Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T23:27:38.707Z Has data issue: false hasContentIssue false

5 - Review and future challenges in snow avalanche risk analysis

Published online by Cambridge University Press:  10 January 2011

Irasema Alcántara-Ayala
Affiliation:
Universidad Nacional Autonoma de Mexico, Mexico City
Andrew S. Goudie
Affiliation:
St Cross College, Oxford
Get access

Summary

Background

Snow avalanches pose a major threat to alpine communities because they affect safety in villages and on traffic routes. Therefore, dealing with avalanche danger has a long tradition in Alpine countries. In most countries, avalanches contribute only to a small degree to the overall risk of a country. For Switzerland, for example, avalanche risk represents only 2% of all risks (BABS, 2003).

Snow avalanche formation, geomorphology and land use planning

Snow avalanches are a type of fast-moving mass movement. They can also contain rocks, soil, vegetation or ice. Avalanche size is classified according to its destructive power (McClung and Schaerer, 2006). A medium-sized slab avalanche may involve 10,000 m3 of snow, equivalent to a mass of about 2,000 tons (snow density 200 kg/m3). Avalanche speeds vary between 50 and 200 km/h for large dry snow avalanches, whereas wet slides are denser and slower (20–100 km/h). If the avalanche path is steep, dry snow avalanches generate a powder cloud.

