Skip to main content Accessibility help
×
  • Cited by 10
Publisher:
Cambridge University Press
Online publication date:
April 2022
Print publication year:
2022
Online ISBN:
9781108981972
Subjects:
Logic, Philosophy

Book description

This Element takes a deep dive into Gödel's 1931 paper giving the first presentation of the Incompleteness Theorems, opening up completely passages in it that might possibly puzzle the student, such as the mysterious footnote 48a. It considers the main ingredients of Gödel's proof: arithmetization, strong representability, and the Fixed Point Theorem in a layered fashion, returning to their various aspects: semantic, syntactic, computational, philosophical and mathematical, as the topic arises. It samples some of the most important proofs of the Incompleteness Theorems, e.g. due to Kuratowski, Smullyan and Robinson, as well as newer proofs, also of other independent statements, due to H. Friedman, Weiermann and Paris-Harrington. It examines the question whether the incompleteness of e.g. Peano Arithmetic gives immediately the undecidability of the Entscheidungsproblem, as Kripke has recently argued. It considers set-theoretical incompleteness, and finally considers some of the philosophical consequences considered in the literature.

References

[1]People, machines and Gödel (special issue, edited by Kossak, R. ). Semiotic Studies, 34(1), 2020.
[2]Norbert, A’Campo, Lizhen, Ji, and Athanase, Papadopoulos. On Grothendieck’s tame topology. In Papadopoulos, A. (ed.), Handbook of Teichmüller theory. Vol. VI, volume 27 of IRMA Lect. Math. Theor. Phys., pp. 521533. Eur. Math. Soc., Zürich, 2016.
[3]Wilhelm, Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Math. Ann., 99(1):118133, 1928.
[4]Beklemishev, Lev D.. Gödel’s incompleteness theorems and the limits of their applicability. I. Uspekhi Mat. Nauk, 65(5(395)):61106, 2010.
[5]Bergamini, David. Mathematics. Time, New York, 1963.
[6]Garrett, Birkhoff. On the structure of abstract algebras. Math. Proc. Camb. Philos. Soc., 31(7):434454, 1935.
[7]Burgess, John P.. On the outside looking in: a caution about conservativeness. In Feferman, S., Parsons, C., and Simpson, S. G. (eds.), Kurt Gödel: essays for his centennial, vol. 33 of Lect. Notes Log., pp. 128141. Association of Symbolic Logic, La Jolla, CA, 2010.
[8]Georg, Cantor. Über eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen. J. Reine Angew. Math., 77:258263, 1873.
[9]Rudolf, Carnap. Der logische Aufbau der Welt, vol. 514 of Philosophische Bibliothek [Philosophical Library]. Felix Meiner Verlag, Hamburg, 1998. Reprint of the 1928 original and of the author’s preface to the 1961 edition.
[10]Alonzo, Church. A note on the Entscheidungsproblem. J. Symb. Log., 1:4041 (Correction 1:101–102), 1936.
[11]Martin, Davis. On the theory of recursive unsolvability. Ph.D. thesis, Princeton University, 1950.
[12]Martin, Davis, ed. The undecidable. Dover Publications Inc., Mineola, NY, 2004. Basic papers on undecidable propositions, unsolvable problems and computable functions. Corrected reprint of the 1965 original.
[13]Martin, Davis. What did Gödel believe and when did he believe it? Bull. Symb. Log., 11(2):194206, 2005.
[14]Davis, Martin. The incompleteness theorem. Notices Amer. Math. Soc., 53(4):414418, 2006.
[15]Martin, Davis and Hilary, Putnam. A computing procedure for quantification theory. J. Assoc. Comput. Mach., 7:201215, 1960.
[16]Martin, Davis, Hilary, Putnam, and Julia, Robinson. The decision problem for exponential diophantine equations. Ann. of Math. (2), 74:425436, 1961.
[17]Richard, Dedekind. What are numbers and what should they be? RIM Monographs in Mathematics. Research Institute for Mathematics, Orono, ME, 1995. Revised, edited, and translated from the German by Pogorzelski, H., Ryan, W., and Snyder, W..
[18]Michael, Detlefsen. Hilbert’s Program: an essay on mathematical instrumentalism. Springer, Boston, MA, 1986.
