Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T10:30:09.248Z Has data issue: false hasContentIssue false

19 - The globalisations of disease

from V - Invasion: The Movement of Invasive and Disease Species

Published online by Cambridge University Press:  04 May 2017

Monica H. Green
Affiliation:
Arizona State University
Nicole Boivin
Affiliation:
Max Planck Institute for the Science of Human History, Jena
Rémy Crassard
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Lyon
Michael Petraglia
Affiliation:
Max Planck Institute for the Science of Human History, Jena
Get access

Summary

Abstract

Several disciplines – including genetics, bioarchaeology, and documentary history – contribute to the stories we tell of humankind's major infectious diseases over the past 100,000 years. In some cases, these diseases have dispersed globally because, as obligate pathogens, they have gone wherever their human hosts have gone. Thus, tuberculosis, leprosy, smallpox, syphilis, and HIV/AIDS have traveled along paths (and via technologies) that have moved human populations to all five inhabited continents and Oceania. In other cases, diseases have moved because humans transported micro-environments that brought pathogens along; this would describe the histories of malaria, plague, and cholera. However, many aspects of these narratives are still under debate, including their chronologies and geographic trajectories. This essay will not attempt to settle those debates, but, rather, suggest why the points of debate matter. How does the story change if we alter the chronology by several thousand years, or propose different geographical routes?

Key words: global health, bioarchaeology, historical method, phylogenetics, aDNA

GOING GLOBAL

What turns a handful of human-pathogen encounters (a small outbreak) into a global human disease, affecting millions of people around the world? Answering that question in the present day seems very simple: jet travel. Intercontinental airborne transmission has indeed been a critical component of the latest diseases posing global threats (see Tatem, this volume), including SARS, MERS, and, most dramatically, HIV/AIDS, whose recognition by the biomedical establishment in 1981 was due to its presentation in middle-class urban patients in the United States several decades after the disease had taken root in populations in West Central Africa (Pepin 2011; Faria et al. 2014). “Sexual tourism” facilitated by jet travel was an important part of the global spread of HIV/AIDS in the 1970s and ’80s. Yet of the global diseases to be examined in this essay, HIV/AIDS is the only one whose historical globalisation is a product of the jet age. All the others were globalized by the early twentieth century, if not hundreds of years before.

In asking what facilitates one disease to become global while others remain localized to specific environments, many factors must be assessed. The microbiologist will look at the level of the micro organism, assessing the virulence of the pathogen, or its relative success in transmission from host to host.

Type
Chapter
Information
Human Dispersal and Species Movement
From Prehistory to the Present
, pp. 494 - 520
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achtman, M. 2012. Insights from genomic comparisons of genetically monomorphic bacterial pathogens. Philosophical Transactions of the Royal Society B 2012 367: 860–867.Google Scholar
Achtman, M. et al. 1999. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis . Proceedings of the National Academy of Sciences 96: 14043–14048.Google Scholar
Alden, D. and Miller, J. C. 1987. Out of Africa: the slave trade and the transmission of smallpox to Brazil, 1560–1831. Journal of Interdisciplinary History 18: 195–224.Google Scholar
Alexander, K. A., Laver, P. N., Michel, A. L., Williams, M., van Helden, P. D., et al. 2010. Novel Mycobacterium tuberculosis complex pathogen, M. mungi . Emerging Infectious Diseases 16(8): 1296–1299.Google Scholar
Álvarez Millán, C. 2010. The case history in medieval Islamic medical literature: tajarib and mujarrabat as source. Medical History 54: 195–214.Google Scholar
Aufderheide, A. C. and Rodríguez-Martín, C. 1998. Tuberculosis. In: The Cambridge Encyclopedia of Human Paleopathology, ed. Aufderheide, A. C. and Rodríguez-Martín, C., pp. 118–141. Cambridge: Cambridge University Press.
