Scholar
[929] G., Vidal. Entanglement of pure states for a single copy. Phys. Rev. Lett., 83:1046, 1999.Google Scholar
[930] G., Vidal. Entanglement monotones. J. Mod. Opt., 47:355, 2000.Google Scholar
[931] G., Vidal. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett., 91:147902, 2003.Google Scholar
[932] G., Vidal, W., Dür, and J. I., Cirac. Entanglement cost of bipartite mixed states. Phys. Rev. Lett., 89:027901, 2002.Google Scholar
[933] G., Vidal and R., Tarrach. Robustness of entanglement. Phys. Rev., A 59:141, 1999.Google Scholar
[934] G., Vidal and R. F., Werner. A computable measure of entanglement. Phys. Rev., A 65:032314, 2002.Google Scholar
[935] O., Viehmann, C., Eltschka, and J., Siewert. Polynomial invariants for discrimination and classification of four-qubit entanglement. Phys. Rev., A 83:052330, 2011.Google Scholar
[936] S., Virmani and M., Plenio. Ordering states with entanglement measures. Phys. Lett., A 268:31, 2000.Google Scholar
[937] K. G. H., Vollbrecht and R. F., Werner. Why two qubits are special. J. Math. Phys., 41:6772, 2000.Google Scholar
[938] K. G. H., Vollbrecht and R. F., Werner. Entanglement measures under symmetry. Phys. Rev., A 64:062307, 2001.Google Scholar
[939] R. von, Mises. Probability, Statistics and Truth. New York: Dover, 1957.
[940] J. von, Neumann. Thermodynamik quantummechanischer Gesamtheiten. Gött. Nach., 1:273, 1927.Google Scholar
[941] J. von, Neumann. Mathematical Foundations of Quantum Mechanics. Princeton University Press, 1955.
[942] A., Vourdas. Quantum systems with finite Hilbert space. Rep. Prog. Phys., 67:267, 2004.Google Scholar
[943] M., Waegell and K., Aravind. Critical noncolorings of the 600-cell proving the Bell–Kochen–Specker theorem. J. Phys., A43:105304, 2010.Google Scholar
[944] R. M., Wald. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. Univ. of Chicago Press, 1994.
[945] M., Walter, B., Doran, D., Gross, and M., Christandl. Entanglement polytopes: Multiparticle entanglement from single-particle information. Science, 340:6137, 2013.Google Scholar
[946] P., Walther, K. J., Resch, and A., Zeilinger. Local conversion of GHZ states to approximate W states. Phys. Rev. Lett., 94:240501, 2005.Google Scholar
[947] J., Watrous. Mixing doubly stochastic quantum channels with the completely depolarizing channel. Quant. Inform. Comput., 9:406, 2009.Google Scholar
[948] Z., Webb. The Clifford group forms a unitary 3-design. Quant. Inf. Comp., 16:1379, 2016.Google Scholar
[949] A., Wehrl. General properties of entropy. Rev. Mod. Phys., 50:221, 1978.Google Scholar
[950] A., Wehrl. On the relation between classical and quantum mechanical entropies. Rep. Math. Phys., 16:353, 1979.Google Scholar
[951] T.-C., Wei and P. M., Goldbart. Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev., A 68:042307, 2003.Google Scholar
[952] T. C., Wei, K., Nemoto, P. M., Goldbart, P. G., Kwiat, W. J., Munro, and F., Verstraete. Maximal entanglement versus entropy for mixed quantum states. Phys. Rev., A 67:022110, 2003.Google Scholar
[953] S., Weigert and T., Durt. Affine constellations without mutually unbiased counterparts. J. Phys., A43:402002, 2010.Google Scholar
[954] M., Weiner. A gap for the maximum number of mutually unbiased bases. Proc. Amer. Math. Soc., 141:1963, 2013.Google Scholar
[955] S., Weis. Quantum convex support. Linear Alg. Appl., 435:3168, 2011.Google Scholar
[956] L. R., Welch. Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf. Theory., 20:397, 1974.Google Scholar
[957] T., Wellens and M., Kuś. Separable approximation for mixed states of composite quantum systems. Phys. Rev., A 64:052302, 2001.Google Scholar
[958] R. F., Werner. Quantum states with Einstein–Podolski–Rosen correlations admitting a hidden-variable model. Phys. Rev., A 40:4277, 1989.Google Scholar
[959] R. F., Werner. Optimal cloning of pure states. Phys. Rev., A 58:1827, 1998.Google Scholar
[960] R. F., Werner. All teleportation and dense coding schemes. J. Phys., A 34:7081, 2001.Google Scholar
[961] H., Weyl. Group Theory and Quantum Mechanics. E. P. Dutton, New York, 1932.
