Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-03T09:39:39.066Z Has data issue: false hasContentIssue false

13 - Genetics and Literacy Development

from Part II - Neurobiological and Ecological Markers

Published online by Cambridge University Press:  23 November 2023

Ludo Verhoeven
Affiliation:
Radboud Universiteit Nijmegen
Sonali Nag
Affiliation:
University of Oxford
Charles Perfetti
Affiliation:
University of Pittsburgh
Kenneth Pugh
Affiliation:
Yale University, Connecticut
Get access

Summary

The spread of literacy throughout the world made it necessary to develop a systematic (stage-based) and effective (quick and inexpensive) way of teaching reading that could be delivered to many (different) people simultaneously with the use of the ever-changing textures of reading. In this chapter, it will be shown that all of these considerations, when contemplated holistically, define the parameters of the genetic system that is the foundation of literacy in general and (a)typical reading and writing in particular. Yet it is a distal one, with the proximal foundation being the brain. It will be concluded that the genetic bases of (a)typical reading and writing is nothing more than the genetic bases of a brain that, pressured by the demands and opportunities imposed by modern society, has turned itself into a reading and writing (i.e., literate) brain.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahituv, N., Kavaslar, N., Schackwitz, W. et al. (2007). Medical sequencing at the extremes of human body mass. The American Journal of Human Genetics, 80, 779791. DOI: https://doi.org/10.1086/513471.CrossRefGoogle ScholarPubMed
Angner, E., Miller, M. J., Ray, M. N., Saag, K. G., & Allison, J. J. (2009). Health literacy and happiness: A community-based study. Social Indicators Research, 95, 325338. DOI: https://doi.org/10.1007/s11205-009-9462-5.CrossRefGoogle Scholar
Anitha, A., Nakamura, K., Yamada, K. et al. (2008). Genetic analyses of Roundabout (ROBO) axon guidance receptors in autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B, 10191027. DOI: https://doi.org/10.1002/ajmg.b.30697.CrossRefGoogle ScholarPubMed
Bakwin, H. (1973). Reading disability in twins. Developmental Medicine and Child Neurology, 15, 184187.CrossRefGoogle ScholarPubMed
Bates, T. C., Luciano, M., Medland, S. E. et al. (2011). Genetic variance in a component of the language acquisition device: ROBO1 polymorphisms associated with phonological buffer deficits. Behavior Genetics, 41, 5057. DOI: https://doi.org/10.1007/s10519-010-9402-9.CrossRefGoogle Scholar
Bates, T. C., Luciano, M., Montgomery, G. W., Wright, M. J., & Martin, N. G. (2011). Genes for a component of the language acquisition mechanism: ROBO1 polymorphisms associated with phonological buffer deficit. Behavior Genetics, 41, 5057.CrossRefGoogle Scholar
Becker, N., Vasconcelos, M., Oliveira, V. et al. (2017). Genetic and environmental risk factors for developmental dyslexia in children: Systematic review of the last decade. Developmental Neuropsychology, 42, 423445. DOI: https://doi.org/10.1080/87565641.2017.1374960.CrossRefGoogle ScholarPubMed
Brennand, K. J., Simone, A., Jou, J. et al. (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473, 221225. DOI: https://doi.org/10.1038/nature09915.CrossRefGoogle ScholarPubMed
Brkanac, Z., Chapman, N. H., Igo, R. P. Jr. et al. (2008). Genome scan of a nonword repetition phenotype in families with dyslexia: Evidence for multiple loci. Behavior Genetics, 38, 462475.CrossRefGoogle ScholarPubMed
Buonincontri, R., Bache, I., Silahtaroglu, A. et al. (2011). A cohort of balanced reciprocal translocations associated with dyslexia: identification of two putative candidate genes at DYX1. Behavior Genetics, 41, 125133.CrossRefGoogle ScholarPubMed
Byrne, B., Coventry, W. L., Olson, R. K. et al. (2009). Genetic and environmental influences on aspects of literacy and language in early childhood: Continuity and change from preschool to Grade 2. Journal of Neurolinguistics, 22, 219236. DOI: https://doi.org/10.1016/j.jneuroling.2008.09.003.CrossRefGoogle ScholarPubMed
Byrne, B., Wadsworth, S., Corley, R. et al. (2005). Longitudinal twin study of early literacy development: Preschool and kindergarten phases. Scientific Studies of Reading, 9, 219235.CrossRefGoogle Scholar
Cardon, L. R., Smith, S. D., Fulker, D. W. et al. (1994). Quantitative trait locus for reading disability on chromosome 6. Science, 226, 276279.CrossRefGoogle Scholar
