Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T19:21:15.687Z Has data issue: false hasContentIssue false

25 - Human Biology, Energetics, and the Human Brain

Published online by Cambridge University Press:  05 August 2012

Michael P. Muehlenbein
Affiliation:
Indiana University, Bloomington
Get access

Summary

INTRODUCTION

Human biology has made great progress in applying modern techniques to the understanding of human biological variation at the genetic, physiological, developmental, and phenotypic levels. For instance, rather than only asking about disease symptoms, human biologists measure immune makers which represent an underlying element of health (McDade et al., 2005; Muehlenbein et al., 2005; Snodgrass et al., 2007); rather than simply measuring body fat, they determine leptin levels as a signal of energy stores (Bribiescas, 2005). In addition to collecting self-reports of stress, they assay for salivary cortisol (Nepomnaschy et al., 2006; Pike and Williams, 2006). Along with collecting reproductive histories, they measure gonadal steroids including estrogen, progesterone (Lipson and Ellison, 1996), and testosterone (Campbell et al., 2006).

At the same time, human biologists have also become more evolutionarily sophisticated as they have adopted a life history perspective (Hill, 1993; Kuzawa, 2007). There is a growing understanding that much of the variation in the phases of the life cycle, starting in utero, and moving through childhood, adolescence, adulthood, and aging represents an inter-related response to energetic availability. The impact of nutrition during fetal development, in particular may have important implications for the rest of the life cycle (Jasienska et al., 2006; Kuzawa, 2007). Furthermore, the understanding that growth and development, immune function, and reproductive function are responsive to energetics means that human biologists can use energy as a currency through which the basic functions of growth, maintenance, and reproduction can be traded off (Hill, 1993).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex. New York: Cambridge University Press.CrossRefGoogle Scholar
Aiello, L. and Wheeler, P. (1995). The expensive-tissue hypothesis; the brain and digestive system in human and primate evolution. Current Anthropology, 36, 199–221.CrossRefGoogle Scholar
Alhaj, H. A., Massey, A. E. and McAllister-Williams, R. H. (2006). Effects of DHEA administration on episodic memory, cortisol and mood in healthy young men: a double-blind, placebo-controlled study. Psychopharmacology (Berlin), 188, 541–551.CrossRefGoogle ScholarPubMed
Allman, J. M., Hakeem, A., Erwin, J. M., et al. (2001). The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Annals of the New York Academy of Science, 935, 107–117.CrossRefGoogle ScholarPubMed
Armstrong, E. (1983). Relative brain size and metabolism in mammals. Science, 220, 1302–1304.CrossRefGoogle ScholarPubMed
Armstrong, E. (1985). Allometric considerations of the adult mammalian brain, with emphasis on primates. In Size and Scaling in Primate Biology, Jungers, W. L. (ed.). New York: Plenum, pp. 115–146.CrossRefGoogle Scholar
Attwell, D. and Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21, 1133–1145.CrossRefGoogle Scholar
Beals, K. L., Smith, C. L. and Dodd, S. M. (1984). Brain size, cranial morphology, climate, and time machines. Current Anthropology, 25, 301–328.CrossRefGoogle Scholar
Benitez-Bribiesca, L., Rosa-Alvarez, I. and Mansilla-Olivares, A. (1999). Dendritic spine pathology in infants with severe protein-calorie malnutrition. Pediatrics, 104, e21.CrossRefGoogle ScholarPubMed
Bennington, J. H. and Heller, H. C. (1995). Restoration of brain energy metabolism as the function of sleep. Progress in Neurobiology, 45, 347–360.CrossRefGoogle Scholar
