Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T04:55:59.866Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 October 2011

Lev V. Prokhorov
Affiliation:
St Petersburg State University
Sergei V. Shabanov
Affiliation:
University of Florida
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] H., Goldstein, Classical Mechanics (Addison-Wesley Pub. Co., Inc., Reading, MA, 1959).Google Scholar
[2] L. D., Landau, E. M., Lifshitz, The Course of Theoretical Physics, Vol. 1, Mechanics, (Pergamon Press, Oxford, 1969).Google Scholar
[3] V. I., Arnold, Mathematical Methods of Classical Mechanics, (Springer-Verlag, Berlin, 1989).Google Scholar
[4] B. M., Barbashov, V. V., Nesterenko, Introduction to the Relativistic String Theory (World Scientific Publishing Co, Singapore, 1990).Google Scholar
[5] M. V., Ostrogradsky, Les equations differentielles, Mem. Ac. St. Petersburg., 4, 385, (1850).Google Scholar
[6] V. I., Arnol'd, V. V., Kozlov, A. I., Neishtadt, Mathematical aspects of classical and selestian mechanics, In Encyclopedia of Mathematical Science, Vol. 3, Dynamical systems (Springer-Verlag, Berlin, 1988)Google Scholar
[7] J. A., Schouten, Ricci-Calculus. An Introduction to Tensor Analysis and its Geometrical Applications, (Springer-Verlag, Berlin, 1954).Google Scholar
[8] H., Poincaré, Les Méthodes Nouvelle de la Méchanique Céleste, Vol. 1–3 (Gauthier-Villars, Paris, 1892); Engl. Transl. (Dover Publications, NY, 1957).Google Scholar
[9] L. A., Pars, A Treatise on Analytical Dynamics (Heinemann, London, 1965).Google Scholar
[10] H., Poincaré, Compt. rend. 123, 530, (1896).
[11] E., Witten, Nucl. Phys. B 223, 422, (1983).
[12] H., von Helmholtz, Journ. f. d. reine u. angew. Math. 100, 137, (1887).
[13] J., Douglas, Trans. Am. Math. Soc. 50, 71128, (1941).
[14] E., Noether, “Invariante Variationsprobleme”. Nachr. d. Knig. Gesellsch. d. Wiss. zu Gttingen, Math-phys., 235257 (1918); Engl. Translation in: arXiv:physics/0503066v1 [physics.hist-ph].
[15] C., Lanczos, The Variational Principles of Mechanics (Dover Publications, New York, 1970).Google Scholar
[16] S. I., Anisimov, B. S., Lukyanchuk, Phys. Uspekhi 172, 301, (2002).
[17] I. B., Gornushkin, S. V., Shabanov, N., Omenetto, J. D., Winefordner, J. Appl. Physics 100, 073304, (2006).
[18] N. P., Baxter, S. V., Shabanov, J. Math. Phys. 49, 093101, (2008).
[19] J., Harnad, P., Winternitz, G., Sabidussi, eds. Integrable Systems: From Classical to Quantum. (American Mathematical Society, 2000).
[20] D. P., Zhelobenko, Lectures in the Lie Group Theory, (JINR, Dubna, 1965) (in Russian), p. 344.Google Scholar
[21] D. P., Zhelobenko, Compact Lie Groups and their Representations, Translations of Mathematical Monographs, Vol. 40 (AMS, Providence, 1973).Google Scholar
[22] L. V., Prokhorov, E. A., Sazonov, Vestnik Leningr. Univ., Series 4, Issue 2, 12, (1980).
[23] L. V., Prokhorov, E. A., Sazonov, Vestnik Leningr. Univ., Series 4, Issue 1, 21, (1981).
[24] R., Finkelstein, M., Villasante, Phys. Rev. D 33, 1666, (1986).
[25] J., Govaerts, Int. J. Mod. Phys. A 5, 3625, (1990).
[26] L. V., Prokhorov, S. V., Shabanov, Sov. Phys. Uspekhi, 34(2), 108, (1991).
[27] F. A., Berezin, In: Introduction to Superanalysis, ed. A. A., Kirillov, (D. Reidel Publ. Co., Dordrecht, Holland, 1987).Google Scholar
[28] B., DeWitt, Supermanifolds (Cambridge Univ. Press, Cambridge, 1984).Google Scholar
[29] I. A., Batalin, E. S., Fradkin, Nucl. Phys. B 326, 701, (1989).
[30] F. A., Berezin, Izv. Akad. Nauk SSSR Math. (USSR – Izvestija Ser. Mat.) 38, 1112, (1974).
[31] S. V., Shabanov, J. Phys. A: Math. Gen. 24, 1199, (1991).
[32] L. E., Gendenshtein, I. V., Krive, Soviet Phys. Uspekhi 28, 645, (1985).
[33] F., Cooper, A., Khare, U., Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific Publishing Co, Singapore, 2001).Google Scholar
[34] S. V., Shabanov, The proceedings of the XXVI international symposium on elementary particle physics (Wendisch-Reiz, Germany, 1992), DESY preprint, DESY 93-013, 1993, p.276.Google Scholar
[35] S. V., Shabanov, Mod. Phys. Lett. A 10, 941, (1995).
[36] I. Ya., Aref'eva, I. V., Volovich, Quantum Group Particles and Non-Archimedian Geometry, CERN preprint, CERN-TH.6137/91, 1991.
[37] L. V., Prokhorov, Phys. Part. Nucl. 39, 810, (2008).
[38] H., Weyl, The Theory of Groups and Quantum Mechanics (Dover Publications, New York, 1950).Google Scholar
[39] J., Schwinger, Proc. Natl. Acad. of Sci. 46, 385, (1960).
[40] H., Rampacher, H., Stumpf, F., Wagner, Fotrschr. Phys. 13, 385, (1965).
[41] M., Yamamura, Prog. Theor. Phys. 62, 681, (1979).
[42] I., Saavedra, C., Utreras, Phys. Lett. B 98, 74, (1981).
[43] V. G., Drinfeld, Dokl. Akad. Nauk SSSR 238, 1960, (1985).
[44] M., Jimbo, Lett. Math. Phys. 10, 63, (1985).
[45] L. D., Faddeev, N. Yu., Reshitikhin, L. A., Takhtajan, Advanced Series in Mathematical Physics, Vol. 9 (Eds. C. N., Yang, M. L., Ge; (World Scientific Publishing Co, Singapore, 1989).Google Scholar
[46] A. J., Macfarlane, J. Phys. A: Math. Gen., 22, 4581, (1989).
[47] G., Brodimas, A., Janussis, R., Mignani, J. Phys. A: Math. Gen., 25, L329 (1992).
[48] S. V., Shabanov, Phys. Lett. B 293, 117, (1992).