[19]Ali, Enayat and Albert, Visser. New constructions of satisfaction classes. In Fujimoto, K., Fernández, J. M., Galinon, H, and Achourioti, T. (eds.), Unifying the philosophy of truth, vol. 36 of Log. Epistemol. Unity Sci., pp. 321335. Springer, Dordrecht, 2015.
[20]Solomon, Feferman. Arithmetization of metamathematics in a general setting. Fund. Math., 49:3592, 1960/1961.
[21]Solomon, Feferman. Transfinite recursive progressions of axiomatic theories. J. Symbol. Log., 27:259316, 1962.
[22]Solomon, Feferman. Kurt Gödel: conviction and caution. Philos. Natur., 21(2–4):546563, 1984.
[23]Solomon, Feferman. Penrose’s Gödelian argument: a review of Shadows of the Mind, by Roger Penrose. Psyche, 2(7):2132, 1995.
[24]Solomon, Feferman. In the light of logic. Logic and Computation in Philosophy. Oxford University Press, New York, 1998.
[25]Solomon, Feferman. Tarski’s conceptual analysis of semantical notions. In Douglas, Patterson, ed., New essays on Tarski and philosophy, pp. 7293. Oxford University Press, Oxford, 2008.
[26]Solomon, Feferman, Harvey, M. Friedman, Penelope, Maddy, and John, R. Steel. Does mathematics need new axioms? Bull. Symb. Log., 6(4):401446, 2000.
[27]Juliet, Floyd and Aki, Kanamori. Gödel vis-à-vis Russell: logic and set theory to philosophy. In Crocco, G. and Engelen, E.-M. (eds.), Gödelian studies on the Max-Phil Notebooks, vol 1. Forthcoming.
[28]Juliet, Floyd and Hilary, Putnam. A note on Wittgenstein’s “notorious paragraph” about the Gödel theorem. J. Philos., 97(11):624632, 2000.
[29]Roland, Fraïssé. Sur quelques classifications des relations, basées sur des isomorphismes restreints. II. Application aux relations d’ordre, et construction d’exemples montrant que ces classifications sont distinctes. Publ. Sci. Univ. Alger. Sér. A., 2:273295, 1954.
[30]Curtis, Franks. The autonomy of mathematical knowledge: Hilbert’s program revisited. Cambridge University Press, Cambridge, 2009.
[31]Torkel, Franzén. Inexhaustibility: a non-exhaustive treatment., vol. 16 of Lect. Notes Log., Association for Symbolic Logic, Urbana, IL; A K Peters, Ltd., Wellesley, MA, 2004.
[32]Harvey, M. Friedman. Higher set theory and mathematical practice. Ann. Math. Logic, 2(3):325357, 1970/1971.
[33]Harvey, M. Friedman. On the necessary use of abstract set theory. Advances in Mathematics, 41:209280, 1981.
[34]Harvey, M. Friedman. Finite functions and the necessary use of large cardinals. Ann. of Math. (2), 148(3):803893, 1998.
[35]Harvey, M. Friedman. Internal finite tree embeddings. In Sieg, W., Sommer, R., and Talcott, C. (eds.), Reflections on the foundations of mathematics, vol. 15 of Lect. Notes Log., pp. 6091. Association for Symbolic Logic, Urbana, IL; A K Peters, Ltd., Wellesley, MA,
[36]Harvey, M. Friedman. Primitive independence results. J. Math. Log., 3(1):6783, 2003.
[37]Haim, Gaifman. Naming and diagonalization, from Cantor to Gödel to Kleene. Log. J. IGPL, 14(5):709728, 2006.
[38]Robin, Gandy. The confluence of ideas in 1936. In Herken, R. (ed.), The universal Turing machine: a half-century survey, pp. 55111. Oxford University Press, New York, 1988.
[39]Gerhard, Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Math. Ann., 112:493565, 1936.
[40]Kurt, Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatsh. Math. Phys., 38(1):173198, 1931.
[41]Kurt, Gödel. The consistency of the axiom of choice and of the generalized continuum hypothesis. Proc. Natl. Acad. Sci. USA, 24:556557, 1938.
[42]Kurt, Gödel. Collected works. Vol. I: Publications 1929–1936. The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by Feferman, S..
[43]Kurt, Gödel. Collected works. Vol. II: Publications 1938–1974. The Clarendon Press, Oxford University Press, New York, 1990. Edited and with a preface by Feferman, S..
[44]Kurt, Gödel. Remarks before the Princeton bicentennial conference of problems in mathematics, 1946. In Collected works. Vol. II: Publications 1938–1974. The Clarendon Press, Oxford University Press, New York, 1990. Edited and with a preface by Feferman, S..