[962] H., Weyl. The Classical Groups. Princeton UP, New Jersey, 1939.
[963] S. R., White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69:2863, 1992.Google Scholar
[964] M., Wieśniak, T., Paterek, and A., Zeilinger. Entanglement in mutually unbiased bases. New J. Phys., 13:053047, 2011.Google Scholar
[965] E. P., Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749, 1932.Google Scholar
[966] E. P., Wigner. Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, 1959.
[967] E. P., Wigner. Normal form of antiunitary operators. J. Math. Phys., 1:409, 1960.Google Scholar
[968] A., Wilce. Four and a half axioms for finite dimensional quantum mechanics. In Y., Ben-Menahem and M., Hemmo, editors, Probability in Physics, page 281. Springer, Berlin, 2012.
[969] M. M., Wilde. Quantum Information Theory. Cambridge University Press, Cambridge, 2013.
[970] S. J., Williamson and H. Z., Cummins. Light and Color in Nature and Art. Wiley, 1983.
[971] A., Winter. Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys., 344:1, 2016.Google Scholar
[972] C., Witte and M., Trucks. A new entanglement measure induced by the Hilbert–Schmidt norm. Phys. Lett., A 257:14, 1999.Google Scholar
[973] P., Wocjan and T., Beth. New construction of mutually unbiased bases in square dimensions. Quantum Inf. Comp., 5:93, 2005.Google Scholar
[974] K., Wódkiewicz. Stochastic decoherence of qubits. Optics Express, 8:145, 2001.Google Scholar
[975] H. J., Woerdeman. The separability problem and normal completions. Lin. Alg. Appl., 376:85, 2004.Google Scholar
[976] A., Wong and N., Christensen. Potential multiparticle entanglement measure. Phys. Rev., A 63:044301, 2001.Google Scholar
[977] Y.-C., Wong. Differential geometry of Grassmann manifolds. Proc. Nat. Acad. Sci. USA, 47:589, 1967.Google Scholar
[978] W. K., Wootters. Statistical distance and Hilbert space. Phys. Rev., D 23:357, 1981.Google Scholar
[979] W. K., Wootters. A Wigner function formulation of finite-state quantum mechanics. Ann. Phys. (N.Y.), 176:1, 1987.Google Scholar
[980] W. K., Wootters. Random quantum states. Found. Phys., 20:1365, 1990.Google Scholar
[981] W. K., Wootters. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 80:2245, 1998.Google Scholar
[982] W. K., Wootters. Entanglement of formation and concurrence. Quant. Inf. Comp., 1:27, 2001.Google Scholar
[983] W. K., Wootters and B. F., Fields. Optimal state determination by mutually unbiased measurements. Ann. Phys. (N.Y.), 191:363, 1989.Google Scholar
[984] S. L., Woronowicz. Non-extendible positive maps. Commun. Math. Phys., 51:243, 1976.Google Scholar
[985] S. L., Woronowicz. Positive maps of low-dimensional matrix algebra. Rep. Math. Phys., 10:165, 1976.Google Scholar
[986] N., Wu and R., Coppins. Linear Programming and Extensions. New York: McGraw-Hill, 1981.
[987] D., Yang, M., Horodecki, and Z. D., Wang. An additive and operational entanglement measure: conditional entanglement of mutual information. Phys. Rev. Lett., 101:140501, 2008.Google Scholar
[988] D., Ye. On the Bures volume of separable quantum states. J. Math. Phys., 50:083502, 2009.Google Scholar
[989] D. A., Yopp and R. D., Hill. On completely copositive and decomposable linear transformations. Lin. Alg. Appl., 312:1, 2000.Google Scholar
[990] S., Yu and C. H., Oh. Stateindependent proof of Kochen–Specker theorem with 13 rays. Phys. Rev. Lett, 108:030402, 2012.Google Scholar
[991] Y.-K., Yu and Y.-C., Zhang. On the anti-Wishart distribution. Physica, A 312:1, 2002.Google Scholar
[992] C., Zalka and E., Rieffel. Quantum operations that cannot be implemented using a small mixed environment. J. Math. Phys., 43:4376, 2002.Google Scholar
[993] P., Zanardi. Entanglement of quantum evolution. Phys. Rev., A 63:040304(R), 2001.Google Scholar
[994] P., Zanardi and D. A., Lidar. Purity and state fidelity of quantum channels. Phys. Rev., A 70:012315, 2004.Google Scholar
[995] P., Zanardi, C., Zalka, and L., Faoro. On the entangling power of quantum evolutions. Phys. Rev., A 62:030301(R), 2000.Google Scholar
[996] G., Zauner. Quantendesigns. PhD thesis, Univ. Wien, 1999.