[49] S. V., Shabanov, J. Phys. A: Math. Gen., 25, L1245 (1992).
[50] S. V., Shabanov, J. Phys. A: Math. Gen., 26, 2563, (1992).
[51] Y., Nambu, Phys. Rev. D 7, 2405, (1973).
[52] T., Curtright, C., Zachos, Phys. Rev. D 68, 085001, (2003).
[53] V. I., Arnold, Ordinary Differential Equations (The MIT Press, Cambridge, 1973).Google Scholar
[54] L. A., Takhtajan, Commun. Math. Phys. 160, 295, (1994).
[55] S., Shnider, S., Sternberg, Quantum Groups. From Coalgebras to Drinfel'd Algebras. A Guided Tour, Graduate Texts in Mathematical Physics, II (International Press, Cambridge, MA, 1993).Google Scholar
[56] L. V., Prokhorov, A. S., Ushakov, Vestnik SpBGU, Ser. 4, Issue 1, 29, (2010).
[57] L. V., Prokhorov, A. S., Ushakov, Doklady Mathematics, 78, 925, (2008).
[58] S. L., Adler, A., Bassi, Science 325, 275, (2009).
[59] L. V., Prokhorov, Phys. Part. Nucl. 38, 364, (2007).
[60] N., Wiener, J. Math. Phys. Sci. 2, 131, (1923).
[61] N., Wiener, Nonlinear Problems in Random Theory (Cambridge, Massachusetts, The MIT Press, 1958).Google Scholar
[62] R. P., Feynman, Rev. Mod. Phys. 20, 367, (1948).
[63] R. P., Feynman, A. R., Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).Google Scholar
[64] P. A. M., Dirac, Sov. Phys. 3, 64, (1933).
[65] P. A. M., Dirac, The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1958).Google Scholar
[66] W., Pauli, Pauli Lectures on Physics, Vol. 6, (Cambridge, Massachusetts, The MIT Press, 1973).Google Scholar
[67] W., Janke, H., Kleinert, Let. Nouvo Cim. 25, 297, (1979).
[68] H., Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics (WSPC, Singapore, 1990).Google Scholar
[69] B., DeWitt, Rev. Mod. Phys. 29, 377, (1957).
[70] A. G., Nuramatov, L. V., Prokhorov, Vestnik Lening. Univ., Ser. 4: Phys. Chem., Issue 1, 66, (1981).Google Scholar
[71] R. P., Feynman, Phys. Rev. 84, 108, (1951).
[72] W., Tobocman, Nouvo Cim. 3, 1213, (1956).
[73] H., Davies, Proc. Cambridge Phil. Soc. 59, 147, (1963).
[74] C., Garrod, Rev. Mod. Phys. 38, 483, (1966).
[75] V. A., Fock, Foundations of Quantum Mechanics, (Nauka, Moscow, 1976) (in Russian).Google Scholar
[76] I. M., Gelfand, A. M., Yaglom, Uspekhi Mat. Nauk (Russian Math. Survey), 11, 77, (1956).
[77] I. M., Gelfand, R. A., Minlos, A. M., Yaglom, Path Integrals. In: Proceedings of the 3rd National Mathematical Meeting, Vol. 3, p. 521 (USSR Academy of Science, Nauka, Moscow, 1958).Google Scholar
[78] Yu. L., Daletsky, Uspekhi Mat. Nauk (Russian Math. Survey) 17, 3, (1962).
[79] I. M., Kovalchik, Uspekhi Mat. Nauk (Russian Math. Survey) 18, 97, (1963).
[80] I. M., Kovalchik, L. A., Yanovich, Generalized Wiener Integral and its Applications, (Nauka i Tekhnika, Minsk, 1989) (in Russian).Google Scholar
[81] L., Streit, Acta Phys. Austrica. Suppl. II, 2, (1965).
[82] F. A., Berezin, The Method of Second Quantization (Academic Press, New York, 1966).Google Scholar
[83] F. A., Berezin, Sov. Phys. Uspekhi 132, 497, (1980).
[84] S. A., Alberverio, R. J., Høegh-Krohn, Mathematical Theory of Feynman Path Integrals, (Springer-Verlag, Berlin, 1976).Google Scholar
[85] C., DeWitt-Morette, A., Macheshwari, B., Nelson, Phys. Rept. 50, 255, (1979).
[86] C., DeWitt-Morette, Commun. Math. Phys. 28, 47, (1972).
[87] B., Simon, Functional Integration and Quantum Physics (Academic Press, New York, 1979).Google Scholar
[88] R. H., Cameron, J. Math. and Phys. 39, 126, (1960).
[89] E., Nelson, J. Math. Phys. 5, 332, (1964).
[90] M. A., Efgrafov, Doklady Akad. Nauk USSR 191, 979, (1970).
[91] O. G., Smolyanov, E. T., Shavgulidze, Path Integrals (Moscow State Univ., Moscow, 1990).Google Scholar
[92] G., Röpsdorff, Path Integral Approach to Quantum Physics. An Introduction (Springer-Verlag, Berlin, 1994).Google Scholar
[93] L. S., Schulmann, Techniques and Applications of Path Integration (Wiley, New York, 1981).Google Scholar
[94] T., Kato, H. F., Trotter, Pacific Math. J. 8, 887, (1958).
[95] H., Trotter, Proc. Amer. Math. 10, 545, (1959).
[96] L. V., Prokhorov, Phys. Part. Nucl. 13, 1094, (1982).
[97] L. V., Prokhorov, In: Proceedings of the 3rd International Seminar on Problems in High Energy Physics and Quantum Field Theory, Vol. 1, p. 103 (IHEP, Protvino, 1981).Google Scholar
[98] L. V., Prokhorov, Vestnik Leningr. Univ., Ser. 4: Phys. Chem., Issue 1, 106, (1982).
[99] Yu. P., Malyshev, L. V., Prokhorov, Vestnik Leningr. Univ., Ser. 4: Phys. Chem., Issue 1, 11, (1984).
[101] Yu. P., Malyshev, L. V., Prokhorov, Sov. J. Nucl. Phys. [Yad. Fiz.] 48, 890, (1988).
[102] L. V., Prokhorov, Vestnik Leningr. Univ., Ser. 4: Phys. Chem., Issue 2, 67, (1983).
[103] S., Edwards, Y. V., Gulyaev, Proc. Roy. Soc. Ser. A 279, 229, (1964).
[104] A., Arthurus, Proc. Roy. Soc. Ser. A 313, 445, (1969).
[105] F. A., Berezin, Theor. Math. Phys. 6, 194, (1971).
[106] I. W., Mayes, J. S., Dowker, Proc. Roy. Soc. Ser. A 327, 131, (1972).