There are different types of snow avalanches (Table 5.1), and in particular two types of release: loose snow avalanches and slab avalanches. Loose snow avalanches start from a point, in a relatively cohesionless surface layer of either dry or wet snow. Initial failure is analogous to the rotational slip of cohesionless sands or soil, but occurs within a small volume (<1 m3) in comparison to much larger initiation volumes in soil slides.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammann, W. (2001). Integrales Risikomanagement: der gemeinsame Weg in die Zukunft. Bündnerwald, 5, 14–17.Google Scholar
Arnalds, Th., Jónasson, K. and Sigurðsson, S. Þ. (2004). Avalanche hazard zoning in Iceland based on individual risk. Annals of Glaciology, 38, 285−290.CrossRefGoogle Scholar
,AS/NZS 4360, (2004). Australian/New Zealand Standard. Risk Management. Standards Australia.
,BABS (2003). KATARISK. Katastrophen und Notlagen in der Schweiz: Eine Risikobeurteilung aus der Sicht des Bevölkerungsschutzes. Bern: Bundesamt für Bevölkerungsschutz.Google Scholar
Bader, S. and Kunz, P. (eds.) (1998). Klimarisiken: Herausforderungen für die Schweiz. Zürich: vdf Hochschulverlag.
,BAFU (2008). EconoMe: Wirtschaftlichkeit von Schutzmassnahmen gegen Naturgefahren. www.econome.admin.ch, (accessed 16 December 2008).
Barbolini, M., Natale, L. and Savi, F. (2002). Effects on release conditions uncertainty on avalanche hazard mapping. Natural Hazards, 25, 225–244.CrossRefGoogle Scholar
Barbolini, M., Cappabianca, F. and Sailer, R. (2004a). Empirical estimate of vulnerability relations for use in snow avalanche risk assessment. In Brebbia, C., (ed.), Risk Analysis IV. Southampton: WIT, pp. 533–542.Google Scholar
Barbolini, M., Cappabianca, F. and Savi, F. (2004b). Risk assessment in avalanche-prone areas. Annals of Glaciology, 38, 115–122.CrossRefGoogle Scholar
Bartelt, P. and Stöckli, V. (2001). The influence of tree and branch fracture, overturning and debris entrainment on snow avalanche flow. Annals of Glaciology, 32, 209–216.CrossRefGoogle Scholar
Bartelt, P., Salm, B. and Gruber, U. (1999). Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. Journal of Glaciology, 45(150), 242–254.CrossRefGoogle Scholar
Bartelt, P., Buser, O. and Platzer, K. (2006). Fluctuation-dissipation relations for granular snow avalanches. Journal of Glaciology, 52 (179), 631–643.CrossRefGoogle Scholar
Bätzing, W. (1993). Der sozio-ökonomische Strukturwandel des Alpenraums im 20. Jahrhundert. Bern: Geographica Bernensia, P26.Google Scholar
Becht, M. (1995). Slope erosion processes in the Alps. In Slaymaker, O. (ed.), Steepland Geomorphology. New York: Wiley, pp. 45–61.Google Scholar
Bell, R. and Glade, T. (2004). Quantitative risk analysis for landslides: examples from Bíldudalur, NW Iceland. Natural Hazards and Earth System Sciences, 4, 117–131.CrossRefGoogle Scholar
Bell, R., Glade, T. and Danscheid, M. (2006). Challenges in defining acceptable risk levels.- In Ammann, W., Dannenmann, S. and Vulliet, L. (eds.), Coping with Risks Due to Natural Hazards in the 21st Century: “RISK 21”. 28 November – 3 December 2004, Monte Vérita (CH), Balkema: pp. 1–10.Google Scholar
,BEV (2004). Regionalinformation der Grundstücksdatenbank des Bundesamtes für Eich- und Vermessungswesen. www.bev.at (accessed 15 January 2006).
Birkmann, J. (ed.) (2006). Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies. New York: United Nations University Press.
Borter, P. (1999). Risikoanalysen bei gravitativen Naturgefahren: Methode. Umwelt-Materialien 107/I, Bundesamt für Umwelt, Wald und Landschaft, BUWAL, Bern.
Borter, P. and Bart, R. (1999). Risikoanalysen bei gravitativen Naturgefahren: Fallbeispiele und Daten. Umwelt-Materialien 107/II, Bundesamt für Umwelt, Wald und Landschaft, BUWAL, Bern.
Bründl, M., Schneebeli, M. and Flühler, H. (1999). Routing of canopy drip in the snowpack below a spruce crown. Journal of Hydrological Processes, 13, 49–58.3.0.CO;2-L>CrossRefGoogle Scholar