Babkin, I. V. and Babkina, I. N. 2012. A retrospective study of the Orthopoxvirus molecular evolution. Infection, Genetics and Evolution 12(8): 1597–1604.Google Scholar
Babkin, I. V. and Babkina, I. N. 2015. The origin of the variola virus. Viruses 7(3): 1100–1112.Google Scholar
Bedeir, S. A. 2004. Tuberculosis in ancient Egypt. In: Madkour, M. M. (ed.). Tuberculosis, pp. 3–13. Berlin: Springer-Verlag.
Bennett, H. 2005. Africans in Colonial Mexico: Absolutism, Christianity, and Afro-Creole Consciousness, 1570–1640. Bloomington: Indiana University Press.
Bentley, S. D., Comas, I., Bryant, J. M., Walker, D., Smith, N. H., Harris, S. R., Thurston, S., et al. 2012. The genome of Mycobacterium Africanum West African 2 reveals a lineage-specific locus and genome erosion common to the M. tuberculosis Complex. PLoS Neglected Tropical Diseases 6(2): e1552.Google Scholar
Biagini, P., Thèves, C., Balaresque, P., Géraut, A., Cannet, C., Keyser, C., Nikolaeva, D., et al. 2012. Variola virus in a 300-Year-Old Siberian Mummy. New England Journal of Medicine 367(21): 2057–2059, plus Supplementary Appendix.Google Scholar
Bocquet-Appel, J. P. and Bar-Yosef, O., eds. 2008. The Neolithic Demographic Transition and Its Consequences. London: Springer.
Bos, K. I., Harkins, K. M., Herbig, A., Coscolla, M., Weber, N., Comas, I., Forrest, S. A., et al. 2014. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514: 494–497.Google Scholar
Buchenau, J. 2001. Small numbers, great impact: Mexico and its immigrants, 1821–1973. Journal of American Ethnic History 20(3): 23–49.Google Scholar
Buckley, H. R. 2006. “The predators within”: investigating the relationship between malaria and health in the prehistoric Pacific Islands. In: Bioarchaeology of Southeast Asia, Oxenham, M. and Tayles, N., pp. 309–332. Cambridge: Cambridge University Press.
Buikstra, J. E. 1999. Paleoepidemiology of tuberculosis in the Americas. In: Tuberculosis: Past and Present, ed. Pálfi, G. et al., pp. 479–494. Budapest, Szeged: Golden Book Publishers and Tuberculosis Foundation.
Butler, T. 2013. Plague gives surprises in the first decade of the 21st century in the United States and worldwide. American Journal of Tropical Medicine and Hygiene 89: 788–793.Google Scholar
Bynum, H. 2012. Spitting Blood: The History of Tuberculosis. Oxford: Oxford University Press.
Cameron, C., Kelton, P., and Swedlund, A. C., eds. 2015. Beyond Germs: Native Depopulation in North America. Tucson: University of Arizona Press.