[107] I. W., Mayes, J. S., Dowker, J. Math. Phys. 14, 434, (1973).
[108] D., McLaughlin, L., Schulman, J. Math. Phys. 12, 2520, (1971).
[109] F., Langouche, D., Roekaerts, E., Tirapegui, Phys. Rev. D 20, 419, (1979).
[110] A. N., Vassiliev, Functional Methods in Quantum Field Theory and Statistics (Leningr. State Univ. Press, Leningrad, 1976) (in Russian).Google Scholar
[111] M., Moshinsky, T., Seligman, Ann. Phys. 114, 243, (1978).
[112] M., Moshinsky, T., Seligman, Ann. Phys. 120, 402, (1978).
[113] J., Deenen, M., Moshinsky, T., Seligman, Ann. Phys. 127, 458, (1980).
[114] J., Gervais, A., Jevicki, Nucl. Phys. B 110, 93, (1976).
[115] J., Vleck, Proc. Nat. Acad. Sci. 14, 178, (1928).
[116] M., Berry, K., Mount, Repts. Progr. Phys. 35, 315, (1972).
[117] L. V., Prokhorov, Sov. J. Nucl. Phys. 35, 498, (1982).
[118] F., Santos, L., Oliveira, T., Kodama, Nouvo Cim. B 58, 251, (1980).
[119] H., Fukutaka, T., Kashiwa, Ann. Phys. 185, 301, (1988).
[120] L. V., Prokhorov, Sov. J. Nucl. Phys. 39, 496, (1984).
[121] M. S., Marinov, M. V., Terentiev, Sov. J. Nucl. Phys. 28, 1418, (1978).
[122] M. S., Marinov, M. V., Terentiev, Fortschr. Phys. 27, 511, (1979).
[123] T. A., Miura, J. Math. Phys. 31, 1189, (1990).
[124] L. V., Prokhorov, Vestnik Leningr. Univ., Ser. 4: Phys. Chem. Issue 1, 14, (1983).
[125] H. S. M., Coxeter, Ann. of Math. 35, 588, (1934).
[126] J. E., Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29 (1990).Google Scholar
[127] M. W., Davis, The Geometry and Topology of Coxeter Groups, (Princeton Univ. Press, Princeton, 2008).Google Scholar
[128] E. B., Vinberg, Absence of crystallographic groups of reflections in Lobachevski spaces of large dimension, Trudy Moskov. Mat. Obshch., Vol. 47 (1984)Google Scholar
[129] O., Loos, Symmetric Spaces. I. General Theory (Benjamin, New York/Amsterdam, 1969).Google Scholar
[130] I., Chetouani, L., Guechi, T. F., Hamman, Nuovo Cim. 101, 547, (1988).
[131] R. E., Crandall, J. Phys. A: Math. Gen. 16, 513, (1983).
[132] I. S., Gradshteyn, I. M., Ryzhyk, Tables of Integrals, Series, and Products (Academic Press, NY, 1965).Google Scholar
[133] B., Gaveau, L. S., Schulmann, J. Phys. A: Math. Gen. 19, 1833, (1986).
[134] C., Grosche, Annalen Phys. 2, 557, (1993).
[135] S. V., Shabanov, In Proceedings of Yamada Conference on Mathematical Physics. (Eds A., Arima, et al.) (World Scientific, Singapore, 1995), p.423.Google Scholar
[136] P., Choquard, Helv. Phys. Acta 28, 89, (1955).
[137] N., Bleistein, R., Handelsman, Asymptotic Expansions of Integrals (Dover, New York, 1975).Google Scholar
[138] V. I., Smirnov, A Course in Higher Mathematics, Vol. 5 (Fizmat GIZ, Moscow, 1959).Google Scholar
[139] M., Reed, B., Simon, Methods of Modern Mathematical Physics (Academic Press, New York, 1972).Google Scholar
[140] M., Abramowitz, I. A., Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington DC, 1972).Google Scholar
[141] M., Morse, H., Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).Google Scholar
[142] C., Morette, Phys. Rev. 81, 848, (1951).
[143] H., Kleinert, S. V., Shabanov, Phys. Lett. A 232, 327, (1997).
[144] R. C. T., da Costa, Phys. Rev. A 23, 1982, (1981).
[145] B. M., Smirnov, Physics of Fractal Clusters (Nauka, Moscow, 1991) (in Russian)Google Scholar
[146] H., Takayasu, Fractals in the Physical Sciences (Manchester Univ. Press, New York, 1990).Google Scholar
[147] V. G., Nevzglyadov, Theoretical Mechanics (Fiz. Mat. GIZ, Moscow, 1959) (in Russian).Google Scholar
[148] P. A. M., Dirac, Lectures on Quantum Mechanics (Yeshiva Univ. Press., Massachusetts, 1964).Google Scholar
[149] V. V., Nesterenko, A. M., Chervyakov, Singular Lagrangians, JINR lectures for young scientists, Issue 36 (JINR, Dubna, 1986).Google Scholar
[150] P. N., Pyatov, A. V., Razumov, Int. J. Mod. Phys. A 4, 3211, (1989).
[151] P. N., Pyatov, The Lagrangian Formalism for Constraint Systems. I. Lagrangian and Hamiltonian Constraints, Preprint IHEP 90-35; II. Gauge theories, Preprint IHEP 90-148 (IHEP, Protvino, 1990).Google Scholar
[152] T., Maskawa, H., Nakajima, Prog. Theor. Phys. 56, 1295, (1976).
[153] H., Weyl, The Classical Groups, Their Invariants and Representations (Princeton University Press, Princeton, 1939).Google Scholar
[154] L. D., Faddeev, S. L., Shatashvili, Phys. Lett. B 167, 225, (1986).
[155] I. A., Batalin, E. S., Fradkin, Phys. Lett. B 180, 157 (1987); Errata 236, 528, (1990).
[156] I. A., Batalin, E. S., Fradkin, Nucl. Phys. B 279, 514, (1987).
[157] I. A., Batalin, E. S., Fradkin, T. E., FradkinaNucl. Phys. B 332, 723, (1990).
[158] I. A., Batalin, E. S., Fradkin, T. E., FradkinaNucl. Phys. B 314, 158, (1989).
[159] I. A., Batalin, S. L., Lyakhovich, I. V., Tyutin, Mod. Phys. Lett. A 7, 1931, (1992).
[160] M. V., Karasev, V. P., Maslov, Nonlinear Poisson Brackets, Geometry and Quantization, Translations of Math. Monographs, vol. 119, (AMS, Providence, RI, 1993).Google Scholar
[161] E., Fermi, Rend. Acad. Lincei. 9, 881, (1929).
[162] E., Fermi, Rev. Mod. Phys. 4, 87, (1932).
