Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-10-02T04:15:27.851Z Has data issue: false hasContentIssue false

27 - Surviving Core Collapse

Published online by Cambridge University Press:  05 June 2012

Douglas Heggie
Affiliation:
University of Edinburgh
Piet Hut
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Get access

Summary

The last eight chapters, dealing as they have done with interactions between only three or four stars, might seem a long digression away from the subject implied by the title of this book. Yet we shall see, as we take up the thread of the million-body problem where we broke off at the end of Chapter 18, that an understanding of the behaviour of few-body systems is crucial in following the evolution of the system through core collapse and beyond.

We left the system rushing towards core collapse, its central density rising inexorably, so that it would reach infinite values in finite time. How is this catastrophe averted? In fact there is no shortage of choices, for at least five different mechanisms have been proposed over the years. Admittedly, two are rather out of favour at present: a central black hole (e.g. Marchant & Shapiro 1980), or runaway coalescence and evolution of massive stars (Lee 1987a, and Problem 1). The other three involve binary stars in one guise or another, and it is not hard to see why this is attractive. After all, the mechanism responsible for core collapse is a two-body one (Chapter 14). Therefore it is clear that higher-order interactions, which we have neglected so far, might in principle eventually compete with two-body relaxation when the density becomes high enough. And three-body interactions can create binaries (Chapter 21 and Fig. 27.1).

Type
Chapter
Information
The Gravitational Million–Body Problem
A Multidisciplinary Approach to Star Cluster Dynamics
, pp. 254 - 262
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Surviving Core Collapse
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.036
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Surviving Core Collapse
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.036
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Surviving Core Collapse
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.036
Available formats
×