Canci, A., Minozzi, S., Borgognini Tarli, S. M. 1996. New evidence of tuberculous spondylitis from Neolithic Liguria (Italy). International Journal of Osteoarchaeology 6(5): 497–501.Google Scholar
Carmichael, A. G. 2014. Plague persistence in western Europe: a hypothesis. The Medieval Globe. Special issue: Pandemic Disease in the Medieval World: Rethinking the Black Death 1(1): 107–129.Google Scholar
Carmichael, A. G. and Silverstein, A. M. 1987. Smallpox in Europe before the seventeenth century: virulent killer or benign disease? Journal of the History of Medicine and Allied Sciences 42: 147–168.Google Scholar
Comas, I., Coscolla, M., Luo, T., Borrell, S., Holt, K. E., Kato-Maeda, M., Parkhill, J., et al. 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nature Genetics 45: 1176–1182.Google Scholar
Comas, I., Hailu, E., Kiros, T., Bekele, S., Mekonnen, W., Gumi, B., Tschopp, R., Ameni, G., Hewinson, R. G., Robertson, B. D., and Goig, G. A. 2015. Population genomics of Mycobacterium tuberculosis in Ethiopia contradicts the Virgin Soil Hypothesis for human tuberculosis in Sub-Saharan Africa. Current Biology 25(24): 3260–3266.Google Scholar
Cui, Y., Yu, C., Yan, Y., Li, D., Li, Y., Jombart, T., Weinert, L. A., et al. 2013. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis . Proceedings of the National Academy of Sciences 110(2): 577–582.Google Scholar
Darton, Y., Richard, I., and Truc, M.-C. 2013. Osteomyelitis variolosa: a probable mediaeval case combined with unilateral sacroiliitis. International Journal of Paleopathology 3(4): 288–293.Google Scholar
Davidson, J. C. and Palmer, P. E. S. 1963. Osteomyelitis variolosa. Journal of Bone and Joint Surgery 45: 687–693.Google Scholar
de Castro, M. and Singer, B. H. 2005. Was malaria present in the Amazon before the European conquest? Available evidence and future research agenda. Journal of Archaeological Science 32: 337–340.Google Scholar
Jong, B. C. de, Antonio, M., and Gagneux, S. 2010. Mycobacterium africanum – review of an important cause of human tuberculosis in West Africa. PLoS Neglected Tropical Diseases 4: e744.Google Scholar
Degang, Y., Nakamura, K., Akama, T., Ishido, Y., Luo, Y., Ishii, N., and Suzuki, K. 2014. Leprosy as a model of immunity. Future Microbiology 9(1): 43–54.Google Scholar
Devault, A. M., Golding, G. B., Waglechner, N., Enk, J. M., Kuch, M., Tien, J. H., Shi, M., et al. 2014. Second-pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. New England Journal of Medicine 370: 334–340.Google Scholar
Donoghue, H. D., Spigelman, M., Greenblatt, C. L., Lev-Maor, G., Bar-Gal, G. K., Matheson, C., Vernon, K., Nerlich, A. G., and Zink, A. R. 2004. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infectious Diseases 4: 584–592.Google Scholar
Faria, N. R., Rambaut, A., Suchard, M. A., Baele, G., Bedford, T., Ward, M. J., et al. 2014. The early spread and epidemic ignition of HIV-1 in human populations. Science 346: 56–61.Google Scholar
Fenn, E. A. 2006. A revolutionary contagion: smallpox and the reshaping of the American West, 1779–82. In: When Disease Makes History: Epidemics and Great Historical Turning Points, ed. Hämäläinen, P., pp. 45–80. Helsinki: Helsinki University Press.
Fenn, E. A. 2015. Encounters at the Heart of the World: A History of the Mandan People. New York: Hill and Wang.
Fenner, F., Henderson, D. A., Arita, I., Ježek, Z., and Ladnyi, I. D. 1988. Smallpox and Its Eradication. Geneva: World Health Organization.
Ferragud, C. 2013. The Role of Doctors in the Slave Trade during the Fourteenth and Fifteenth Centuries within the Kingdom of Valencia (Crown of Aragon). Bulletin of the History of Medicine 87: 143–169.Google Scholar
Gagneux, S. 2012. Host-pathogen coevolution in human tuberculosis. Philosophical Transactions of the Royal Society. B. Biological Sciences 367: 850–859.Google Scholar
Galagan, J. E. 2014. Genomic insights into tuberculosis. Nature Reviews: Genetics 15: 307–320.Google Scholar
Gilabert, A. and Wirth, T. 2011. Elucidating human migrations by means of their pathogens. In: Genetics and Evolution of Infectious Diseases, ed. Tibayrenc, M., pp. 173–202. Amsterdam: Elsevier.