[163] W., Heisenberg, W., Pauli, Z. Phys., 59, 168, (1930).
[164] L. V., Prokhorov, Sov. Phys. Uspekhi 154, 299, (1988).
[165] P. A. M., Dirac, Can. J. Math. 2, 129, (1950).
[166] P. A. M., Dirac, Can. J. Math. 3, 1, (1951).
[167] P. A. M., Dirac, Proc. Roy. Soc. A 246, 326, (1958).
[168] P. G., Bergmann, Phys. Rev. 75, 680, (1949).
[169] J. L., Anderson, P. G., Bergmann, Phys. Rev. 83, 1018, (1951).
[170] P. G., Bergmann, Rev. Mod. Phys. 33, 510, (1961).
[171] L. D., Faddeev, Theor. Math. Phys. (USSR) 1, 3, (1969).
[172] E. S., Fradkin, In: Proc. of the 10th Winter School of Theoretical Physics in Karpacs, Issue 207, 93, (1973).
[173] I. A., Batalin, E. S., Fradkin, Riv. Nuovo Cim. 9, 1, (1986).
[174] R., Jackiw, Rev. Mod. Phys. 52, 661, (1980).
[175] N. H., Christ, T. D., Lee, Phys. Rev. D 22, 939, (1980).
[176] T. D., Lee, Particle Physics and Introduction to Field Theory (Harwood Acad. Publ.New York, 1981).Google Scholar
[177] M., Henneaux, Phys. Rept. 126, 1, (1985).
[178] A. J., Hanson, T., Regge, C., Teitelboim, Constrained Hamiltonian Systems (Acad. naz. Lincei, Roma, 1976).Google Scholar
[179] D. M., Gitman, I. V., Tyutin, Quantization of Fields with Constraints (Springer-Verlag, Berlin, 1990).Google Scholar
[180] N. P., Konopleva, V. N., Popov, Gauge Fields (Atomizdat, Moscow, 1972) (in Russian).Google Scholar
[181] V. N., Popov, Path Integrals in Quantum Field Theory and Statistical Physics (Atomizdat, Moscow, 1976) (in Russian).Google Scholar
[182] J. R., Klauder, Quantization of Constrained Systems, Lect. Notes Phys. 572, 143, (2001).Google Scholar
[183] L. V., Prokhorov, Sov. J. Nucl. Phys. 35, 229, (1982).
[184] A., Ashtekar, G. T., Horowitz, Phys. Rev. D 26, 3342, (1982).
[185] C. J., Isham, Quantum Gravity, Imperial College Preprint TP/85-86/39 (London, 1986).Google Scholar
[186] R., Jackiw, Topics in Planar Physics, MIT Report No. CTP 1824 (1989).
[187] L. V., Prokhorov, Vestnik Leningr. Univ. Ser. 4: Phys. Chem. Issue 4, 174, (2009).
[188] L. V., Prokhorov, Vestnik Leningr. Univ. Ser. 4: Phys. Chem. Issue 3, 3, (1988).
[189] L. V., Prokhorov, A. G., Nuramatov, Vestnik Leningr. Univ. Ser. 4: Phys. Chem. Issue 3, 86, (1991).
[190] D., Lüst, S., Theisen, Lectures in String Theory. Lecture Notes in Physics, Vol. 346 (Springer-Verlag, Berlin, 1989).Google Scholar
[191] L. H., Ryder, Quantum Field Theory (Cambridge Univ. Press, Cambridge, 1985).Google Scholar
[192] V., Fock, Zs. f. Phys. 38, 242, (1926).
[193] H., Kragh, Am. J. Phys. 52, 1024, (1984).
[194] L. V., Prokhorov, Phys. Part. Nucl. 31, 47, (2000).
[195] S. V., Shabanov, Phys. Rept. 326, 1, (2000).
[196] L. V., Prokhorov, S. V., Shabanov, Phys. Lett. B 216, 341, (1989).
[197] S. V., Shabanov, Theor. Math. Phys. (USSR) 78, 292, (1989).
[198] S. V., Shabanov, Phys. Lett. B 318, 323, (1993).
[199] C. R., Ordónez, M., Rubin, D., Zwanziger, Phys. Rev. D 40, 4056, (1989).
[200] S. V., Shabanov, The Phase Space Structure in Gauge Theories. Lectures for young scientists, Issue 54, P2-89-533 (JINR, Dubna, 1989).Google Scholar
[201] J. R., Klauder, Int. Jour. Mod. Phys. D 12, 1769, (2003).
[202] Yu. P., Malyshev, L. V., Prokhorov, Vestnik Leningr. Univ. Ser. 4: Phys. Chem. Issue 3, 99, (1986).
[203] L. V., Prokhorov, S. V., Shabanov, Vestnik Leningr. Univ. Ser. 4: Phys. Chem. Issue 1, 3, (1990).
[204] L. V., Prokhorov, S. V., Shabanov, In: Topological Phases in Quantum Theory, pp.354–370, (WSPC, Singapore, 1989).Google Scholar
[205] L. V., Prokhorov, S. V., Shabanov, Phase Space of Yang–Mills Fields, JINR preprint E2-90-207 (JINR, Dubna, 1990).Google Scholar
[206] L. V., Prokhorov, Phys. Part. Nucl. 25, 559, (1994).
[207] S. V., Shabanov, Path Integral in Holomorphic Representation Without Gauge Fixation, Preprint E2-89-687 (JINR, Dubna, 1989); In Proc. Intern. Seminar “Path Integrals: Theory and Applications”, Eds. V. S. Yarunin, M. A. Smondyrev, p. 133 (JINR, Dubna, 1996).Google Scholar
[208] S. V., Shabanov, Int. J. Mod. Phys. A 78, 163, (1991).
[209] V. N., Gribov, Nucl. Phys. B 139, 1, (1978).
[210] M. A., Soloviev, Theor. Math. Phys. (USSR) 60, 7, (1989).
[211] I. M., Singer, Commun. Math. Phys. 60, 7, (1978).
[212] S. V., Shabanov, Mod. Phys. Lett. A 6, 909, (1991).
[213] S. V., Shabanov, Lectures on Quantization of Gauge Theories by the Path Integral Method, In: Proceedings of the 4th Hellenic School on High Energy Physics, National Technical University of Athens, Vol. 2, p. 272, Eds. E. N. Gazis, G. Koutsoumbas, N. D.|Tracas, G. Zoupanos (Athens, 1994); IFM preprint 16/92 (Lisbon, IFM, 1992).
[214] G. 't, Hooft, Nucl. Phys. B 190 [FS3], 455, (1981).