Cardon, L. R., Smith, S. D., Fulker, D. W. et al. (1995). Quantitative trait locus for reading disability: correction. Science, 268, 1553.CrossRefGoogle ScholarPubMed
Cherry, G., & Vignoles, A. (2020). What is the economic value of literacy and numeracy? IZA World of Labor, 229. DOI: https://doi.org/10.15185/izawol.229.v2.Google Scholar
Cipolla, C. M. (1969). Literacy and Development in the West. Harmondsworth: Penguin Books.Google Scholar
Cohen, J. C., Kiss, R. S., Pertsemlidis, A. et al. (2004). Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science, 305, 869872.CrossRefGoogle ScholarPubMed
Cohen, J. C., Pertsemlidis, A., Fahmi, S. et al. (2006). Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proceedings of the National Academy of Sciences of the United States of America, 103, 18101815. DOI: https://doi.org/10.1073/pnas.0508483103.CrossRefGoogle ScholarPubMed
Conrad, D. F., Pinto, D., Redon, R. et al. (2009). Origins and functional impact of copy number variation in the human genome. Nature. Advance online publication.Google Scholar
Cope, N., Harold, D., Hill, G. et al. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. American Journal of Human Genetics, 76, 581591.CrossRefGoogle ScholarPubMed
Currier, T. A., Etchegaray, M. A., Haight, J. L., Galaburda, A. M., & Rosen, G. D. (2011). The effects of embryonic knockdown of the candidate dyslexia susceptibility gene homologue Dyx1c1 on the distribution of GABAergic neurons in the cerebral cortex. Neuroscience, 172, 535546. DOI: http://dx.doi.org/10.1016/j.neuroscience.2010.11.002.CrossRefGoogle ScholarPubMed
Davies, G., Lam, M., Harris, S. E. et al. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9, 2098. DOI: https://doi.org/10.1038/s41467-018-04362-x.CrossRefGoogle ScholarPubMed
de Kovel, C. G. F., Hol, F. A., Heister, J. et al. (2004). Genomewide scan identifies susceptibility locus for dyslexia on Xq27 in an extended Dutch family. Journal of Medical Genetics, 41, 652657.CrossRefGoogle Scholar
Deffenbacher, K. E., Kenyon, J. B., Hoover, D. M. et al. (2004). Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses. Human Genetics, 115, 128138.CrossRefGoogle ScholarPubMed
DeFries, J. C., Fulker, D. W., & LaBuda, M. C. (1987). Evidence for a genetic aetiology in reading disability of twins. Nature, 329, 537539.CrossRefGoogle ScholarPubMed
Dennis, M. Y., Paracchini, S., Scerri, T. S. et al. (2009). A common variant associated with dyslexia reduces expression of the KIAA0319 gene. PLoS Genetics, 5, e1000436.CrossRefGoogle ScholarPubMed
Dewannieux, M., & Heidmann, T. (2013). Endogenous retroviruses: Acquisition, amplification and taming of genome invaders. Current Opinion in Virology, 3, 646656. DOI: http://dx.doi.org/10.1016/j.coviro.2013.08.005.CrossRefGoogle ScholarPubMed
Dittwald, P., Gambin, T., Szafranski, P. et al. (2013). NAHR-mediated copy-number variants in a clinical population: Mechanistic insights into both genomic disorders and Mendelizing traits. Genome Research, 23, 13951409. DOI: https://doi.org/10.1101/gr.152454.112.CrossRefGoogle Scholar
Duranthon, V., Beaujean, N., Brunner, M. et al. (2012). On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools. Transgenic Research, 21, 699713.CrossRefGoogle ScholarPubMed
Eicher, J. D., & Gruen, J. R. (2015). Language impairment and dyslexia genes influence language skills in children with autism spectrum disorders. Autism Research, 8, 229234. DOI: https://doi.org/10.1002/aur.1436.CrossRefGoogle ScholarPubMed
Eicher, J. D., Powers, N. R., Miller, L. L., et al. for the Pediatric Imaging, Neurocognition Genetics, Study. (2013). Genome-wide association study of shared components of reading disability and language impairment. Genes, Brain and Behavior, 12, 792801. DOI: https://doi.org/10.1111/gbb.12085.CrossRefGoogle ScholarPubMed
Eicher, J. D., Stein, C. M., Deng, F. et al. (2015). The DYX2 locus and neurochemical signaling genes contribute to speech sound disorder and related neurocognitive domains. Genes, Brain and Behavior, 14(4), 377385. DOI: https://doi.org/10.1111/gbb.12214.CrossRefGoogle ScholarPubMed
Ercan-Sencicek, A. G., Davis Wright, N. R., Sanders, S. S. et al. (2012). A balanced t(10;15) translocation in a male patient with developmental language disorder. European Journal of Medical Genetics, 55, 128131.CrossRefGoogle Scholar
Fagerheim, T., Raeymaekers, P., Tonnessen, F. E. et al. (1999). A new gene (DYX3) for dyslexia is located on chromosome 2. Journal of Medical Genetics, 35, 664669.Google Scholar