Bittar, P. G., Charnay, Y., Pellerin, L., et al. (1996). Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. Journal of Cerebral Blood Flow and Metabolism, 16, 1079–1089.CrossRefGoogle ScholarPubMed
Bogin, B. (1999). Evolutionary perspective on human growth. Annual Review of Anthropology, 28, 109–153.CrossRefGoogle ScholarPubMed
Braitenberg, V. and Schuz, A. (1998). Cortex: Statistics and Geometry of Neuronal Connectivity. New York: Springer.CrossRefGoogle Scholar
Bramble, D. M. and Lieberman, D. E. (2005). Endurance running and the evolution ofHomo. Nature, 432, 345–352.CrossRefGoogle Scholar
Bribiescas, R. G. (2005). Serum leptin levels in Aché Amerindian females with normal adiposity are not significantly different from American anorexia nervosa patients. American Journal of Human Biology, 17, 207–210.CrossRefGoogle Scholar
Broadhurst, C. L., Wang, Y., Crawford, M. A., et al. (2002). Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comparative Biochemistry and Physiology B: Biochemistry and Molecular Biology, 131, 653–673.CrossRefGoogle ScholarPubMed
Brown, A. M. (2004). Brain glycogen re-awakened. Journal of Neurochemistry, 89, 537–552.CrossRefGoogle ScholarPubMed
Brown, A. M. and Ransom, B. R. (2007). Astrocyte glycogen and brain energy metabolism. Glia, 55, 1263–1271.CrossRefGoogle ScholarPubMed
Burki, F. and Kaessmann, H. (2004). Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nature Genetics, 36, 1061–1063.CrossRefGoogle ScholarPubMed
Calabrese, B., Wilson, M. S. and Halpain, S. (2006). Development and regulation of dendritic spine synapses. Physiology (Bethesda), 21, 38–47.Google ScholarPubMed
Campbell, B. C. and Mbzivo, M. T. (2006). Testosterone, reproductive maturation and somatic growth among Zimbabwe boys. Annals of Human Biology, 33, 17–25.CrossRefGoogle ScholarPubMed
Campbell, B. C., Leslie, P. W., Little, M. A., et al. (2005). Pubertal timing, hormones and body composition among adolescent Turkana males. American Journal of Physical Anthropology, 128, 896–905.CrossRefGoogle ScholarPubMed
Campbell, B. C., Gray, P. B. and Ellison, P. T. (2006). Age-related changes in body composition and salivary testosterone among Ariaal males. Aging: Clinical and Experimental Research, 18, 470–476.Google Scholar
Carlson, B. A. and Kingston, J. D. (2007). Docosahexaenoic acid, the aquatic diet, and hominin encephalization: difficulties in establishing evolutionary links. American Journal of Human Biology, 19, 132–141.CrossRefGoogle ScholarPubMed
Carmody, D. P., Dunn, S. M., Boddie-Willis, A. S., et al. (2004). A quantitative measure of myelination development in infants, using MR images. Neuroradiology, 46, 781–786.CrossRefGoogle ScholarPubMed
Caviness, V. S., Kennedy, D. N., Richelme, C., et al. (1996). The human brain age 7–11 years: a volumetric analysis based on magnetic resonance images. Cerebral Cortex, 6, 726–736.CrossRefGoogle ScholarPubMed
Chambers, R. A., Taylor, J. R. and Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. American Journal of Psychiatry, 160, 1041–1052.CrossRefGoogle ScholarPubMed
Chugani, H. T. (1998). Critical period of brain development: studies of cerebral glucose utilization with PET. Preventative Medicine, 27, 184–188.CrossRefGoogle ScholarPubMed
Clarke, D. D. and Sokoloff, L. (1999). Circulation and energy metabolism of the brain. In Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, Siegel, G. J., Agranoff, B. W., Albers, R. W., et al. (eds), 6th edn. Philadelphia: Lippincott-Raven.Google Scholar
Crews, F., He, J. and Hodge, C. (2007). Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacology, Biochemistry and Behavior, 86, 189–199.CrossRefGoogle ScholarPubMed
Crile, G. W. (1941). Intelligence, Power and Personality. New York: Wittlesy.Google Scholar