[215] S., Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press, New York, 1978).Google Scholar
[216] S., Helgason, Groups and Geometric Analysis (Academic Press, New York, 1984).Google Scholar
[217] S., Weinberg, Prog. Theor. Phys. Suppl. 86, 43, (1986).
[218] A., Salam, Semisimple Groups and Classification of Elementary Particles, Vol. 1, p.51 (JINR, Dubna, 1965).Google Scholar
[219] S. G., Matinyan, G. K., Savvidy, N., Ter-Arutyunyan-Savvidy, Sov. Phys. JETP 53, 421, (1981).
[220] G. K., Savvidy, Phys. Lett. B 159, 325, (1985).
[221] S. V., Shabanov, Phys. Lett. B 255, 398, (1991).
[222] B., Witt, J., Hoppe, H., Nicolai, Nucl. Phys. B 305, 545, (1988).
[223] B., Witt, J., Lüscher, H., Nicolai, Nucl. Phys. B 320, 135, (1989).
[224] E., Witten, Nucl. Phys. B 443, 85, (1995).
[225] T., Banks, W., Fischer, S.H., Shenker, L., Susskind, Phys. Rev. D 55, 5112, (1997).
[226] M. A., Soloviev, Theor. Math. Phys. (USSR) 73, 3, (1987).
[227] T., Pause, T., Heinzl, Nucl. Phys. B 524, 695, (1998).
[228] O., Babelon, C.-M., Viallet, Phys. Lett. B 85, 246, (1979).
[229] O., Babelon, C.-M., Viallet, Commun. Math. Phys. 81, 515, (1981).
[230] M., Daniel, C.-M., Viallet, Rev. Mod. Phys. B 52, 175, (1980).
[231] L. V., Prokhorov, Theor. Math. Phys. (USSR) 47, 210, (1981).
[232] L. V., Prokhorov, Vestnik Leningr. Univ. Ser. 4: Phys. Chem., Issue 3, 66, (1982).
[233] J. R., Klauder, Beyond Conventional Quantization (Cambridge Univ. Press, Cambridge 1999).Google Scholar
[234] A. A., Migdal, Sov. Phys. JETP 42, 413, (1976).
[235] S. G., Rajeev, Phys. Lett. B 212, 203, (1988).
[236] J. E., Hetrick, Y., Hosotani, Phys. Lett. B 230, 88, (1989).
[237] M., Mickelsson, Phys. Lett. B 242, 217, (1990).
[238] E., Langmann, G. W., Semenoff, Phys. Lett. B 296, 117, (1992).
[239] E., Langmann, G. W., Semenoff, Phys. Lett. B 303, 303, (1993).
[240] S. V., Shabanov, Phys. Lett. B 318, 323, (1993).
[241] J. E., Hetrick, Int. J. Mod. Phys. A 9, 3153, (1994).
[242] S. V., Shabanov, Commun. Theor. Phys. 4, 1, (1995).
[243] A., Ashtekar, J., Lewandowski, D., Marolf, J., Mourao, T., Thiemann, J. Math. Phys. 38, 5453, (1997).
[244] H. G., Dosch, V.F., Muller, Fortschr. Phys. 27, 647, (1979).
[245] V., Kazakov, I., Kostov, Nucl. Phys. B 179, 283, (1981).
[246] B., Rusakov, Mod. Phys. Lett. A 5, 693, (1990).
[247] D., Fine, Commun. Math. Phys. 134, 273, (1990).
[248] E., Witten, Commun. Math. Phys. 141, 153, (1991).
[249] E., Witten, J. Geom. Phys. 9, 303, (1992).
[250] M., Blau, G., Thompson, J. Mod. Phys. A 7, 3781, (1991).
[251] S., Donaldson, P., Kronheimer, The Geometry of Four Manifolds (Oxford Univ. Press, Oxford, 1990).Google Scholar
[252] G. 't, Hooft, Nucl. Phys. B 153, 141, (1979).
[253] R., Jackiw, Rev. Mod. Phys. 52, 661 (1980)
[254] A. G., Izergin, V. E., Korepin, M. A., Semenov-Tyan-Shanskii, L. D., Faddeev, Theor. Math. Phys. (USSR) 38, 1, (1979).
[255] D., Amati, E., Elitzur, E., Rabinovici, Nucl. Phys. B 418, 45, (1994).
[256] D., Cangemi, R., Jackiw, Phys. Rev. D 50, 3913, (1994).
[257] A. Yu., Alekseev, P., Schaller, T., Strobl, Phys. Rev. D 52, 7146, (1995).
[258] M., Nakahara, Geometry, Topology, and Physics (IOP, Bristol, 1993).Google Scholar
[259] N., Burbaki, Group et Algebres de Lie, ch.4,5 et 6 (Masson, Paris, 1981).Google Scholar
[260] H. G., Loos, Phys. Rev. 188, 2342, (1969).
[261] H. G., Loos, J. Math. Phys. 11, 3258, (1970).
[262] Encyclopedic Dictionary of Mathematics, Vol. II, ed. by Kiyosi, Ito (MIT Press, Cambridge, 1987).
[263] C., Emmrich and H., Römer, Commun. Math. Phys. 129, 69, (1990).
[264] P., Baal, Nucl. Phys. B 369, 259, (1992).
[265] A. I., Vainshtein, V. I., Zakharov, V. A., Novikov, M. A., Shifman, Sov. Phys. Uspekhi 25, 195, (1982).
[266] P., Baal, In: Confinement, Duality, and Nonperturbative Aspects of QCD, Ed. by P., Baal, NATO ASI Series, Vol. B368 (Plenum Press, New York, 1998).Google Scholar
[267] I. M., Singer, Physica Scripta 24, 817, (1981).
[268] W., Kondracki, P., Sadowski, J. Geom. Phys. 3, 421, (1983).
[269] A., Heil, A., Kersch, N., Papadopoulos, B., Reifenhäuser, F., Scheck, J. Geom. Phys. 7, 489, (1990).
[270] J., Fuchs, M.G., Schmidt, C., Schweigert, Nucl. Phys. B 426, 107, (1994).
[271] J. M., Arms, J. E., Marsden and V., Moncrief, Commun. Math. Phys., 78, 455, (1981).
[272] M., Asorey, P. K., Mitter, Ann. Inst. Poincaré A 45, 61, (1986).
[273] M. S., Narasimhan, T. R., Ramadas, Commun. Math. Phys. 67, 121, (1979).
[274] K. K., Uhlenbeck, Commun. Math. Phys. 83, 31, (1982).
[275] M. A., Soloviev, Kratk. Soobshch. Fiz. 3, 29, (1985).
[276] I. M., Gelfand, G. E., Shilov, Generalized Functions, Vol. 4 (Academic Press, New York, 1964).Google Scholar
[277] R., Rajaraman, An Introduction to Solitons and Instantons in Quantum Field Theory (Elsevier, New York, 1982).Google Scholar
[278] S. V., Shabanov, Phys. Lett. B 272, 11, (1991).