Field, L. L., Shumansky, K., Ryan, J. et al. (2013). Dense-map genome scan for dyslexia supports loci at 4q13, 16p12, 17q22; suggests novel locus at 7q36. Genes, Brain and Behavior, 12, 5669. DOI: https://doi.org/10.1111/gbb.12003.CrossRefGoogle ScholarPubMed
Finucci, J. M., Guthrie, J. T., Childs, A. L., Abbey, H., & Childs, B. (1976). The genetics of specific reading disability. Annual Review of Human Genetics, 40, 123.CrossRefGoogle ScholarPubMed
Fisher, J. H. (1905). Case of congenital word-blindness (inability to learn to read). Ophthalmology Review, 24, 315318.Google Scholar
Fisher, J. H. (1910). Congenital world blindness (inability to learn to read). Transactions of the Ophthalmological Societies of the United Kingdom, 30, 216225.Google Scholar
Fisher, S. E., Francks, C., Marlow, A. J. et al. (2002). Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nature Genetics, 30, 8691.CrossRefGoogle ScholarPubMed
Francks, C., Paracchini, S., Smith, S. D. et al. (2004). A 77-kilobase region on chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetics, 75, 10461058.CrossRefGoogle ScholarPubMed
Friend, A., DeFries, J., Olson, R. et al. (2009). Heritability of high reading ability and its interaction with parental education. Behavior Genetics, 39, 427436.CrossRefGoogle ScholarPubMed
Gialluisi, A., Andlauer, T. F M, Mirza-Schreiber, N. et al. (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9, 77. DOI: https://doi.org/10.1038/s41398-019-0402-0.CrossRefGoogle ScholarPubMed
Gialluisi, A., Newbury, D. F., Wilcutt, E. G. et al. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13, 686701. DOI: https://doi.org/10.1111/gbb.12158.CrossRefGoogle ScholarPubMed
Gialluisi, A., Visconti, A., Willcutt, E. G. et al. (2016). Investigating the effects of copy number variants on reading and language performance. Journal of Neurodevelopmental Disorders, 8, 17. DOI: https://doi.org/10.1186/s11689-016-9147-8.CrossRefGoogle ScholarPubMed
Gibson, G. (2012). Rare and common variants: Twenty arguments. Nature Reviews Genetics, 13, 135145. DOI: https://doi.org/10.1038/nrg3118.CrossRefGoogle ScholarPubMed
Gilger, J. W., Borecki, I. B., DeFries, J. C., & Pennington, B. F. (1994). Commingling and segregation analysis of reading performance in families of normal reading probands. Behavior Genetics, 24, 345355.CrossRefGoogle ScholarPubMed
Girirajan, S., Brkanac, Z., Coe, B. P. et al. (2011). Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLOS GENET, 7, e1002334. DOI: https://doi.org/10.1371/journal.pgen.1002334.CrossRefGoogle ScholarPubMed
Gorlov, I. P., Gorlova, O. Y., Sunyaev, S. R., Spitz, M. R., & Amos, C. I. (2008). Shifting paradigm of association studies: Value of rare single-nucleotide polymorphisms. The American Journal of Human Genetics, 82, 100112. DOI: https://doi.org/10.1016/j.ajhg.2007.09.006.CrossRefGoogle ScholarPubMed
Grasby, K. L., Coventry, W. L., Byrne, B., & Olson, R. K. (2019). Little evidence that socioeconomic status modifies heritability of literacy and numeracy in Australia. Child Development, 90, 623637. DOI: https://doi.org/10.1111/cdev.12920.CrossRefGoogle ScholarPubMed
Grigorenko, E. L. (2004). Genetic bases of developmental dyslexia: A capsule review of heritability estimates. Enfance, 3, 273287.CrossRefGoogle Scholar
Grigorenko, E. L. (2005). A conservative meta-analysis of linkage and linkage-association studies of developmental dyslexia. Scientific Studies of Reading, 9, 285316.CrossRefGoogle Scholar
Grigorenko, E. L., & Naples, A. J. (2009). The devil is in the details: Decoding the genetics of reading. In McCardle, P. & Pugh, K. (eds.), Helping Children Learn to Read: Current Issues and New Directions in the Integration of Cognition, Neurobiology and Genetics of Reading and Dyslexia (pp. 133148). New York: Psychological Press.Google Scholar
Grigorenko, E. L., Ngorosho, D., Jukes, M., & Bundy, D. (2006). Reading in able and disabled readers from around the world: Same or different? An illustration from a study of reading-related processes in a Swahili sample of siblings. Journal of Reading Research, 29, 104123.CrossRefGoogle Scholar
Hallgren, B. (1950). Specific dyslexia (congenital word-blindness): A clinical and genetic study. Acta Psychiatrica et Neurologica Supplementum, 65, 1287.Google ScholarPubMed
Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M. et al. (2005). The axon guidance receptor gene ROBO1 is a candidate dene for developmental dyslexia. PLoS, 1, e50.CrossRefGoogle Scholar