[45]Kurt, Gödel. Collected works. Vol. III: Unpublished essays and lectures. The Clarendon Press, Oxford University Press, New York, 1995. With a preface by Feferman, S.. Edited by Feferman, S., Dawson, J. W. Jr., Goldfarb, W., Parsons, C., and Solovay, R. M..
[46]Kurt, Gödel. Collected works. Vol. IV: Correspondence A–G. The Clarendon Press, Oxford University Press, Oxford, 2003. Edited by Feferman, S., Dawson, J. W. Jr., Goldfarb, W., Parsons, C., and Sieg, W..
[47]Kurt, Gödel. Collected works. Vol. V: Correspondence H–Z. The Clarendon Press, Oxford University Press, Oxford, 2003. Edited by Feferman, S., Dawson, J. W. Jr., Goldfarb, W., Parsons, C., and Sieg, W..
[48]Warren, D. Goldfarb. The Gödel class with identity is unsolvable. Bull. Amer. Math. Soc. (N.S.), 10(1):113115, 1984.
[49]Balthasar, Grabmayr. On the invariance of Gödel’s second theorem with regard to numberings. Rev. Symb. Log., 14(1):5184, 2021.
[50]Balthasar, Grabmayr and Albert, Visser. Self-reference upfront: a study of self-referential gödel numberings. Rev. Symb. Log., pp. 141, 2021. doi:10.1017/S1755020321000393.
[51]Ronald, L. Graham, Bruce, L. Rothschild, and Joel, H. Spencer. Ramsey theory. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, Inc., New York, 1980.
[52]Ivor, Grattan-Guinness. In memoriam Kurt Gödel: his 1931 correspondence with Zermelo on his incompletability theorem. Historia Math., 6(3):294304, 1979.
[53]Robert, Gray. Georg Cantor and transcendental numbers. Amer. Math. Monthly, 101(9):819832, 1994.
[54]Fritz, Grunewald and Dan, Segal. On the integer solutions of quadratic equations. J. Reine Angew. Math., 569:1345, 2004.
[55]Petr, Hájek and Pavel, Pudlák. Metamathematics of first-order arithmetic. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1998. Second printing.
[56]Volker, Halbach and Leon, Horsten. Computational structuralism. Philos. Math. (3), 13(2):174186, 2005.
[57]Volker, Halbach and Albert, Visser. Self-reference in arithmetic I. Rev. Symb. Log., 7(4):671691, 2014.
[58]Volker, Halbach and Albert, Visser. Self-reference in arithmetic II. Rev. Symb. Log., 7(4):692712, 2014.
[59]Jacques, Herbrand. Logical writings: a translation of the ıt Écrits logiques, Harvard University Press, Cambridge, MA, 1971. Edited by van Heijenoort, J. and including contributions by Chevalley, C. and Lautman, A..
[60]Hilbert, David and Ackermann, Wilhelm. Grundzüge der theoretischen Logik. Die Grundlehren der mathematischen Wissenschaften Bd. 27). VIII, 120 S.J. Springer, Berlin. 1928.
[61]David, Hilbert and Paul, Bernays. Grundlagen der Mathematik. I, 2nd edn. Die Grundlehren der mathematischen Wissenschaften, vol. 40. Springer-Verlag, Berlin, New York, 1968.
[62]David, Hilbert and Paul, Bernays. Grundlagen der Mathematik. II, 2nd edn. Zweite Auflage. Die Grundlehren der mathematischen Wissenschaften, vol. 50. Springer-Verlag, Berlin, New York, 1970.
[63]David, Hilbert. On the infinite. In van Heijenoort, J. (ed.), From Frege to Gödel: A Source Book in Mathematical Logic, pp. 367392. Harvard University Press, Cambridge, MA, 1965.
[64]David, Hilbert. David Hilbert’s lectures on the foundations of geometry, 1891–1902, vol. 1 of David Hilbert’s Lectures on the Foundations of Mathematics and Physics 1891–1933. Springer-Verlag, Berlin, 2004. Edited by Michael, Hallett and Ulrich, Majer.
[65]James, P. Jones. Three universal representations of recursively enumerable sets. J. Symb. Log., 43(2):335351, 1978.
[66]Richard, Kaye. Models of Peano arithmetic, vol. 15 of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications.