Bründl, M., Krummenacher, B. and Merz, H. M. (2009). Decision making tools for natural hazard risk management: Examples from Switzerland. In Martorell, S., Soares, C. G. and Barnett, J. (eds.), Safety, Reliability and Risk Analysis: Theory, Methods and Applications. Leiden: CRC Press/Balkema, pp. 2773–2779.Google Scholar
Buser, O. and Bartelt, P. (2009). The production and decay of random energy in granular snow avalanches. Journal of Glaciology, 55, 3–12.CrossRefGoogle Scholar
Cappabianca, F. (2008). Empirical vulnerability function for use in snow avalanche risk assessment. In Naaim, M. (ed.), Vulnerability to Rapid Mass Movements, IRASMOS Report D4, Grenoble, France. http://irasmos.slf.ch/pdf/WP4_D40_20080710.pdf (accessed 22 October 2009).Google Scholar
Cappabianca, F., Barbolini, M. and Natale, L. (2008). Snow avalanche risk assessment and mapping: a new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform. Cold Regions Science and Technology, 54, 193–205.CrossRefGoogle Scholar
Christen, M., Bartelt, P. and Gruber, U. (2007). Modelling avalanches. GEOconnexion International, 6(4), 38–39.Google Scholar
Crozier, M. and Glade, T. (2005). Landslide hazard and risk: issues, concepts and approach. In Glade, T., Anderson, T. and Crozier, M. (eds.), Landslide Hazard and Risk. Chichester: John Wiley & Sons, pp. 1–40.Google Scholar
Cutter, S. (1996). Vulnerability to environmental hazards. Progress in Human Geography 20, 529–539.CrossRefGoogle Scholar
Cutter, S. (2003). The vulnerability of science and the science of vulnerability. Annals of the Association of American Geographers, 93, 1–12.CrossRefGoogle Scholar
Decaulne, A. and Saemundsson, Th. (2006). Geomorphic evidence for present-day snow-avalanche and debris-flow impact in the Icelandic Westfjords. Geomorphology, 80, 80–93.CrossRefGoogle Scholar
Delparte, D., Jamieson, B. and Waters, N. (2008). Statistical runout modeling of snow avalanches using GIS in Glacier National Park, Canada. Cold Regions Science and Technology, 54(3), 183–192.CrossRefGoogle Scholar
Fell, R. (1994). Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31, 261–272.CrossRefGoogle Scholar
Fell, R. and Hartford, D. (1997). Landslide risk management. In Cruden, D. and Fell, R. (eds.), Landslide Risk Assessment. Proceedings of the International Workshop on Landslide Risk Assessment Honolulu, Hawaii, USA, 19–21 February 1997. Balkema: Rotterdam, pp. 51–109.Google Scholar
Fuchs, S. and Bründl, M. (2005). Damage potential and losses resulting from snow avalanches in settlements in the Canton of Grisons, Switzerland. Natural Hazards, 34, 53–69.CrossRefGoogle Scholar
Fuchs, S. and Keiler, M. (2006). Natural hazard risk depending on the variability of damage potential. In Popov, V. and Brebbia, C. (eds.), Risk Analysis V: Simulation and Hazard Mitigation, Wessex: WIT Press, pp. 13–22.CrossRefGoogle Scholar
Fuchs, S., Keiler, M. and Zischg, A. (2001). Risikoanalyse Suldental. Innsbrucker Geographische Studien, Innsbruck.Google Scholar
Fuchs, S., Bründl, M. and Stötter, J. (2004). Development of avalanche risk between 1950 and 2000 in the municipality of Davos, Switzerland. Natural Hazards and Earth System Sciences, 4(2), 263–275.CrossRefGoogle Scholar
Fuchs, S., Heiss, K. and Hübl, J. (2007). Towards an empirical vulnerability function for use in debris flow risk assessment. Natural Hazards and Earth System Sciences, 7, 495–506.CrossRefGoogle Scholar
Gächter, M. and Bart, R. (2002). Risikoanalyse und Kostenwirksamkeit bei der Massnahmenplanung: Beispiel Diesbach. Schweizerische Zeitschrift für Forstwesen, 153, 268–273.CrossRefGoogle Scholar
Glade, T. and Elverfeldt, K. (2005). MultiRISK: an innovative concept to model natural risks. In Oldrich, H., Fell, R., Coulture, R. and Eberhardt, E. (eds.), International Conference on Landslide Risk Management, Vancouver (CND), 31 May –3 June 2005, Rotterdam: Balkema, pp. 551–556.Google Scholar
Haimes, Y. Y. (2004). Risk Modeling, Assessment, and Management, 2nd edition. Hoboken, New Jersey: Wiley.CrossRefGoogle Scholar
Hatfield, A. and Hipel, K. (2002). Risk and systems theory. Risk Analysis, 22(6), 1043–1057.CrossRefGoogle ScholarPubMed