Harlaar, N., Trzaskowski, M., Dale, P. S., & Plomin, R. (2014). Word reading fluency: Role of genome-wide single-nucleotide polymorphisms in developmental stability and correlations with print exposure. Child Development, 85(3), 11901205. DOI: https://doi.org/10.1111/cdev.12207.CrossRefGoogle ScholarPubMed
Harold, D., Paracchini, S., Scerri, T. et al. (2006). Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Molecular Psychiatry, 11, 10851091.CrossRefGoogle ScholarPubMed
Hart, S. A., Soden, B., Johnson, W., Schatschneider, C., & Taylor, J. (2013). Expanding the environment: Gene × school-level SES interaction on reading comprehension. Journal of Child Psychology and Psychiatry, 54, 10471055. DOI: https://doi.org/10.1111/jcpp.12083.CrossRefGoogle ScholarPubMed
Hart, S. A., Soden, B., Johnson, W., Schatschneider, C., & Taylor, J. (2014). Erratum. Journal of Child Psychology & Psychiatry, 55(8), 955956. DOI: https://doi.org/10.1111/jcpp.12276.Google Scholar
Hawke, J. L., Wadsworth, S. J., Olson, R. K., & DeFries, J. C. (2007). Etiology of reading difficulties as a function of gender and severity. Reading and Writing, 20, 1325.CrossRefGoogle Scholar
Hermann, K. (1956). Congenital word-blindness: Poor readers in the light of Gerstmann’s syndrome. Acta Psychiatrica et Neurologica Scandinavica, 31, 177184.CrossRefGoogle Scholar
Hinshelwood, J. (1900). Congenital word-blindness. Lancet, 155, 15061508.CrossRefGoogle Scholar
Hinshelwood, J. (1902). Congenital word-blindness, with reports of two cases. Ophthalmology Review, 21, 9199.Google Scholar
Hinshelwood, J. (1907). Four cases of congenital word-blindness occurring in the same family. British Medical Journal, 1, 608609.CrossRefGoogle Scholar
Hsu, L., Wijsman, E., Berninger, V., & Thomson, J. (2002). Familial aggregation of dyslexia phenotypes. II: Paired correlated measures. American Journal of Medical Genetics. Neuropsychiatric Genetics, 114, 471478.CrossRefGoogle ScholarPubMed
Igo, R. P. Jr., Chapman, N. H., Berninger, V. W. et al. (2006). Genomewide scan for real-word reading subphenotypes of dyslexia: Novel chromosome 13 locus and genetic complexity. American Journal of Medical Genetics (Neuropsychiatric Genetics), 141, 1527.CrossRefGoogle Scholar
Ioannidis, J. P. A., Trikalinos, T. A., & Khoury, M. J. (2006). Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases. American Journal of Epidemiology, 164, 609614. DOI: https://doi.org/10.1093/aje/kwj259.CrossRefGoogle ScholarPubMed
Iossifov, I., Ronemus, M., Levy, D. et al. (2012). De novo gene disruptions in children on the autistic spectrum. Neuron, 74, 285299. DOI: https://doi.org/10.1016/j.neuron.2012.04.009.CrossRefGoogle ScholarPubMed
Ji, W., Foo, J. N., O’Roak, B. J. et al. (2008). Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nature Genetics, 40, 592599. DOI: https://doi.org/10.1038/ng.118.CrossRefGoogle ScholarPubMed
Kaminen, N., Hannula-Jouppi, K., Kestila, M. et al. (2003). A genome scan for developmental dyslexia confirms linkage to chromosome 2p11 and suggests a new locus on 7q32. Journal of Medical Genetics, 40, 340345.CrossRefGoogle ScholarPubMed
Kerr, J. (1897). School hygiene, in its mental, moral, and physical aspects. Journal of the Royal Statistical Society, 60, 613680.CrossRefGoogle Scholar
Kim, P. M., Lam, H. Y., Urban, A. E. et al. (2008). Analysis of copy number variants and segmental duplications in the human genome: Evidence for a change in the process of formation in recent evolutionary history. Genome Res, 18(12), 18651874.CrossRefGoogle ScholarPubMed
Kovas, Y., Voronin, I., Kaydalov, A. et al. (2013). Literacy and numeracy are more heritable than intelligence in primary school. Psychological Science, 24, 20482056. DOI: https://doi.org/10.1177/0956797613486982.CrossRefGoogle ScholarPubMed
Kussmaul, A. (1877). Word deafness and word blindness. In von Ziemssen, H. & McCreery, J. A. T. (eds.), Cyclopaedia of the Practice of Medicine (pp. 770778). New York: William Wood.Google Scholar
Lander, E. S., Linton, L. M., Birren, B. et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860921. DOI: https://doi.org/10.1038/35057062.Google ScholarPubMed
Lewis, B. A., Freebairn, L., Tag, J., Benchek, et al. (2018). Heritability and longitudinal outcomes of spelling skills in individuals with histories of early speech and language disorders. Learning and Individual Differences, 65, 111. DOI: https://doi.org/10.1016/j.lindif.2018.05.001.CrossRefGoogle ScholarPubMed