Gómez i Prat, J., and Mendonça de Souza, S. M. F. 2003. Prehistoric tuberculosis in America: adding comments to a literature review. Memórias do Instituto Oswaldo Cruz 98(suppl.1): 151–159.Google Scholar
Gomez-Valero, L., Rocha, E. P. C., Latorre, A., Silva, F. J. 2007. Reconstructing the ancestor of Mycobacterium leprae: The dynamics of gene loss and genome reduction. Genome Research 17: 1178–1185.Google Scholar
Green, M. H. 2012. The value of historical perspective. In: The Ashgate Research Companion to the Globalization of Health, ed. Schrecker, T., pp. 17–37. Aldershot: Ashgate.
Green, M. H. 2014. Taking “pandemic” seriously: Making the Black Death global. The Medieval Globe, Special issue: Pandemic Disease in the Medieval World: Rethinking the Black Death 1(1): 21–43.Google Scholar
Gubser, C. and Smith, G. L. 2002. The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. Journal of General Virology 83(4): 855–872.Google Scholar
Guégan, J., Prugnolle, F., and Thomas, F. 2008. Global spatial patterns of infectious diseases and human evolution. In Evolution in Health and Disease, ed. Stearns, S. and Koella, J., pp. 19–29. Oxford and New York: Oxford University Press.
Gutierrez, M. C., Brisse, S., Brosch, R., Fabre, M., Omaïs, B., Marmiesse, M., Supply, P., et al. 2005. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis . PLoS Pathogens 1(1): e5.Google Scholar
Han, X. Y., Aung, F. M., Choon, S. E., and Werner, B. 2014. Analysis of the leprosy agents Mycobacterium leprae and Mycobacterium lepromatosis in four countries. AJCP 142: 524–532.Google Scholar
Han, X. Y., Seo, Y. H., Sizer, K. C., Schoberle, T., May, G. S., Spencer, J. S., Li, W., et al. 2008. A new Mycobacterium species causing diffuse lepromatous leprosy. American Journal of Clinical Pathology 130: 856–864.Google Scholar
Han, X. Y. and Silva, F. J. 2014. On the age of leprosy. PLoS Neglected Tropical Diseases 8(2): e2544.Google Scholar
Han, X. Y., Sizer, K. C., and Tan, H. H. 2012a. Identification of the leprosy agent Mycobacterium lepromatosis in Singapore. Journal of Drugs in Dermatology 11(2): 168–172.Google Scholar
Han, X. Y., Sizer, K. C., Thompson, E. J., Kabanja, J., Li, J., Hu, P., Gómez-Valero, L., et al. 2009. Comparative sequence analysis of Mycobacterium leprae and the new leprosy-causing Mycobacterium lepromatosis . Journal of Bacteriology 191(19): 6067–6074.Google Scholar
Han, X. Y., Sizer, K. C., Velarde-Félix, J. S., Frias-Castro, L. O., and Vargas-Ocampo, F. 2012b. The leprosy agents Mycobacterium lepromatosis and Mycobacterium leprae in Mexico. International Journal of Dermatology 51: 952–959.Google Scholar
Han, X. Y., Zhang, J., and Li, L. 2015. Leprosy agents Mycobacterium lepromatosis and Mycobacterium leprae in Mexico: a clarification. Journal of Clinical Microbiology 53(10): 3387–3388.Google Scholar
Harbeck, M., Seifert, L., Hänsch, S., Wagner, D. M., Birdsellk, D., Parise, K. L., Wiechmann, I., et al. 2013. Yersinia pestis DNA from skeletal remains from the 6th century AD reveals insights into Justinianic Plague. PLoS Pathogens 9(5): e1003349.Google Scholar
Hershkovitz, I., Donoghue, H. D., Minnikin, D. E., Besra, G. S., Lee, O. Y. C., Gernaey, A. M., Galili, E., et al. 2008. Detection and molecular characterization of 9000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS ONE 3 (10): e3426.Google Scholar
Hoerder, D. 2002. Cultures in Contact: World Migrations in the Second Millennium. Durham: Duke University Press.