[997] A., Zeilinger, M. A., Horne, and D. M., Greenberger. Higher-order quantum entanglement. In D., Han, Y. S., Kim, and W. W., Zachary, editors, Proc. of Squeezed States and Quantum Uncertainty, pages 73–81, 1992. NASA Conf. Publ.
[998] B., Zeng, X., Chen, D.-L., Zhou, and X.-G., Wen. Quantum Information Meets Quantum Matter. book in preparation and preprint arxiv:1508.02595.
[999] C.-J., Zhang, Y.-S., Zhang, S., Zhang, and G.-C., Guo. Entanglement detection beyond the cross-norm or realignment criterion. Phys. Rev., A 77:060301(R), 2008.Google Scholar
[1000] J., Zhang, J., Vala, S., Sastry, and K., Whaley. Geometric theory of non-local two-qubit operations. Phys. Rev., A 67:042313, 2003.Google Scholar
[1001] W.-M., Zhang, D. H., Feng, and R., Gilmore. Coherent states: Theory and some applications. Rev. Mod. Phys., 62:867, 1990.Google Scholar
[1002] H., Zhu. Multiqubit Clifford groups are unitary 3–designs. preprint arXiv:1510.02619.
[1003] H., Zhu. SIC-POVMs and Clifford groups in prime dimensions. J. Phys., A 43:305305, 2010.Google Scholar
[1004] H., Zhu. Mutually unbiased bases as minimal Clifford covariant 2–designs. Phys. Rev., A 91:060301, 2015.Google Scholar
[1005] H., Zhu. Permutation symmetry determines the discrete Wigner function. Phys. Rev. Lett., 116: 040501, 2016.Google Scholar
[1006] K., Życzkowski. Indicators of quantum chaos based on eigenvector statistics. J. Phys., A 23:4427, 1990.Google Scholar
[1007] K., Życzkowski. Volume of the set of separable states II. Phys. Rev., A 60:3496, 1999.Google Scholar
[1008] K., Życzkowski. Localization of eigenstates & mean Wehrl entropy. Physica, E 9:583, 2001.Google Scholar
[1009] K., Życzkowski. Rényi extrapolation for Shannon entropy. Open Sys. & Information Dyn., 10:297, 2003.Google Scholar
[1010] K., Życzkowski, P., Horodecki, A., Sanpera, and M., Lewenstein. Volume of the set of separable states. Phys. Rev., A 58:883, 1998.Google Scholar
[1011] K., Życzkowski and M., Kuś. Random unitary matrices. J. Phys., A 27:4235, 1994.Google Scholar
[1012] K., Życzkowski, K. A., Penson, I., Nechita, and B., Collins. Generating random density matrices. J. Math. Phys., 52:062201, 2011.Google Scholar
[1013] K., Życzkowski and W., Słomczy ński. The Monge distance between quantum states. J. Phys., A 31:9095, 1998.Google Scholar
[1014] K., Życzkowski and W., Słomczy ński. Monge metric on the sphere and geometry of quantum states. J. Phys., A 34:6689, 2001.Google Scholar
[1015] K., Życzkowski and H.-J., Sommers. Truncations of random unitary matrices. J. Phys., A 33:2045, 2000.Google Scholar
[1016] K., Życzkowski and H.-J., Sommers. Induced measures in the space of mixed quantum states. J. Phys., A 34:7111, 2001.Google Scholar
[1017] K., Życzkowski and H.-J., Sommers. Hilbert–Schmidt volume of the set of mixed quantum states. J. Phys., A 36:10115, 2003.Google Scholar
[1018] K., Życzkowski and H.-J., Sommers. Average fidelity between random quantum states. Phys. Rev, A 71:032313, 2005.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ingemar Bengtsson, Stockholms Universitet, Karol Życzkowski, Uniwersytet Jagiellonski, Poland
  • Book: Geometry of Quantum States
  • Online publication: 30 August 2017
  • Chapter DOI: https://doi.org/10.1017/9781139207010.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ingemar Bengtsson, Stockholms Universitet, Karol Życzkowski, Uniwersytet Jagiellonski, Poland
  • Book: Geometry of Quantum States
  • Online publication: 30 August 2017
  • Chapter DOI: https://doi.org/10.1017/9781139207010.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ingemar Bengtsson, Stockholms Universitet, Karol Życzkowski, Uniwersytet Jagiellonski, Poland
  • Book: Geometry of Quantum States
  • Online publication: 30 August 2017
  • Chapter DOI: https://doi.org/10.1017/9781139207010.024
Available formats
×