Holub, M. and Fuchs, S. (2008). Benefits of local structural protection to mitigate torrent-related hazards. WIT Transactions on Information and Communication Technologies, 39, 401–411.Google Scholar
Hufschmidt, G., Crozier, M. and Glade, T. (2005). Evolution of natural risk: research framework and perspectives. Natural Hazards and Earth System Sciences, 5, 375–387.CrossRefGoogle Scholar
,International Organization for Standardization, ISO (2008). Draft International Standard ISO 31000. Risk Management: Principles and Guidelines on Implementation. http://www.broadleaf.com.au/pdfs/iso_31000/iso_iec_rm_princips.pdf (accessed 15 December 2008).
Jaecklin, A. (2007). Voll integriertes Risikomanagement. MQ Management und Qualität (11), 21–23. http://www.saq.ch/fileadmin/user_upload/mq/downloads/mq_2007_11_jaecklin.pdf (accessed 15 December 2008).
Jamieson, J. B. and Stethem, C. (2002). Snow avalanche hazards and management in Canada: challenges and progress. Natural Hazards, 26(1), 35–53.CrossRefGoogle Scholar
Jónasson, K., Sigurðsson, S. and Arnalds, Þ. (1999). Estimation of Avalanche Risk. Icelandic Meteorological Office, Reykjavík, Iceland, VÍ-R99001-ÚR01.
Kaplan, S. and Garrick, B. (1981). On the quantitative definition of risk. Risk Analysis, 1(1), 11–27.CrossRefGoogle Scholar
Keiler, M. (2004). Development of the damage potential resulting from avalanche risk in the period 1950–2000, case study Galtür. Natural Hazards and Earth System Sciences, 4, 249–256.CrossRefGoogle Scholar
Keiler, M., Zischg, A., Fuchs, S., Hama, M. and Stötter, J. (2005). Avalanche related damage potential: changes of persons and mobile values since the mid-twentieth century, case study Galtür. Natural Hazards and Earth System Sciences, 5, 49–58.CrossRefGoogle Scholar
Keiler, M., Sailer, R., Jörg, P.et al. (2006). Avalanche risk assessment: a multi-temporal approach, results from Galtür, Austria. Natural Hazards and Earth System Sciences, 6, S. 637–651.CrossRefGoogle Scholar
Kern, M., Bartelt, P.Sovilla, B. and Buser, O. (2009). Measured shear rates in large dry and wet snow avalanches. Journal of Glaciology, 55, 327–338.CrossRefGoogle Scholar
Keylock, C. and Barbolini, M. (2001). Snow avalanche impact pressure: vulnerability relations for use in risk assessment. Canadian Geotechnical Journal, 38, 227–238.CrossRefGoogle Scholar
Keylock, C., McClung, D. and Magnússon, M. (1999). Avalanche risk mapping by simulation. Journal of Glaciology, 45, 303–314.CrossRefGoogle Scholar
Klinke, A. and Renn, O. (2002). A new approach to risk evaluation and management: risk-based, precaution-based, and discourse-based strategies. Risk Analysis, 22(6), 1071–1094.CrossRefGoogle ScholarPubMed
Kraus, D., Hübl, J. and Rickenmann, D. (2006). Building vulnerability related to floods and debris flows: case studies. In Ammann, W., Dannenmann, S. and Vulliet, L. (eds.), Coping with Risks Due to Natural Hazards in the 21st Century. London: Taylor & Francis, pp. 181–190.Google Scholar
Kristjansdottir, G. B. (1997). Jardfraedileg ummerki eftir snjoflod i botni Dyrafjardar, BS Thesis, Department of Geology and Geography, University of Iceland (in Icelandic).
Kulakowski, D., Rixen, C. and Bebi, P. (2006). Changes in forest structure and in the relative importance of climatic stress as a result of suppression of avalanche disturbances. Forest Ecology and Management, 223(1–3), 66–74, doi: 10.1016/j.foreco.2005.10.058.CrossRefGoogle Scholar
Laternser, M. and Schneebeli, M. (2002). Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Natural Hazards, 27(3), 201–230, doi: 10.1023/A:1020327312719.CrossRefGoogle Scholar
Laternser, M. and Schneebeli, M. (2003). Long-term snow climate trends of the Swiss Alps (1931–99). International Journal of Climatology, 23(7), 733–750, doi: 10.1002/joc.912.CrossRefGoogle Scholar
Lehning, M., Löwe, H., Ryser, M. and Raderschall, N. (2008). Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resources Research, 44, doi:10.1029/2007WR006545.CrossRefGoogle Scholar
McClung, D. and Schaerer, P. (2006). The Avalanche Handbook, 3rd edition, Seattle, WA: The Mountaineers Books.Google Scholar
Prokop, A. (2008). Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements, Cold Regions Science and Technology, 54(3), 155–163.CrossRefGoogle Scholar