Hopkins, D. R. 1983/2002. Princes and Peasants: Smallpox in History, reissued in 2002 as: The Greatest Killer: Smallpox in History. Chicago: University of Chicago.
Hymes, R. P. F. 2014. Epilogue: A hypothesis on the East Asian beginnings of the Yersinia pestis polytomy. The Medieval Globe 1(1): 200–215.Google Scholar
Jackes, M. K. 1983. Osteological evidence for smallpox: a possible case from seventeenth century Ontario. American Journal of Physical Anthropology 60: 75–81.Google Scholar
Jessamine, P. G., Desjardins, M., Gillis, T., Scollard, D., Jamieson, F., Broukhanski, G., Chedore, P., et al. 2012. Leprosy-like illness in a patient with Mycobacterium lepromatosis from Ontario, Canada. Journal of Drugs in Dermatology 11(2): 229–233.Google Scholar
Kay, G. L., Sergeant, M. J., Zhou, Z., Chan, J. Z. M., Millard, A., Quick, J., Szikossy, I., Pap, I., Spigelman, M., Loman, N. J., and Achtman, M. 2015. Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nature Communications 6 (6717).Google Scholar
Keim, P. S. and Wagner, D. M. 2009. Humans and evolutionary and ecological forces shaped the phylogeography of recently emerged diseases. Nature Reviews: Microbiology 7(11): 813–821.Google Scholar
Li, Y., Carroll, D. S., Gardner, S. N., Walsh, M. C., Vitalis, E. A., and Damon, I. K. 2007. On the origin of smallpox: Correlating variola phylogenics with historical smallpox records. Proceedings of the National Academy of Sciences 104(40): 15787–15792.Google Scholar
Liebmann, M. J., Farell, J., Roos, C. I., Stack, A., Martini, S., and Swetnam, T. W. 2016. Native American depopulation, reforestation, and fire regimes in the Southwest United States, 1492–1900 CE. Proceedings of the National Academy of Sciences 113(6): E696–704.
Little, L. K. ed. 2006. Plague and the End of Antiquity: The Pandemic of 541–750. Cambridge: Cambridge University Press.
Little, L. K. 2011. Plague historians in lab coats. Past and Present 213: 267–290.Google Scholar
Liu, W., Li, Y., Learn, G. H., Rudicell, R. S., Robertson, J. D., et al. 2010. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467: 420–425.Google Scholar
Liu, W., Li, Y., Shaw, K. S., Learn, G. H., Plenderleith, L. J., Malenke, J. A., Sundararaman, S. A., et al. 2014. African origin of the malaria parasite Plasmodium vivax . Nature Communications 5(3346).Google Scholar
Lo Cascio, E., ed. 2012. L'Impatto della “Peste Antonina”. Santo Spirito [Bari]: Edipuglia.
Mark, S. 2002. Alexander the Great, seafaring, and the spread of leprosy. Journal of the History of Medicine and the Allied Sciences 57: 285–311.Google Scholar
Marshall, F. B., Dobney, K., Denham, T., and Capriles, J. M. 2014. Evaluating the roles of directed breeding and gene flow in animal domestication. Proceedings of the National Academy of Sciences 111(17): 6153–6158.Google Scholar
Masson, M., Molnár, E., Donoghue, H. D., Besra, G. S., Minnikin, D. E., Wu, H. H. T., Lee, O. Y.-C., et al. 2013. Osteological and biomolecular evidence of a 7000-year old case of hypertrophic pulmonary osteopathy secondary to tuberculosis from Neolithic Hungary. PLoS ONE 8(10): e78252.Google Scholar
McCaa, R. 1995. Spanish and Nahuatl views on smallpox and demographic catastrophe in Mexico. Journal of Interdisciplinary History 25(3): 397–431.Google Scholar
McCollum, A. M., Li, Y., Wilkins, K., Karem, K. L., Davidson, W. B., Paddock, C. D., Reynolds, M. G., Damon, I. K. 2014. Poxvirus viability and signatures in historical relics. Emerging Infectious Diseases 20(2): 177–184.Google Scholar
McNeill, J. R. 2010. Mosquito Empires: Ecology and War in the Greater Caribbean, 1640–1914. Cambridge: Cambridge University Press.