Lewitter, F. I., DeFries, J. C., & Elston, R. C. (1980). Genetic models of reading disability. Behavior Genetics, 10, 930.CrossRefGoogle ScholarPubMed
Li, M., Malins, J. G., DeMille, M. M. C. et al. (2018). A molecular-genetic and imaging-genetic approach to specific comprehension difficulties in children. NPJ Science of Learning, 3, article no. 20. DOI: https://doi.org/10.1038/s41539-018-0034-9.CrossRefGoogle ScholarPubMed
Little, C. W., Haughbrook, R., & Hart, S. A. (2017). Cross-study differences in the etiology of reading comprehension: a meta-analytical review of twin studies. Behavior Genetics, 47(1), 5276. DOI: https://doi.org/10.1007/s10519-016-9810-6.CrossRefGoogle ScholarPubMed
Luciano, M., Evans, D. M., Hansell, N. K. et al. (2013). A genome-wide association study for reading and language abilities in two population cohorts. Genes, Brain and Behavior, 12, 645652. DOI: https://doi.org/10.1111/gbb.12053.CrossRefGoogle ScholarPubMed
Ludwig, K., Roeske, D., Herms, S. et al. (2010). Variation in GRIN2B contributes to weak performance in verbal short-term memory in children with dyslexia. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B, 503511.CrossRefGoogle ScholarPubMed
Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. New England Journal of Medicine, 363, 166176. DOI: https://doi.org/10.1056/NEJMra0905980.CrossRefGoogle ScholarPubMed
Manolio, T. A., Brooks, L. D., & Collins, F. S. (2008). A HapMap harvest of insights into the genetics of common disease. Journal of Clinical Investigation, 118, 15901605. DOI: https://doi.org/10.1172/jci34772.CrossRefGoogle ScholarPubMed
Marino, C., Meng, H., Mascheretti, S. et al. (2012). DCDC2 genetic variants and susceptibility to developmental dyslexia. Psychiatric Genetics, 22, 2530. DOI: https://doi.org/10.1097/YPG.0b013e32834acdb2.CrossRefGoogle ScholarPubMed
Mascheretti, S., Facoetti, A., Giorda, R. et al. (2015). GRIN2B mediates susceptibility to intelligence quotient and cognitive impairments in developmental dyslexia. Psychiatric Genetics, 25, 920. DOI: https://doi.org/10.1097/ypg.0000000000000068.CrossRefGoogle ScholarPubMed
Mascheretti, S., Trezzi, V., Giorda, R. et al. (2017). Complex effects of dyslexia risk factors account for ADHD traits: Evidence from two independent samples. Journal of Child Psychology and Psychiatry, 58, 7582. DOI: https://doi.org/10.1111/jcpp.12612.CrossRefGoogle ScholarPubMed
Meaburn, E., Harlaar, N., Craig, I., Schalkwyk, L., & Plomin, R. (2008). Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100 K SNP microarrays in a sample of 5760 children. Molecular Psychiatry, 13, 729740. DOI: https://doi.org/10.1038/sj.mp.4002063.CrossRefGoogle Scholar
Meng, H., Smith, S. D., Hager, K. et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 1705317058.CrossRefGoogle ScholarPubMed
Montoya, S. (2018). Defining Literacy. New York: UNESCO Institute for Statistics, UNESCO.Google Scholar
Munson, J., Dawson, G., Sterling, L. et al. (2008). Evidence for latent classes of IQ in young children with autism spectrum disorder. American Journal of Mental Retardation, 113, 439452.CrossRefGoogle ScholarPubMed
Naples, A. J., Chang, J. T., Katz, L., & Grigorenko, E. L. (2009). Same or different? Insights into the etiology of phonological awareness and rapid naming. Biological Psychology, 80, 226239.CrossRefGoogle ScholarPubMed
Newbury, D. F., Paracchini, S., Scerri, T. S. et al. (2011). Investigation of dyslexia and SLI risk-variants in reading- and language-impaired subjects. Behavior Genetics, 41, 90104.CrossRefGoogle ScholarPubMed
Nopola-Hemmi, J., Myllyluoma, B., Voutilainen, A. et al. (2002). Familial dyslexia: Neurocognitive and genetic correlation in a large Finnish family. Developmental Medicine and Child Neurology, 44, 580586.CrossRefGoogle Scholar
Norrie, E. (1939). Om ordblindhet. Copenhagen: Munkgaard.Google Scholar
Olson, R. K., Hulslander, J., Christopher, M. E. et al. (2013). Genetic and environmental influences on writing and their relations to language and reading. Annals of Dyslexia, 63, 2543. DOI: https://doi.org/10.1007/s11881-011-0055-z.CrossRefGoogle ScholarPubMed
Orton, S. T. (1939). A neurological explanation of the reading disability. Education Record, 12, 5868.Google Scholar
Park, H., & Kyei, P. (2011). Literacy gaps by educational attainment: A cross-national analysis. Social forces; a scientific medium of social study and interpretation, 89, 879904. DOI: https://doi.org/10.1353/sof.2011.0025.Google ScholarPubMed