[67]Keisler, H. Jerome. Ultraproducts and saturated models. Nederl. Akad. Wetensch. Proc. Ser. A 67 = Indag. Math., 26:178186, 1964.
[68]Juliette, Kennedy. Turing, Gödel and the “Bright Abyss." In Floyd, J. and Bokulich, A. (eds), Philosophical Explorations of the Legacy of Alan Turing, vol. 324 of Boston Studies in Philosophy. Springer, Cham, 2017.
[69]Juliette, Kennedy. Gödel’s Thesis: an appreciation. In Baaz, Mathias, Papadimitriou, Christos H., Putnam, Hilary W., Scott, Dana S., and Harper, Charles L. Jr., eds., Kurt Gödel and the Foundations of Mathematics: Horizons of Truth. Cambridge University Press, Cambridge, 2011.
[70]Juliette, Kennedy. Gödel’s 1946 Princeton Bicentennial Lecture: an appreciation. In Kennedy, Juliette, ed., Interpreting Gödel. Cambridge University Press, Cambridge, 2014.
[71]Juliette, Kennedy. Kurt Gödel. In Zalta, Edward N., ed., The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Stanford, CA, winter edn. 2018.
[72]Juliette, Kennedy. Gödel, Tarski and the lure of natural language: logical entanglement, formalism freeness. Cambridge University Press, Cambridge, 2020.
[73]Jussi, Ketonen and Robert, Solovay. Rapidly growing Ramsey functions. Ann. of Math. (2), 113(2):267314, 1981.
[74]Stephen, C. Kleene. General recursive functions of natural numbers. Math. Ann., 112(1):727742, 1936.
[75]Stephen, C. Kleene. On notation for ordinal numbers. J. Symb. Log., 3:150155, 1938.
[76]Stephen, C. Kleene. A symmetric form of Gödel’s theorem. Nederl. Akad. Wetensch., Proc., 53:800–802 = Indagationes Math. 12:, 244246 (1950), 1950.
[77]Peter, Koellner. Carnap on the foundations of logic and mathematics, 2009.
[78]Peter, Koellner. On the question of absolute undecidability. In Kurt Gödel: essays for his centennial, vol. 33 of Lect. Notes Log., pp. 189225. Association of Symbolic Logic, La Jolla, CA, 2010.
[79]Henryk, Kotlarski. The incompleteness theorems after 70 years. Ann. Pure Appl. Logic, 126(1–3):125138, 2004.
[80]Georg, Kreisel. Kurt Gödel, 1906-1978. Biographical Memoirs of Fellows of the Royal Society, 26:148224, 1980. Corrigenda, 27:697, 1981; further corrigenda, 28:697, 1982.
[81]Saul, Kripke. The collapse of the Hilbert Program: why a system cannot prove its own 1-consistency. Bull. Symbolic Logic, 15(2):229231, 2009.
[82]Saul, Kripke. The Church-Turing “thesis” as a special corollary of Gödel’s completeness theorem. In Copeland, B.J., Posy, C., and Shagrir, O. (eds.), Computability—Turing, Gödel, Church, and beyond, pp. 77104. MIT Press, Cambridge, MA, 2013.
[83]Saul, Kripke. Mathematical incompleteness results in first-order peano arithmetic: a revisionist view of the early history. Hist. Philos. Logic, doi:10.1080/01445340.2021.1976052. 2021.
[84]Shira, Kritchman and Ran, Raz. The surprise examination paradox and the second incompleteness theorem. Notices Amer. Math. Soc., 57(11):14541458, 2010.
[85]Taishi, Kurahashi. A note on derivability conditions. J. Symb. Log., 85(3):12241253, 2020.
[86]Casimir, Kuratowski. Sur l’état actuel de l’axiomatique de la théorie des ensembles. Ann. Soc. Polon. Math., 3:146147, 1925.
[87]Richard, Laver. On the consistency of Borel’s conjecture. Acta Math., 137(3-4):151169, 1976.
[88]Azriel, Lévy. Axiom schemata of strong infinity in axiomatic set theory. Pacific J. Math., 10:223238, 1960.
[89]Martin, Hugo Löb. Solution of a problem of Leon Henkin. J. Symb. Log., 20:115118, 1955.
[90]John, R. Lucas. Metamathematics and the philosophy of mind: a rejoinder. Philos. Sci., 38:310313, 1971.