[279] V. P., Maslov, M. V., Fedoriuk, Semi-Classical Approximation in Quantum Mechanics (D. Reidel Publ. Comp., Dortrecht, Holland, 1981).Google Scholar
[280] S. W., Hawking, Phys. Lett B 195 (1987); Phys. Rev. D 37, 904, (1988).
[281] Y., Verbin, A., Davidson, Phys. Lett. B 299, 364, (1989).
[282] G. V., Lavrelashvili, V. A., Rubakov, P. G., Tinyakov, JETP Lett. 46, 167, (1987).
[283] S., Coleman, Nucl. Phys. B 307, 867, (1988); Nucl. Phys. B 310, 643, (1988).
[284] G. W., Gibbons, C. N., Pope, Commun. Math. Phys. 66, 627, (1979).
[285] E., Witten, Commun. Math. Phys. 80, 381, (1981).
[286] P., Schoen, S. T., Yau, Phys. Rev. Lett. 42, 547, (1979).
[287] O., Bertolami, J. M., Mourao, R. F., Picken, I. P., Volobuev, Int. J. Mod. Phys. A 6, 4149, (1991).
[288] O., Bertolami, J. M., Mourao, Class. Quant. Grav. 8, 1271, (1991).
[289] B., DeWitt, Phys. Rev. D 160, 1113, (1967).
[290] C., Isham, J. E., Nelson, Phys. Rev. D 10, 3226, (1974).
[291] W. E., Blyth, C., Isham, Phys. Rev. D 11, 768, (1975).
[292] S. V., Shabanov, In: The Proceedings of the First Iberian Meeting on Classical and Quantum Gravity, ed. M. C., Bentoet al, (World Scientific, Singapore, 1993); p.322.Google Scholar
[293] E. T., WhittekerG. N., Watson, A Course of Modern Analysis (Oxford University Press, Oxford, 1927); Vol.1, Sec. 2.37.Google Scholar
[294] L. V., Prokhorov, The Weyl Group and Confinement, Preprint OCIP-89-03 (The Ottawa University, Ottawa, 1989).Google Scholar
[295] P., Marenzoni, G., Martinelli, N., Stella, M., Testa, Phys. Lett. B 318, 511, (1993).
[296] C., Bernard, C., Parrinello, A., Soni, Phys. Rev. D 49, 1585, (1994).
[297] M., Creutz, Quarks, Gluons and Lattices (Cambridge University Press, Cambridge, 1983).Google Scholar
[298] I., Montvay and G., Münster, Quantum Fields on a Lattice (Cambridge University Press, Cambridge, 1997).Google Scholar
[299] S., Weinberg, The Quantum Theory of Fields, Vol II, (Cambridge University Press, Cambridge, 1996).Google Scholar
[300] M. L., Paciello, C., Parrinello, S., Petrarca, B., Taglienti, A., Vladikas, Phys. Lett. B 289, 405, (1992).
[301] M., Stingl, Phys. Rev. D 34, 3863, (1986).
[302] L. V., Prokhorov, S. V., Shabanov, Vestnik Leningr. Univ., Series 4: Phys. Chem., Issue 1, p. 68 (1988).
[303] S. V., Shabanov, J. R., Klauder, Phys. Lett. B 456, 38, (1999).
[304] L. V., Prokhorov, S. V., Shabanov, Vestnik Leningr. Univ., Series 4: Phys. Chem., Issue 2, p. 8 (1988).
[305] J. L., Martin, Proc. Roy. Soc. A 251, 536, (1959).
[306] J. L., Martin, Proc. Roy. Soc. A 251, 543, (1959).
[307] V. I., Ogievetski, L., Mezinchesku, Soviet Phys. Uspekhi 117, 637, (1975).
[308] S. V., Shabanov, The Role of Gauge Invariance in the Path Integral Construction, JINR preprint E2-89-688 (JINR, Dubna, 1989).Google Scholar
[309] J. R., Klauder, Ann. Phys. (NY) 254, 419, (1997).
[310] J. R., Klauder, S. V., Shabanov, Phys. Lett. B 398, 116, (1997).
[311] J., Govaerts, J. R., Klauder, Ann. Phys. 274, 251, (1999).
[312] A., Kempf, J. R., Klauder, J. Phys. A: Math. Gen. 34, 1019, (2001).
[313] A. S., Schwarz, Quantum Field Theory and Topology (Springer-Verlag, Berlin, 1993).Google Scholar
[314] J. R., Klauder, S. V., Shabanov, In: Mathematical Methods of Quantum Physics eds. C. C., Bernidoet al., (Gordon and Breach Science Publishers, Amsterdam, 1999), pp. 117–130.Google Scholar
[315] L. D., Faddeev, V. N., Popov, Phys. Lett. B 25, 30, (1967).
[316] G. 't, Hooft, Nucl. Phys. B 33, 173, (1971).
[317] R., Feynman, Nucl. Phys. B 188, 479, (1981).
[318] Y., Matsumoto, An introduction to Morse Theory, Translations of Mathematical Monographs, Vol. 208 (Amer. Soc., Providence, 2002)Google Scholar
[319] M. A., Semenov-Tyan-Shanskii, V. A., Franke, Zapiski Nauch. Sem. Len. Otdel. Mat. Inst. im. V. A. Steklov AN SSSR, 120, 159 (1982); Translation: Plenum Press, NY, 1986; p. 999.Google Scholar
[320] G., Dell'Antonio, D., Zwanziger, In Probabilistic Methods in Quantum Field Theory and Quantum Gravity, ed. P. H., Damgraadet al. (Plenum Press, New York, 1990).Google Scholar
[321] G., Dell'Antonio, D., Zwanziger, Commun. Math. Phys. 138, 291, (1991).
[322] D., Zwanziger, Nucl. Phys. B 209, 336, (1982).
[323] G., Dell'Antonio, D., Zwanziger, Nucl. Phys. B 378, 333, (1989).
[324] J., Fuchs, The Singularity Structure of the Yang-Mills Configuration Space, ArXiv preprint, hep-th/9506005, 1995.
[325] W., Kondracki, J. S., Rogulski, Dissertationes Mathematicae, Warsaw, CCL, 1, (1986).Google Scholar
[326] M., Lüscher, Nucl. Phys. B 219, 233, (1983).
[327] J., Koller, P., Baal, Ann. Phys. 174, 288, (1987).
[328] J., Koller, P., Baal, Nucl. Phys. B 302, 1, (1988).
[329] P., Baal, B. van, den Heuvel, Nucl. Phys. B 417, 215, (1994).