Peng, B., & Kimmel, M. (2007). Simulations provide support for the common disease-common variant hypothesis. Genetics, 175, 763776. DOI: https://doi.org/10.1534/genetics.106.058164.CrossRefGoogle ScholarPubMed
Pennington, B. F., Gilger, J. W., Pauls, D. et al. (1991). Evidence for major gene transmission of developmental dyslexia. JAMA, 266, 15271534.CrossRefGoogle ScholarPubMed
Peter, B., Raskind, W., Matsushita, M. et al. (2011). Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample. Journal of Neurodevelopmental Disorders, 3, 3949. DOI: https://doi.org/10.1007/s11689-010-9065-0.CrossRefGoogle Scholar
Peters, L., & Ansari, D. (2019). Are specific learning disorders truly specific, and are they disorders? Trends in Neuroscience and Education, 17, 100115. DOI: https://doi.org/10.1016/j.tine.2019.100115.CrossRefGoogle ScholarPubMed
Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. The Lancet, 379, 19972007.CrossRefGoogle ScholarPubMed
Plomin, R., & Kovas, Y. (2005). Generalist genes and learning disabilities. Psychological Bulletin, 131, 592617.CrossRefGoogle ScholarPubMed
Price, K. M., Wigg, K. G., Feng, Y. et al. (2020). Genome-wide association study of word reading: Overlap with risk genes for neurodevelopmental disorders. Genes, Brain and Behavior (July 19, 2020)(6):e12648. DOI: https://doi.org/10.1111/gbb.12648.Epub2020Mar27.PMID:32108986.Google Scholar
Pritchard, J. K. (2001). Are rare variants responsible for susceptibility to complex diseases? The American Journal of Human Genetics, 69, 124137. DOI: https://doi.org/10.1086/321272.CrossRefGoogle ScholarPubMed
Pritchard, J. K., & Cox, N. J. (2002). The allelic architecture of human disease genes: common disease–common variant … or not? Human Molecular Genetics, 11, 24172423. DOI: https://doi.org/10.1093/hmg/11.20.2417.CrossRefGoogle ScholarPubMed
Raskind, W. H., Igo, R. P. Jr., Chapman, N. H. et al. (2005). A genome scan in multigenerational families with dyslexia: Identification of a novel locus on chromosome 2q that contributes to phonological decoding efficiency. Molecular Psychiatry, 10, 699711.CrossRefGoogle ScholarPubMed
Reich, D. E., & Lander, E. S. (2001). On the allelic spectrum of human disease. Trends in Genetics, 17, 502510. DOI: https://doi.org/10.1016/S0168-9525(01)02410-6.CrossRefGoogle ScholarPubMed
Rice, M. L., Smith, S. D., & Gayán, J. (2009). Convergent genetic linkage and association to language, speech and reading measures in families of probands with Specific Language Impairment. Journal of Neurodevelopmental Disorders, 1, 264282.CrossRefGoogle ScholarPubMed
Ring, H., Woodbury-Smith, M., Watson, P., Wheelwright, S., & Baron-Cohen, S. (2008). Clinical heterogeneity among people with high functioning autism spectrum conditions: Evidence favouring a continuous severity gradient. Behavioral & Brain Functions, 4, 11.CrossRefGoogle ScholarPubMed
Riva, V., Mozzi, A., Forni, D. et al. (2019). The influence of DCDC2 risk genetic variants on reading: Testing main and haplotypic effects. Neuropsychologia, 130, 5258. DOI: https://doi.org/10.1016/j.neuropsychologia.2018.05.021.CrossRefGoogle ScholarPubMed
Rodriguez-Murillo, L., & Greenberg, D. A. (2008). Genetic association analysis: A primer on how it works, its strengths and its weaknesses. International Journal of Andrology, 31, 546556. DOI: https://doi.org/10.1111/j.1365-2605.2008.00896.x.CrossRefGoogle ScholarPubMed
Roeske, D., Ludwig, K. U., Neuhoff, N. et al. (2011). First genome-wide association scan on neurophysiological endophenotypes points to trans-regulation effects on SLC2A3 in dyslexic children. Molecular Psychiatry, 16, 97107. www.nature.com/mp/journal/v16/n1/suppinfo/mp2009102s1.html.CrossRefGoogle ScholarPubMed
Romeo, S., Pennacchio, L. A., Fu, Y. et al. (2007). Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nature Genetics, 39, 513516. DOI: https://doi.org/10.1038/ng1984.CrossRefGoogle ScholarPubMed
Romeo, S., Wu, Y., Kozlitina, J. et al. (2009). Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. Journal of Clinical Investigation, 119, 7079. DOI: https://doi.org/10.1172/jc137118.Google ScholarPubMed
Rubenstein, K., Matsushita, M., Berninger, V. W., Raskind, W. H., & Wijsman, E. M. (2011). Genome scan for spelling deficits: Effects of verbal IQ on models of transmission and trait gene localization. Behavior Genetics, 41, 3142.CrossRefGoogle ScholarPubMed