Mendum, T. A., Schuenemann, V. J., Roffey, S., Taylor, G., Wu, H., et al. 2014. Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic. BMC Genomics 15: 270.Google Scholar
Mitchell, P. D. 2013. The origins of human parasites: exploring the evidence for endoparasitism throughout human evolution. International Journal of Palaeopathology 3: 191–198.Google Scholar
Mitchell, S. 2014. A History of the Later Roman Empire, AD 284–641, 2nd ed. New York: Wiley-Blackwell.
Monot, M., Honoré, N., Garnier, T., Araoz, R., Coppée, J.-Y., Lacroix, C., Sow, S., et al. 2005. On the origin of leprosy. Science 308: 1140–42.Google Scholar
Monot, M., Honoré, N., Garnier, T., Zidane, N., Sherafi, D., Paniz-Mondolfi, A., Matsuoka, M. et al. 2009. Comparative genomic and phylogeographic analysis of Mycobacterium leprae . Nature Genetics 41: 1282–1289.Google Scholar
Müller, R., Roberts, C. A., and Brown, T. A. 2014. Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity. Proceedings of the Royal Society B 281: 20133236.Google Scholar
Orton, J., Mitchell, P., Klein, R., Steele, T., and Horsburgh, K. A. 2013. An early date for cattle from Namaqualand, South Africa: implications for the origins of herding in southern Africa. Antiquity 87: 108–120.Google Scholar
Packard, R. 1989. White Plague, Black Labor: Tuberculosis and the Political Economy of Health and Disease in South Africa. Berkeley: University of California Press.
Parsons, S. D. C., Drewe, J. A., Gey van Pittius, N. C., Warren, R. M., and van Helden, Paul D. 2013. Novel cause of tuberculosis in meerkats, South Africa. Emerging Infectious Diseases 19 (12), 2004–2007.Google Scholar
Pepin, J. 2011. The Origin of AIDS. Cambridge: Cambridge University Press.
Rasmussen, S., Allentoft, M. E., Nielsen, K., Orlando, L., Sikora, M., Sjögren, K. G., Pedersen, A. G., Schubert, M., Van Dam, A., Kapel, C. M. O., and Nielsen, H. B. 2015. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163(3): 571–582.Google Scholar
Rhazes [al-Razi, ca. 854–925 or 935]. 1848. A Treatise on the Smallpox and Measles, trans. Greenhill, William Alexander. London: Sydenham Society.
Riley, J. C. 2010. Smallpox and American Indians revisited. Journal of the History of Medicine and Allied Sciences 65(4): 445–477.Google Scholar
Robbins, G., Tripathy, V. M., Misra, V. N., Mohanty, R. K., Shinde, V. S., Gray, K. M., Schug, M. D. 2009. Ancient skeletal evidence for leprosy in India (2000 B.C.). PLoS ONE 4: e5669.Google Scholar
Robbins Schug, G., Blevins, K. E., Cox, B., Gray, K., and Mushrif-Tripathy, V. 2013. Infection, disease, and biosocial processes at the end of the Indus civilization. PLoS ONE 8(12): e84814.Google Scholar
Roberts, C. A. and Buikstra, J. E. 2003. The Bioarchaeology of Tuberculosis: A Global View on a Reemerging Disease. Gainesville: University Press of Florida.