Cunnane, S. C. and Crawford, M. A. (2003). Survival of the fattest: fat babies were the key to evolution of the large human brain. Comparative Biochemistry and Physiology A: Molecular and Integrative Physiology, 136, 17–26.CrossRefGoogle ScholarPubMed
Daikhan, Y. and Yudkoff, M. (2000). Compartmentation of brain glutamate metabolism in neurons and glia. Journal of Nutrition, 130, 1026S–1031S.CrossRefGoogle Scholar
Dalsgaard, M. K. (2006). Fueling cerebral activity in exercising man. Journal of Cerebral Blood Flow and Metabolism, 26, 731–750.CrossRefGoogle Scholar
Dalsgaard, M. K., Quistorff, B., Danielsen, E. R., et al. (2004). A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. Journal of Physiology, 554, 571–578.CrossRefGoogle Scholar
Dalsgaard, M. K., Madsen, F. F., Secher, N. H., et al. (2007). High glycogen levels in the hippocampus of patients with epilepsy. Journal of Cerebral Blood Flow and Metabolism, 27, 1137–1141.CrossRefGoogle ScholarPubMed
Djuricic, B., Masirevic, G. and Susic, V. (1977). Paradoxical sleep deprivation: effects on brain energy metabolism. Archives Internationale de Physiologie et de Biochemie, 85, 213–219.CrossRefGoogle ScholarPubMed
Dufour, D. L. (1997). Nutrition, activity, and health in children. Annual Review of Anthropology, 26, 541–565.CrossRefGoogle Scholar
Edmond, J. (1992). Energy metabolism in developing brain cells. Canadian Journal of Physiology and Pharmacology, 70, S118–S129.CrossRefGoogle ScholarPubMed
Elia, M. (1992). Organ and tissue contribution to metabolic rate. In Energy Metabolism: Tissue Determinants and Cellular Corollaries, Kinner, J. M. and Tucker, H. N. (eds). New York: Raven Press, pp. 61–79.Google Scholar
Ellison, P. T. (2001). On Fertile Ground: a Natural History of Reproduction. Cambridge, MA: Harvard University Press.Google Scholar
Emery, P. W. (2005). Metabolic changes in malnutrition. Eye, 19, 1029–1034.CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., Peraza, D. M., et al. (2006). Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51, 871–882.CrossRefGoogle ScholarPubMed
Fehm, H. L., Kern, W. and Peters, A. (2006). The selfish brain: competition for energy resources. Progress in Brain Research, 153, 129–140.CrossRefGoogle ScholarPubMed
Folbergrová, J., Lowry, O. H. and Passonneau, J. V. (1970). Changes in metabolites of the energy reserves in individual layers of mouse cerebral cortex and subjacent white matter during ischemia and anaesthesia. Journal of Neurochemistry, 17, 1155–1162.CrossRefGoogle ScholarPubMed
Fox, M. D., Snyder, A. Z., Vincent, J. L., et al. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678.CrossRefGoogle ScholarPubMed
Franken, P., Gip, P., Hagiwara, G., et al. (2003). Changes in brain glycogen after sleep deprivation vary with genotype. American Journal of Physiology. Regulatory, Integrative, and Comparative Physiology, 285, R413–R419.CrossRefGoogle ScholarPubMed
Frye, C. A. (2007). Some rewarding effects of androgens may be mediated by actions of its 5α-reduced metabolite 3α-androstanediol. Pharmacology, Biochemistry and Behavior, 86, 354–367.CrossRefGoogle ScholarPubMed
Gallinat, J., Kunz, D., Lang, U. E., et al. (2007). Association between cerebral glutamate and human behaviour: the sensation seeking personality trait. NeuroImage, 34, 671–678.CrossRefGoogle ScholarPubMed
Gip, P., Hagiwara, G., Ruby, N. F., et al. (2002). Sleep deprivation decreases glycogen in the cerebellum but not in the cortex of young rats. American Journal of Physiology. Regulatory, Integrative, and Comparative Physiology, 283, R54–R59.CrossRefGoogle Scholar
Goda, Y. and Davis, G. W. (2003). Mechanisms of synapse assembly and disassembly. Neuron, 40, 243–264.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 817–819.CrossRefGoogle ScholarPubMed