Rheinberger, Ch., Bründl, M. and Rhyner, J. (2009). Dealing with the White Death: avalanche risk management for traffic routes. Risk Analysis, 29(1), 76–94.CrossRefGoogle ScholarPubMed
Rixen, C., Haag, S., Kulakowski, D. and Bebi, P. (2007). Natural avalanche disturbance shapes plant diversity and species composition in subalpine forest belt. Journal of Vegetation Science, 18, 735–742.CrossRefGoogle Scholar
Sailer, R., Rammer, L. and Sampl, P. (2002). Recalculation of an artificially released avalanche with SAMOS and validation with measurements from a pulsed Doppler radar. Natural Hazards and Earth System Sciences, 2, 211–216.CrossRefGoogle Scholar
Salm, B. (1993). Flow, flow transition and runout distances of flowing avalanches. Annals of Glaciology, 18, 221–226.CrossRefGoogle Scholar
Sampl, P. and Zwinger, T. (2004). Avalanche simulation with SAMOS. Annals of Glaciology, 38, 393–396.CrossRefGoogle Scholar
Schaffhauser, A., Adams, M., Fromm, R., et al. (2008). Remote sensing based retrieval of snow cover properties. Cold Regions Science and Technology, 54(3), 164–175.CrossRefGoogle Scholar
Schaub, Y. (2008). Risikomanagement von Naturgefahren: Sensitivität der Risikoberechnung in Bezug auf die Eingabefaktoren und deren Bedeutung für die Massnahmenbewertung. M.Sc. Thesis, Department of Geography, University of Zurich, Zurich.
Schneebeli, M., Laternser, M., Föhn, P. and Ammann, W. (1998). Wechselwirkungen zwischen Klima, Lawinen und technischen Massnahmen. Zürich: vdf Hochschulverlag.Google Scholar
Schweizer, J. (2008). On the predictability of snow avalanches. In Campbell, C., Conger, S. and Haegeli, P. (eds.), Proceedings ISSW 2008, International Snow Science Workshop, Whistler, Canada, 21–27 September 2008, pp. 688–692.Google Scholar
Schweizer, J., Jamieson, J. B. and Schneebeli, M. (2003). Snow avalanche formation. Review of Geophysics, 41(4), 1016.CrossRefGoogle Scholar
,SLF (ed.) (2000). Der Lawinenwinter 1999. Davos: Eidgenössisches Institut für Schnee- und Lawinenforschung.Google Scholar
Sovilla, B., Burlando, P. and Bartelt, P. (2006). Field experiments and numerical modelling of mass entrainment in snow avalanches. Journal of Geophysical Research, 111(F3), F03007, doi: 10.1029/2005JF000391.CrossRefGoogle Scholar
Sovilla, B., Schaer, M., Kern, M. and Bartelt, P. (2007). Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site. Journal of Geophysical Research, doi:10.1029/2006JF000688.Google Scholar
Sovilla, B., Schaer, M. and Rammer, L. (2008). Measurements and analysis of full-scale avalanche impact pressure at the Vallée de la Sionne test site. Cold Regions Science and Technology, 51(2–3), 122–137.CrossRefGoogle Scholar
Stethem, C., Jamieson, B., Schaerer, P.et al. (2003). Snow avalanche hazard in Canada: a review. Natural Hazards, 28, 487–515.CrossRefGoogle Scholar
,UNESCO (1981). Avalanche Atlas: Illustrated International Avalanche Classification. Paris, France: International Association of Hydrological Sciences, International Commission on Snow and Ice: Natural Hazards Series, Vol. 2.Google Scholar
Uzielli, M., Farrokh, N., Lacasse, S. and Kaynia, A. M. (2008). A conceptual framework for quantitative estimation of physical vulnerability to landslides. Engineering Geology, 102(3–4), 251–256.CrossRefGoogle Scholar
Varnes, D. (1984). Landslide Hazard Zonation: A Review of Principles and Practice. Paris: UNESCO.Google Scholar
Ward, R. G. V. (1985). Geomorphological evidence of avalanche activity in Scotland. Geografiska Annaler, 67A, 247–256.CrossRefGoogle Scholar
Weichselgartner, J. (2001). Disaster mitigation: the concept of vulnerability revisited. Disaster Prevention and Management, 10(2): 85–94.CrossRefGoogle Scholar
White, G., Burton, R. and Kates, I. (2001). Knowing better and loosing even more: the use of knowledge in hazards management. Environmental Hazards, 3, 81–92.CrossRefGoogle Scholar
Wilhelm, C. (1997). Wirtschaftlichkeit im Lawinenschutz. Davos: Eidgenössisches Institut für Schnee- und Lawinenforschung, Mitteilung 54.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×