[330] D., Zwanziger, Nucl. Phys. B 345, 461, (1990).
[331] D., Zwanziger, Nucl. Phys. B 412, 657, (1994).
[332] D., Zwanziger, Nucl. Phys. B 518, 237, (1998).
[333] R. E., Cutkosky, Phys. Rev. Lett. 51, 538, (1983).
[334] R. E., Cutkosky, Phys. Rev. D 30, 447, (1984).
[335] R. E., Cutkosky, J. Math. Phys. 25, 939, (1984).
[336] R. E., Cutkosky, K. C., Wang, Phys. Rev D 36, 3825, (1987).
[337] S. R., Coleman, In Aspects of Symmetry (Cambridge University Press, Cambridge, 1985), pp. 265–350.Google Scholar
[338] M., Gell-Mann, Phys. Rev. 125, 1067 (1962); Caltech Synchrotron Report CTSL-20 (1961).
[339] Y., Ne'eman, Nucl. Phys. 26, 222, (1961).
[340] M., Gell-Mann, Y., Ne'eman, The Eightfold Way (W.A. Benjamin, New York, 1964).Google Scholar
[341] M., Gell-Mann, Phys. Lett. 8, 214, (1964).
[342] G., Zweig, CERN Preprints 8182/TH-401, 8419/TH-412 (CERN, Geneva, 1964)Google Scholar
[343] M., Han, Y., Nambu, Phys. Rev. 139, 1006, (1965).
[344] N. N., Bogolyubov, B. V., Struminsky, A. N., Tavkhelidze, On the Composite Models in Elementary Particle Theory, JINR preprint (Dubna, JINR, 1965).Google Scholar
[345] Y., Miyamoto, Prog. Theor. Phys. Suppl. (Special issue), 187, (1965).
[346] R., Feynman, Phys. Rev. Lett. 23, 1415, (1969).
[347] J., Bjorken, E., Pasckos, Phys. Rev. 185, 1975, (1969).
[348] S., Weinberg, Phys. Rev. Lett. 31, 494, (1973).
[349] J., Pati, A., Salam, Phys. Rev. D 8, 1240, (1973).
[350] H., Fritzsch, M., Gell-Mann, H., Leutwyller, Phys. Lett. B 47, 365, (1973).
[351] L. V., Prokhorov, JETP Lett. 16, 561, (1972).
[352] L. V., Prokhorov, The Unified Model of Weak, Electromagnetic, and Strong Interactions, Preprint (Publ. House Len. St. Univ., Leningrad, 1972).Google Scholar
[353] L., O'Raifeartaigh, N., Straumann, Rev. Mod. Phys. 72, 1, (2000).
[354] A., Chodos, R. L., Jaffe, K., Johnson, Phys. Rev. D 9, 3471 (1974); ibid. 10, 2599, (1974).
[355] S., Mandelstam, Phys. Rept. 23, 245, (1976).
[356] G., t'Hooft, In High Energy Physics, ed. A., Zichichi (Editrice Composizitori, Bolonga, 1976).Google Scholar
[357] D., Amati, M., Testa, Phys. Lett. B 48, 227, (1974).
[358] A. M., Polyakov, Nucl. Phys. B 120, 429, (1977).
[359] G., t'Hooft, Nucl. Phys. B 138, 1, (1978).
[360] E., Shuryak, Phys. Rept. 264, 357, (1996).
[361] I., Horvath, N., Isgur, J., McCune, H. B., Thacker, Phys. Rev. D 65, 014502, (2002).
[362] E., Witten, Nucl. Phys. B 149, 285, (1979).
[363] K., Wilson, Phys. Rev. D 10, 2445, (1974).
[364] J., Schwinger, Phys. Rev. 128, 2425, (1962).
[365] J., Lowenstein, J., Swieca, Ann. Phys. 68, 172, (1971).
[366] A., Casher, J., Kogut, L., Susskind, Phys. Rev. D 10, 732, (1974).
[367] G. S., Danilov, I. T., Dyatlov, V. V., Petrov, Nucl. Phys. B 174, 68, (1980).
[368] M. B., Voloshin, K. A., Ter-Martirosyan, The Theory of Gauge Interactions of Elementary Particles (Energoatomizdat, Moscow, 1984) (in Russian).Google Scholar
[369] L. V., Prokhorov, The String Model of Electric Charge, Preprint OCIP-89-04 (Ottawa, 1989).Google Scholar
[370] L. V., Prokhorov, Lett. Math. Phys. 19, 245, (1990).
[371] T., Kugo, I., Ogima, Suppl. Prog. Theor. Phys. 66, 1, (1979).
[372] D. V., Fursaev, L. V., Prokhorov, S. V., Shabanov, Mod. Phys. Lett. A 7, 3441, (1992).
[373] J. B., Kogut, L., Susskind, Phys. Rev. D 9, 3501, (1974).
[374] C., Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions (Perseus Westview Press, Boulder, CO, 1997), Sec. 8.8.Google Scholar
[375] M., Creutz, Phys. Rev. D 21, 2308, (1980).
[376] C. E., DeTar, S., Gottlieb, Phys. Today 57, 45, (2004).
[377] A. S., Kronfeld, Science 322, 1198, (2008).
[378] F., Wilczek, Nature 456, 449, (2008).
[379] S., Kobayashi, K., Nomidzu, Foundations of Differential Geometry, Vol. I and II, (John Wiley & Sons, New York, 1963).Google Scholar
[380] B. A., Dubrovin, S. P., Novikov, A. T., Fomenko, Modern Geometry – Methods and Applications, Parts I and 2, (Springer-Verlag, Berlin, 1991).Google Scholar
[381] A., Lichnerowizc, Geometry of Groups of Transformations (Springer-Verlag, Berlin, 1977).Google Scholar
[382] B., Schutz, Geometrical Methods of Mathematical Physics (Cambridge University Press, Cambridge, 1980).Google Scholar
[383] L. V., Prokhorov, Vestnik St. Peter. Univ., Series 4: Phys. Chem. Issue 1, p. 3 (1992).
[384] L. V., Prokhorov, Vestnik Leningr. Univ., Series 4: Phys. Chem. Issue 3, p. 3 (1990).
[385] L. P., Prokhorov, S. V., Shabanov, Int. J. Mod. Phys. A 7, 7815, (1992).
[386] L. V., Prokhorov, In Proceedings of the 10th Seminar “Problems in High Energy Physics” (IHEP, Protvino, 1988), p. 131.Google Scholar
[387] P., Carruthers, Introduction to Unitary Symmetry (Interscience Publ., New York, 1966).Google Scholar
[388] J., Frölich, G., Morchio, F., Strocchi, Phys. Lett. B. 97, 249, (1980).