Greicius, M. D. and Menon, V. (2004). Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. Journal of Cognitive Neuroscience, 16, 1484–1492.CrossRefGoogle ScholarPubMed
Greicius, M. D., Krasnow, B., Reiss, A. L., et al. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258.CrossRefGoogle ScholarPubMed
Gruetter, R. (2003). Glycogen: the forgotten cerebral energy store. Journal of Neuroscience Research, 74, 179–183.CrossRefGoogle ScholarPubMed
Hazin, A. N., Alves, J. G. and Rodrigues Falbo, A. (2007). The myelination process in severely malnourished children: MRI findings. International Journal of Neuroscience, 117, 1209–1214.CrossRefGoogle ScholarPubMed
Hill, K. (1993). Life history theory and evolutionary anthropology. Evolutionary Anthropology, 2, 78–88.CrossRefGoogle Scholar
Hilton, N. Z., Harris, G. T. and Rice, M. E. (2000). The functions of aggression by male teenagers. Journal of Personality and Social Psychology, 79, 988–994.CrossRefGoogle ScholarPubMed
Holliday, M. A. (1986). Body composition and energy needs during growth. In Human Growth: a Comprehensive Treatise, Falkner, F. and Tanner, J. M. (eds). New York: Plenum Press.Google Scholar
Horovitz, S. G., Fukunaga, M., Zwart, J. A., et al. (2007). Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG-fMRI study. Human Brain Mapping, 29, 671–682.CrossRefGoogle Scholar
Huttenlocher, P. R. (1984). Synapse elimination and plasticity in developing human cerebral cortex. American Journal of Mental Deficiency, 88, 488–496.Google ScholarPubMed
Huttenlocher, P. R. and Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167–178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Jasienska, G., Thune, I. and Ellison, P. T. (2006). Fatness at birth predicts adult susceptibility to ovarian suppression: an empirical test of the Predictive Adaptive Response hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12759–12762.CrossRefGoogle ScholarPubMed
Karnovsky, M. L., Reich, P., Anchors, J. M., et al. (1983). Changes in brain glycogen during slow-wave sleep in the rat. Journal of Neurochemistry, 41, 1498–1501.CrossRefGoogle ScholarPubMed
Kemppainen, J., Aalto, S., Fujimoto, T., et al. (2005). High intensity exercise decreases global brain glucose uptake in humans. Journal of Physiology, 568, 323–332.CrossRefGoogle ScholarPubMed
Kennedy, G. E. (2005). From the ape's dilemma to the weanling's dilemma: early weaning and its evolutionary context. Journal of Human Evolution, 48, 123–145.CrossRefGoogle ScholarPubMed
Kong, J., Shepel, P. N., Holden, C. P., et al. (2002). Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. Journal of Neuroscience, 22, 5581–5587.CrossRefGoogle ScholarPubMed
Kuzawa, C. W. (1998). Adipose tissue in human infancy and childhood: an evolutionary perspective. Yearbook of Physical Anthropology, 41, 177–206.3.0.CO;2-B>CrossRefGoogle Scholar
Kuzawa, C. W. (2007). Developmental origins of life history: growth, productivity, and reproduction. American Journal of Human Biology, 19, 654–661.CrossRefGoogle ScholarPubMed
Lasiuk, G. C. and Hegadoren, K. M. (2007). The effects of estradiol on central serotonergic systems and its relationship to mood in women. Biological Research for Nursing, 9, 147–160.CrossRefGoogle ScholarPubMed
Lauriat, T. L., Schmeidler, J. and McInnes, L. A. (2007). Early rapid rise in EAAT2 expression follows the period of maximal seizure susceptibility in human brain. Neuroscience Letters, 412, 89–94.CrossRefGoogle ScholarPubMed
Leigh, S. R. (2004). Brain growth, life history, and cognition in primate and human evolution. American Journal of Primatology, 62, 139–164.CrossRefGoogle ScholarPubMed
Leonard, W. R. and Ulijaszek, S. J. (2002). Energetics and evolution: an emerging research domain. American Journal of Human Biology, 14, 547–550.CrossRefGoogle Scholar