[91]Nikolai, Luzin. Sur les ensembles projectifs de m. henri lebesgue. 180(2):15721574, 1925.
[92]Angus, Macintyre. The impact of Gödel’s incompleteness theorems on mathematics. In Baaz, M., Papadimitriou, C. H., Putnam, H. W., Scott, D. S., and Harper, C. L. Jr. (eds.), Kurt Gödel and the foundations of mathematics, pp. 325. Cambridge University Press, Cambridge, 2011.
[93]Penelope, Maddy. Defending the axioms: on the philosophical foundations of set theory. Oxford University Press, Oxford, 2011.
[94]Anatoly, I. Mal’tsev. Untersuchungen aus dem Gebiete der mathematischen Logik. Rec. Math. Moscou, n. Ser., 1:323336, 1936.
[95]Donald, A. Martin. Measurable cardinals and analytic games. Fund. Math., 66:287291, 1969/1970.
[96]Donald, A. Martin. Borel determinacy. Ann. of Math. (2), 102(2):363371, 1975.
[97]Donald, A. Martin and John, R. Steel. Projective determinacy. Proc. Nat. Acad. Sci. U.S.A., 85(18):65826586, 1988.
[98]Juri, V. Matijasevič. The Diophantineness of enumerable sets. Dokl. Akad. Nauk SSSR, 191:279282, 1970.
[99]Kenneth, McAloon. Consistency results about ordinal definability. Ann. Math. Logic, 2(4):449467, 1970/1971.
[100]Yiannis, N. Moschovakis. Descriptive set theory, 2nd edn., vol. 155 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2009.
[101]Yiannis, N. Moschovakis. Kleene’s amazing second recursion theorem. Bull. Symbolic Logic, 16(2):189239, 2010.
[102]Andrzej, Mostowski. On recursive models of formalised arithmetic. Bull. Acad. Polon. Sci. Cl. III, 5:705710, LXII, 1957.
[103]Andrzej, Mostowski. Thirty years of foundational studies: lectures on the development of mathematical logic and the study of the foundations of mathematics in 1930–1964. Acta Philosophica Fennica, Fasc. XVII. Barnes & Noble, Inc., New York, 1966.
[104]Andrzej, Mostowski. Sentences undecidable in formalized arithmetic. Greenwood Press, Westport, CT, 1982. An exposition of the theory of Kurt Gödel. Reprint of the 1952 original.
[105]John, Myhill and Dana, Scott. Ordinal definability. In Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I), University of California, Los Angeles, CA, 1967), pp. 271278. American Mathematical Society, Providence, RI, 1971.
[106]Jeff, Paris and Leo, Harrington. A mathematical incompleteness in Peano arithmetic. In Handbook of mathematical logic, vol. 90 of Stud. Logic Found. Math., Barwise, Jon & Jerome Keisler, H. (eds.) pp. 11331142. North-Holland, Amsterdam, 1977.
[107]Charles, Parsons. Platonism and mathematical intuition in Kurt Gödel’s thought. Bull. Symb. Log., 1(1):4474, 1995.
[108]Orlando, Patterson. Slavery and Social Death: A Comparative Study. Harvard University Press, Cambridge, MA, 2018.
[109]Roger, Penrose. Shadows of the mind: a search for the missing science of consciousness. Oxford University Press, Oxford, 1994.
[110]Panu, Raatikainen. Hilbert’s Program revisited. Synthese, 137 (special issue): 157177, 2000.
[111]Abraham, Robinson. On languages which are based on non-standard arithmetic. Nagoya Math. J., 22:83117, 1963.
[112]Julia, Robinson. Existential definability in arithmetic. Trans. Amer. Math. Soc., 72:437449, 1952.
[113]Barkley, Rosser. Extensions of some theorems of Gödel and Church. J. Symb. Log., 1(3):8791, 1936.
[114]Saeed, Salehi. On the diagonal lemma of Gödel and Carnap. Bull. Symb. Log., 26(1):8088, 2020.
[115]Saharon, Shelah. Every two elementarily equivalent models have isomorphic ultrapowers. Israel J. Math., 10:224233, 1971.
[116]Saharon, Shelah. Infinite abelian groups, Whitehead problem and some constructions. Israel J. Math., 18:243256, 1974.
[117]Wilfried, Sieg. Gödel on computability. Philos. Math., 14:189207, 2006.