Rubini, M., Zaio, P., and Roberts, C. A. 2014. Tuberculosis and leprosy in Italy. New skeletal evidence. Homo – Journal of Comparative Human Biology 65: 13–32.Google Scholar
Schuenemann, V. J., Singh, P., Mendum, T. A., Krause-Kyora, B., Jäger, G., Bos, K. I., Herbig, A., et al. 2013. Genome-wide comparison of medieval and modern Mycobacterium leprae . Science 341(6142): 179–183.Google Scholar
Sehgal, V. N. 2005. Lucio's phenomenon/erythema necroticans. International Journal of Dermatology 44(7): 602–605.Google Scholar
Seland, E. H. 2014. Archaeology of trade in the Western Indian Ocean, 300 BC–AD 700. Journal of Archaeological Research 22: 367–402.Google Scholar
Singh, P., Benjak, A., Schuenemann, V. J., Herbig, A., and Avanzia, C., et al. 2015. Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis . Proceedings of the National Academy of Sciences 112 (14): 4459–4464.Google Scholar
Smith, A. B. 2005. African Herders: Emergence of Pastoral Traditions. Walnut Creek: Altamira.
Smith, A. B. 2006. Kasteelberg: A pastoralist sealing camp in Western Cape Province, South Africa. Journal of Island and Coastal Archaeology 1: 109–122.Google Scholar
Smith, A. B. 2008. Pastoral origins at the Cape, South Africa: influences and arguments. Southern African Humanities 20: 49–60.Google Scholar
Stone, A. C., Wilbur, A. K, Buikstra, J. E., and Roberts, C. A. 2009. Tuberculosis and leprosy in perspective. Yearbook of Physical Anthropology 52: 66–94.Google Scholar
Strouhal, E. 1996. Traces of a smallpox epidemic in the family of Ramses V of the Egyptian 20th Dynasty. Anthropologie 34: 315–319.Google Scholar
Sundararaman, S. A., Plenderleith, L. J., Liu, W., Loy, D. E., Learn, G. H., Li, Y. et al. 2016. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nature Communications 7:11078.Google Scholar
UNAIDS. 2013. Global report: UNAIDS report on the global AIDS epidemic 2013. Geneva: Joint United Nations Programme on HIV/AIDS (UNAIDS).
van Ingen, J., Rahim, Z., Mulder, A., Boeree, M. J., Simeone, R., Brosch, R., and van Soolingen, D. 2012. Characterization of Mycobacterium orygis as M. tuberculosis Complex subspecies. Emerging Infectious Diseases 18(4): 653–655.Google Scholar
Varlık, N. 2014. New science and old sources: Why the Ottoman experience of plague matters. The Medieval Globe 1(1): 130–153.Google Scholar
Vera-Cabrera, L., Escalante-Fuentes, W. G., Gomez-Flores, M., Ocampo-Candiani, J., Busso, P., Singh, P., and Cole, S. T. 2011. Case of diffuse lepromatous leprosy associated with Mycobacterium lepromatosis . Journal of Clinical Microbiology 49(12): 4366–4368.Google Scholar
Wagner, D. M., Klunk, J., Harbeck, M., Devault, A., Waglechner, N., Sahl, J. W., Enk, J., et al. 2014. Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis. The Lancet Infectious Diseases 14: 319–326.Google Scholar
WHO [World Health Organization]. 2013. Global tuberculosis report 2013. Geneva: World Health Organization.
WHO [World Health Organization]. 2014. Global leprosy update, 2013: reducing disease burden. Weekly epidemiological record/Relevé épidémiologique hebdomadaire 89 (36): 389–400.
Wirth, T., Hildebrand, F., Allix-Béguec, C., Wölbeling, F., Kubica, T., et al. 2008. Origin, Spread and Demography of the Mycobacterium tuberculosis Complex. PLoS Pathog 4(9): e1000160.Google Scholar
Wolfe, N. D., Dunavan, C. P., and Diamond, J. 2007. Origins of major human infectious diseases. Nature 447: 279–283.Google Scholar
Zangrando, A. F., Panarello, H., and Piana, E. L. 2014. Zooarchaeological and stable isotopic assessments on pinniped–human relations in the Beagle Channel (Tierra del Fuego, Southern South America). International Journal of Osteoarchaeology 24(2): 231–244.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×