Leonard, W. R., Robertson, M. L., Snodgrass, J. J., et al. (2003). Metabolic correlates of hominid brain evolution. Comparative Biochemistry and Physiology A: Molecular and Integrative Physiology, 136, 5–15.CrossRefGoogle ScholarPubMed
Leonard, W. R., Snodgrass, J. J. and Robertson, M. L. (2007). Effects of brain evolution on human nutrition and metabolism. Annual Review of Nutrition, 27, 311–327.CrossRefGoogle ScholarPubMed
Lieberman, D. E. and Bramble, D. M. (2007). The evolution of marathon running capabilities in humans. Sports Medicine, 37, 288–290.CrossRefGoogle ScholarPubMed
Lipson, S. F. and Ellison, P. T. (1996). Comparison of salivary steroid profiles in naturally occurring conception and non-conception cycles. Human Reproduction, 11, 2090–2096.CrossRefGoogle ScholarPubMed
Lipton, P. (1989). Regulation of glycogen in the dentate gyrus of the in vitro guinea pig hippocampus; effect of combined deprivation of glucose and oxygen. Journal of Neuroscience Methods, 28, 147–154.CrossRefGoogle ScholarPubMed
Madsen, P. L. and Vorstrup, S. (1991). Cerebral blood flow and metabolism during sleep. Cerebrovascular and Brain Metabolism Reviews, 3, 281–296.Google ScholarPubMed
Madsen, P. L., Schmidt, J. F., Wildschiodtz, G., et al. (1991). Cerebral O2 metabolism and cerebral blood flow in humans during sleep and rapid-eye-movement sleep. Journal of Applied Physiology, 70, 2597–2601.CrossRefGoogle ScholarPubMed
Magistretti, P. J. (2006). Neuron-glia metabolic coupling and plasticity. Journal of Experimental Biology, 209, 2304–2311.CrossRefGoogle ScholarPubMed
Mantini, D., Perrucci, M. G., Del Gratta, C., et al. (2007). Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 104, 13170–13175.CrossRefGoogle ScholarPubMed
Margulies, D. S., Kelly, A. M., Uddin, L. Q., et al. (2007). Mapping the functional connectivity of anterior cingulate cortex. NeuroImage, 37, 579–588.CrossRefGoogle ScholarPubMed
Martin, R. D. (1981). Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature, 293, 57–60.CrossRefGoogle ScholarPubMed
Martin, R. D. (1989). Evolution of the brain in early hominids. Ossa, 4, 49–62.Google Scholar
Martin, R. D. (2007). The evolution of human reproduction: a primatological perspective. American Journal of Physical Anthropology, 134, 59–84.CrossRefGoogle Scholar
Mason, M. F., Norton, M. I., Horn, J. D., et al. (2007). Wandering minds: the default network and stimulus-independent thought. Science, 315, 393–395.CrossRefGoogle ScholarPubMed
McDade, T. W., Leonard, W. R., Burhop, J., et al. (2005). Predictors of C-reactive protein in Tsimane' 2 to 15 year-olds in lowland Bolivia. American Journal of Physical Anthropology, 128, 906–913.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2006). Sleep deprivation as a neurobiologic and physiologic stressor: allostasis and allostatic load. Metabolism, 55, S20–S23.CrossRefGoogle ScholarPubMed
Medina, J. M. and Tabernero, A. (2005). Lactate utilization by brain cells and its role in CNS development. Journal of Neuroscience Research, 79, 2–10.CrossRefGoogle ScholarPubMed
Meikle, A., Roby, L. M. and Stollery, B. (2004). The impact of glucose ingestion and gluco-regulatory control on cognitive performance: a comparison of young and middle aged adults. Human Psychopharmacology, 19, 523–535.CrossRefGoogle Scholar
Melø, T. M., Nehlig, A. and Sonnewald, U. (2006). Neuronal-glial interactions in rats fed a ketogenic diet. Neurochemistry International, 48, 498–507.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P., Algier, J., Cogswell, F., et al. (2005). The reproductive endocrine response to Plasmodium vivax infection in Hondurans. American Journal of Tropical Medicine and Hygiene, 73, 178–187.Google ScholarPubMed