Samuelsson, S., Olson, R. K., Wadsworth, S. et al. (2007). Genetic and environmental influences on prereaidng skills and early reading and spelling development in the United States, Australia, and Scandinavia. Reading & Writing, 20, 5175.CrossRefGoogle Scholar
Sánchez-Morán, M., Hernández, J. A., Duñabeitia, J. A. et al. (2018). Genetic association study of dyslexia and ADHD candidate genes in a Spanish cohort: Implications of comorbid samples. PLoS ONE, 13, e0206431. DOI: https://doi.org/10.1371/journal.pone.0206431.CrossRefGoogle Scholar
Scerri, T. S., Paracchini, S., Morris, A. et al. (2010). Identification of candidate genes for dyslexia susceptibility on chromosome 18. PLoS ONE, 5(10), e13712. DOI: https://doi.org/10.1371/journal.pone.0013712. Erratum in: PLoS ONE (2010) 5 (12). DOI: https://doi.org/10.1371/10.1371/annotation/2294a38b-878d-42f0-9faf-0822db4a0248. Richardson, Alex J [added]. PMID: 21060895; PMCID: PMC2965662.CrossRefGoogle ScholarPubMed
Schork, N. J., Murray, S. S., Frazer, K. A., & Topol, E. J. (2009). Common vs. rare allele hypotheses for complex diseases. Current Opinion in Genetics & Development, 19, 212219. DOI: https://doi.org/10.1016/j.gde.2009.04.010.CrossRefGoogle ScholarPubMed
Schueler, M., Braun, D. A., Chandrasekar, G. et al. (2015). DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt signaling. American Journal of Human Genetics, 96, 8192. DOI: https://doi.org/10.1016/j.ajhg.2014.12.002.CrossRefGoogle Scholar
Schumacher, J., Anthoni, H., Dahdouh, F. et al. (2006). Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. American Journal of Human Genetics, 78, 5262.CrossRefGoogle ScholarPubMed
Schumacher, J., Hoffmann, P., Schmal, C., Schulte-Korne, G., & Nothen, M. M. (2007). Genetics of dyslexia: The evolving landscape. Journal of Medical Genetics, 44, 289297.CrossRefGoogle ScholarPubMed
Simms, M. L., Kemper, T. L., Timbie, C. M., Bauman, M. L., & Blatt, G. J. (2009). The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathologica, 118, 673684.CrossRefGoogle ScholarPubMed
Skiba, T., Landi, N., Wagner, R., & Grigorenko, E. L. (2011). In search of the perfect phenotype: An analysis of linkage and association studies of reading and reading-related processes. Behavior Genetics, 41, 630.CrossRefGoogle ScholarPubMed
Skipper, K. A., Andersen, P. R., Sharma, N., & Mikkelsen, J. G. (2013). DNA transposon-based gene vehicles: Scenes from an evolutionary drive. Journal of Biomedical Science, 20, 92.CrossRefGoogle ScholarPubMed
Smith, S. D., Kimberling, W. J., Pennington, B. F., & Lubs, H. A. (1983). Specific reading disability: identification of an inherited form through linkage analyses. Science, 219, 13451347.CrossRefGoogle Scholar
Soden, B., Christopher, M. E., Hulslander, J. et al. (2015). Longitudinal stability in reading comprehension is largely heritable from grades 1 to 6. PLoS ONE, 10(1), e0113807. DOI: https://doi.org/10.1371/journal.pone.0113807.CrossRefGoogle Scholar
Soysal, Y. N., & Strang, D. (1989). Construction of the first mass education systems in nineteenth-century Europe. Source: Sociology of Education, 62, 277288.Google Scholar
Stein, C. M., & Elston, R. C. (2009). Finding genes underlying human disease. Clinical Genetics, 75, 101106. DOI: https://doi.org/10.1111/j.1399-0004.2008.01083.x.CrossRefGoogle ScholarPubMed
Stephenson, S. (1904). Congenital word blindness. Lancet, 2, 827828.CrossRefGoogle Scholar
Stephenson, S. (1907). Six cases of congenital word-blindness affecting three generations of one family. Ophthalmoscope, 5, 482484.Google Scholar
Sutcliffe, J. S. (2008). Heterogeneity and the design of genetic studies in autism. Autism Research, 1, 205206.CrossRefGoogle ScholarPubMed
Svensson, I. (2011). Reading and writing disabilities among inmates in correctional settings: A Swedish perspective. Learning and Individual Differences, 21, 1929.CrossRefGoogle Scholar
Swagerman, S. C., van Bergen, E., Dolan, C. V. et al. (2017). Genetic transmission of reading ability. Brain and Language, 172, 38. DOI: https://doi.org/10.1016/j.bandl.2015.07.008.CrossRefGoogle ScholarPubMed
Taipale, M., Kaminen, N., Nopola-Hemmi, J. et al. (2003). A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proceedings of the National Academy of Sciences of the United States of America, 100, 1155311558.CrossRefGoogle ScholarPubMed
Tarkar, A., Loges, N. T., Slagle, C. E. et al. (2013). DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nature Genetics, 45, 9951003. DOI: https://doi.org/10.1038/ng.2707.CrossRefGoogle ScholarPubMed