[389] J., Frölich, G., Morchio, F., Strocchi, Nucl. Phys. B 190, 553, (1981).
[390] M., Grater, Ann. Phys. 319, 217, (2005).
[391] V. A., Matveev, A. N., Tavkhelidze, M. E., Shaposhnikov, Theor. Math. Phys. (USSR) 59, 323.
[392] A. S., Kronfeld, G., Schierholz, U. J., Wiese, Nucl. Phys. B 293, 461, (1987).
[393] M. N., Chernodub, M. I., Polikarpov, In: Confinement, Duality, and Nonperturbative Aspects of QCD; ed. P., Baal,; NATO ASI Series, Series B: Physics Vol 368 (Plenum Press, London, 1998) p. 378.Google Scholar
[394] H., Shiba, T., Suzuki, Phys. Lett. B 343, 315 (1995); ibid. 351, 519, (1995).
[395] Y. M., Cho, Phys. Rev. D 21, 1080 (1980); ibid. 23, 2415, (1981).
[396] L. D., Faddeev, A. J., Niemi, Phys. Rev. Lett. 82, 1624, (1999).
[397] S. V., Shabanov, Phys. Lett. B 458, 322, (1999).
[398] L. D., Faddeev, A. J., Niemi, Phys. Lett. B 449, 214, (1999).
[399] S. V., Shabanov, Phys. Lett. B 463, 263, (1999).
[400] L. D., Faddeev, Quantization of Solitons, IAS preprint, IAS- 75-QS70 (IAS, Princeton, 1970).Google Scholar
[401] L. D., Faddeev, A. J., Niemi, Nature 378, 58, (1997).
[402] H., Gies, Phys. Rev. D 63, 125023, (2001).
[403] A., Shibata, S., Kato, K.-I., Kondo, T., Murakami, T., Shinohara, S., Ito, Phys. Lett. B 653, 101, (2007).
[404] S. V., Shabanov, The Proper Field of Charges and Gauge-Invariant Variables in Electrodynamics, JINR preprint, E2-92-136 (JINR, Dubna, 1992).Google Scholar
[405] L. V., Prokhorov, D. V., Fursaev, S. V., Shabanov, Theor. Math. Phys. 97, 373, (1993).
[406] G. S., Bali, Phys. Rept. 343, 1, (2001).
[407] J., Greensite, Prog. Part. Nucl. Phys. 51, 1, (2003).
[408] E., Seiler, Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics (Springer, Berlin, 1982).Google Scholar
[409] J., Glimm, A. M., Jaffe, Quantum Physics: A Functional Integral Point of View, 2nd ed. (Springer, New York, 1987).Google Scholar
[410] D. B., Leinweber, Visualizations of QCD, web reference: http://www.physics.adelaide.edu.au/dleinweb/VisualQCD/Nobel/.
[411] F., Bisseyet al, Phys. Rev. D 76, 114512, (2007).
[412] K., Rummukainenet al., Nucl. Phys. B 532, 283, (1998).
[413] M., Laine, K., Rummukainen, Nucl. Phys. B (Proc. Suppl.) 73, 180, (1999).
[414] I. D., Ado, Izv. Fiz.-Mat. Obsch. (Kazan'), 7, 1, (1935).
[415] I. D., Ado, Transl. Amer. Math. Soc., 9, 308 (1962); Uspekhi Mat. Nauk., 2, 159, (1947).
[416] K., Huang, Quarks, Leptons and Gauge Fields (World Scientific, Singapore, 1982).Google Scholar
[417] L. V., Prokhorov, In: Proc. Intern. Seminar “Path Integrals: Theory and Applications”, Eds. V.S., Yarunin, M.A., Smondyrev, (JINR, Dubna, 1996), p. 192.Google Scholar
[418] F. A., Berezin, Introduction to the Algebra and Analysis with Anticommuting Variables (Publ. Depart., Moscow State Univ., Moscow, 1983) (in Russian).Google Scholar
[419] R., Floreanini, R., Jackiw, Phys. Rev. D 37, 2206, (1988).
[420] E. C., Titchmarsh, The Theory of Functions (Oxford University Press, Oxford, 1932).Google Scholar
[421] J. R., Klauder, B., Skagerstam, Coherent States (World Scientific, Singapore, 1985).Google Scholar
[422] C., Becchi, A., Rouet, R., Stora, Phys. Lett. B 52, 344, (1974).
[423] C., Becchi, A., Rouet, R., Stora, Commun. Math. Phys. 42, 127, (1975).
[424] I. V., Tyutin, Gauge Invariance in Feild Theory and Statistical Physics in Operator Formalism, Lebedev Physics Institute preprint 39 (Moscow, 1975).Google Scholar
[425] M., Henneaux, C., Teitelboim, Quantization of Gauge System (Princeton Univ. Press, Princeton, 1992)Google Scholar
[426] F. G., Scholtz, S. V., Shabanov, Annals Phys. 263, 119, (1998).
[427] I. A., Batalin, G. A., Vilkovisky, Phys. Lett. B 69, 309, (1977).
[428] K., Fujikawa, Nucl. Phys. B 223, 218, (1983).
[429] J., Govaerts, Hamiltonian Quantization and Constrained Dynamics, Leuven Notes in Mathematical and Theoretical Physics, Series B, Vol. 4 (Leuven Univ. Press, Leuven, 1991).Google Scholar
[430] F. G., Scholtz, G. B., Tupper, Phys. Rev. D 48, 1792, (1993).
[431] F. G., Scholtz, S. V., Shabanov, Supersymmetric quantization of gauge theories, Electronic preprint, arXiv:hep-th/9509015, (1995).
[432] F. G., Scholtz, S. V., Shabanov, SUSY quantization of Yang-Mills theory and possible applications, In: The Proceedings of 2nd Sakharov Conference on Physics, ed. I. M., Dremin, A. M., Semikhatov (World Scientific, Singapore, 1997), p. 558 (Electronic preprint, arXiv:hep-th/9606074, 1996).Google Scholar
[433] A. A., Slavnov, Lorentz invariant quantization of the Yang-Mills theory free of Gribov ambiguity, Electronic preprint, arXiv:0902.1847 (2009).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Lev V. Prokhorov, St Petersburg State University, Sergei V. Shabanov, University of Florida
  • Book: Hamiltonian Mechanics of Gauge Systems
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511976209.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Lev V. Prokhorov, St Petersburg State University, Sergei V. Shabanov, University of Florida
  • Book: Hamiltonian Mechanics of Gauge Systems
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511976209.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Lev V. Prokhorov, St Petersburg State University, Sergei V. Shabanov, University of Florida
  • Book: Hamiltonian Mechanics of Gauge Systems
  • Online publication: 07 October 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511976209.010
Available formats
×