[118]Waclaw, Sierpinski. Sur un ensemble non denombrable, dont toute image continue est de mesure nulle. Fund. Math., 11:302304, 1928.
[119]Stephen, G. Simpson. Nonprovability of certain combinatorial properties of finite trees. In Harrington, L., Morley, M., Sĉêdrov, A., and Simpson, S. (eds.), Harvey Friedman’s research on the foundations of mathematics, vol. 117 of Studies in Logic and the Foundations of Mathematics, pp. 87117. North-Holland, Amsterdam, 1985.
[120]Craig, Smoryński. Lectures on nonstandard models of arithmetic. In Lolli, G., Longo, G., and Marcja, A. (eds.), Logic colloquium ’82 (Florence, 1982), volume 112 of Studies in Logic and Foundations of Mathematics, pp. 170. North-Holland, Amsterdam, 1984.
[121]Raymond, M. Smullyan. Theory of formal systems. Annals of Mathematics Studies, No. 47. Princeton University Press, Princeton, NJ, 1961.
[122]William, W. Tait. Gödel on intuition and on Hilbert’s finitism. In Feferman, S., Parsons, C., and Simpson, S. G. (eds.), Kurt Gödel: essays for his centennial, vol. 33 of Lecture Notes in Logic, pp. 88108. Association of Symbolic Logic La Jolla, CA, 2010.
[123]Alfred, Tarski. Sur les ensembles définissables de nombres réels. Fund. Math., (7):210239, 1931.
[124]Alfred, Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica, 1:261405, 1936.
[125]Alfred, Tarski. Undecidable theories. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1968. In collaboration with Andrzej Mostowski and Raphael M. Robinson, second printing.
[126]Richard, Tieszen. Gödel and the intuition of concepts. Synthese, 133(3):363391, 2002.
[127]Alan, M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc., S2-42(1):230.
[128]Alan, M. Turing. Systems of logic based on ordinals. Proc. London Math. Soc. (2), 45(3):161228, 1939.
[129]Mark van, Atten. Essays on Gödel’s reception of Leibniz, Husserl, and Brouwer, vol. 35 of Logic, Epistemology, and the Unity of Science. Springer, Cham, 2015.
[130]Mark van, Atten and Juliette, Kennedy. On the philosophical development of Kurt Gödel. Bull. Symb. Log., 9(4):425476, 2003.
[131]Mark van, Atten and Juliette, Kennedy. “Gödel’s modernism: on set-theoretic incompleteness,” revisited. In Lindström, S., Palmgren, E., Segerberg, K., and Stoltenberg-Hansen, V. (eds.), Logicism, intuitionism, and formalism, vol. 341 of Synthese Library, pp. 303355. Springer, Dordrecht, 2009.
[132]Robert, L. Vaught. Alfred Tarski’s work in model theory. J. Symb. Log., 51(4):869882, 1986.
[133]Robert, L. Vaught. Errata: “Alfred Tarski’s work in model theory.J. Symb. Log. 52(4):vii, 1987.
[134]Giorgio, Venturi and Matteo, Viale. New axioms in set theory. Mat. Cult. Soc. Riv. Unione Mat. Ital. (I), 3(3):211236, 2018.
[135]Albert, Visser. From Tarski to Gödel – or how to derive the second incompleteness theorem from the undefinability of truth without self-reference. J. Logic Comput., 29(5):595604, 2019.
[136]Hao, Wang. A logical journey: representation and mind. MIT Press, Cambridge, MA, 1996.
[137]Andreas, Weiermann. Phase transitions for Gödel incompleteness. Ann. Pure Appl. Logic, 157(2-3):281296, 2009.
[138]Jan, Woleński. Gödel, Tarski and the undefinability of truth. Jbuch. Kurt-Gödel-Ges., pp. 97108 (1993), 1991.
[139]Hugh, Woodin. In search of Ultimate-L: the 19th Midrasha Mathematicae Lectures. Bull. Symb. Log., 23(1):1109, 2017.
[140]Woodin, W. Hugh. Supercompact cardinals, sets of reals, and weakly homogeneous trees. Proc. Nat. Acad. Sci. U.S.A., 85(18):65876591, 1988.
[141]Richard, Zach. Hilbert’s Program. In Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Stanford, CA, 2003.
[142]Ernst, Zermelo. Über Grenzzahlen und Mengenbereiche. Neue Untersuchungen über die Grundlagen der Mengenlehre. Fundam. Math., 16:2947, 1930.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.