Taylor, J., Roehrig, A. D., Soden Hensler, B., Connor, C. M., & Schatschneider, C. (2010). Teacher quality moderates the genetic effects on early reading. Science, 328, 512514.CrossRefGoogle ScholarPubMed
Tenesa, A., Farrington, S. M., Prendergast, J. G. D. et al. (2008). Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nature Genetics, 40, 631637. DOI: https://doi.org/10.1038/ng.133.CrossRefGoogle ScholarPubMed
The Wellcome Trust Case Control Consortium. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 controls. Nature, 447, 661678.CrossRefGoogle Scholar
Thomas, C. J. (1905). Congenital ‘‘word-blindness’’ and its treatment. Ophthalmoscope, 3, 380385.Google Scholar
Tosto, M. G., Hayiou-Thomas, M. E., Harlaar, N. et al. (2017). The genetic architecture of oral language, reading fluency, and reading comprehension. Developmental Psychology, 53, 11151129. DOI: https://doi.org/10.1037/dev0000297.CrossRefGoogle ScholarPubMed
Tran, C., Wigg, K. G., Zhang, K. et al. (2014). Association of the ROBO1 gene with reading disabilities in a family-based analysis. Genes, Brain, and Behavior, 13, 430438. DOI: https://doi.org/10.1111/gbb.12126.CrossRefGoogle Scholar
Truong, D. T., Adams, A. K., Boada, R. et al. (2017). Multivariate genome-wide association study of rapid automatized naming and rapid alternating stimulus in Hispanic and African American youth. bioRxiv, 202929. DOI: https://doi.org/10.1101/202929.CrossRefGoogle Scholar
van Bergen, E., van Zuijen, T., Bishop, D., & de Jong, P. F. (2017). Why are home literacy environment and children’s reading skills associated? What parental skills reveal. Reading Research Quarterly, 52(2), 147160. DOI: https://doi.org/10.1002/rrq.160.CrossRefGoogle Scholar
van Leeuwen, M., van den Berg, S. M., Peper, J. S., Hulshoff Pol, H. E., & Boomsma, D. I. (2009). Genetic covariance structure of reading, intelligence and memory in children. Behavior Genetics, 39, 245254. DOI: https://doi.org/10.1007/s10519-009-9264-1.CrossRefGoogle ScholarPubMed
Vernes, S. C., Newbury, D. F., Abrahams, B. S. et al. (2008). A functional genetic link between distinct developmental language disorders. New England Journal of Medicine, 359, 23372345. DOI: https://doi.org/10.1056/NEJMoa0802828.CrossRefGoogle ScholarPubMed
Wadsworth, S., Corley, R., Hewitt, J., & DeFries, J. (2001). Stability of genetic and environmental influences on reading performance at 7, 12, and 16 years of age in the Colorado Adoption Project. Behavior Genetics, 31, 353359.CrossRefGoogle Scholar
Wadsworth, S., Olson, R., & DeFries, J. (2010). Differential genetic etiology of reading difficulties as a function of IQ: An update. Behavior Genetics, 40, 751758. DOI: http://dx.doi.org/10.1007/s10519-010-9349-x.CrossRefGoogle ScholarPubMed
Weinschenk, C. (1965). Die erbliche Rechtschreibschwäche und ihre sozialpsychiatrischen Auswirkungen. Bern: Haber.Google Scholar
Weiss, L. A. (2009). Autism genetics: Emerging data from genome-wide copy-number and single nucleotide polymorphism scans. Expert Review of Molecular Diagnostics, 9, 795803.CrossRefGoogle ScholarPubMed
Wijsman, E. M., Peterson, D., Leutenegger, A. L. et al. (2000). Segregation analysis of phenotypic components of learning disabilities: I. Nonword memory and digit span. American Journal of Human Genetics, 67, 631646.CrossRefGoogle ScholarPubMed
Wilcke, A., Ligges, C., Burkhardt, J. et al. (2012). Imaging genetics of FOXP2 in dyslexia. European Journal of Human Genetics, 20, 224229. DOI: https://doi.org/10.1038/ejhg.2011.160.CrossRefGoogle ScholarPubMed
Zeeuw, E. L., Beijsterveldt, C. E. M., Dolan, C. V. et al. (2018). Why do children read more? The influence of reading ability on voluntary reading practices. Journal of Child Psychology & Psychiatry, 59(11), 12051214. DOI: https://doi.org/10.1111/jcpp.12910.Google Scholar
Zerbin-Rüdin, E. (1967). Kongenitale Wortblindheit oder spezifische dyslexie (congenital word-blindness). Bulletin of Orton Society, 17, 4756.CrossRefGoogle Scholar
Zhu, X., Feng, T., Li, Y., Lu, Q., & Elston, R. C. (2010). Detecting rare variants for complex traits using family and unrelated data. Genetic Epidemiology, 34, 171187. DOI: https://doi.org/10.1002/gepi.20449.CrossRefGoogle ScholarPubMed
Ziegler, A., Konig, I. R., Deimel, W. et al. (2005). Developmental dyslexia–recurrence risk estimates from a German bi-center study using the single proband sib pair design. Human Heredity, 59, 136143.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×