Nehlig, A. (2004). Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70, 265–275.CrossRefGoogle ScholarPubMed
Nepomnaschy, P. A., Welch, K. B., McConnell, D. S., et al. (2006). Cortisol levels and very early pregnancy loss in humans. Proceedings of the National Academy of Sciences of the United States of America, 103, 3938–3942.CrossRefGoogle ScholarPubMed
Orentreich, N., Brind, J. L., Rizer, R. L., et al. (1984). Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. Journal of Clinical Endocrinology and Metabolism, 59, 551–555.CrossRefGoogle ScholarPubMed
Ostovich, J. M. and Sabini, J. (2005). Timing of puberty and sexuality in men and women. Archives of Sexual Behavior, 34, 197–206.CrossRefGoogle ScholarPubMed
Oz, G., Seaquist, E. R., Kumar, A., et al. (2007). Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. American Journal of Physiology. Endocrinology and Metabolism, 292, E946–E951.CrossRefGoogle ScholarPubMed
Park, M., Salgado, J. M., Ostroff, L., et al. (2006). Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron, 52, 817–830.CrossRefGoogle ScholarPubMed
Patel, A. B., Graaf, R. A., Mason, G. F., et al. (2005). The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102, 5588–5593.CrossRefGoogle ScholarPubMed
Pellerin, L., Pellegri, G., Bittar, P. G., et al. (1998). Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Developmental Neuroscience, 20, 291–299.CrossRefGoogle ScholarPubMed
Pellerin, L., Bouzier-Sore, A. K., Aubert, A., et al. (2007). Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia, 55, 1251–1262.CrossRefGoogle ScholarPubMed
Pelligri, G., Rossier, C., Magistretti, P. J., et al. (1996). Cloning, localization, and induction of mouse brain glycogen synthase. Brain Research and Molecular Brain Research, 38, 191–199.CrossRefGoogle Scholar
Peters, A., Schweiger, U., Pellerin, L., et al. (2004). The selfish brain: competition for energy resources. Neuroscience and Biobehavioral Reviews, 28, 143–180.CrossRefGoogle ScholarPubMed
Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., et al. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828–834.CrossRefGoogle Scholar
Phelps, C. H.(1972). Barbiturate-induced glycogen accumulation in brain. An electron microscopic study. Brain Research, 39, 225–234.CrossRefGoogle Scholar
Pike, I. L. and Williams, S. R. (2006). Incorporating psychosocial health into biocultural models: preliminary findings from Turkana women of Kenya. American Journal of Human Biology, 18, 729–740.CrossRefGoogle ScholarPubMed
Plaitakis, A., Spanaki, C., Mastorodemos, V., et al. (2003). Study of structure-function relationships in human glutamate dehydrogenases reveals novel molecular mechanisms for the regulation of the nerve tissue-specific (GLUD2) isoenzyme. Neurochemistry International, 43, 401–410.CrossRefGoogle ScholarPubMed
Posner, M. I. (2005). Genes and experience shape brain networks of conscious control. Progress in Brain Research, 150, 173–183.CrossRefGoogle ScholarPubMed
Posner, M. I. and Rothbart, M. K. (1998). Attention, self-regulation and consciousness. Proceedings of the Royal Society of London. Series B, 353, 1915–1927.Google Scholar
Raichle, M. E. and Gusnard, D. A. (2002). Appraising the brain's energy budget. Proceedings of the National Academy of Sciences of the United States of America, 99, 10237–10239.CrossRefGoogle ScholarPubMed
Raichle, M. E. and Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–476.CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., et al. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.CrossRefGoogle ScholarPubMed
Rao, J., Oz, G. and Sequist, E. R. (2006). Regulation of cerebral glucose metabolism. Minerva Endocrinologica, 31, 149–158.Google ScholarPubMed
Riby, L. M., McMurtrie, H., Smallwood, J., et al. (2006). The facilitative effects of glucose ingestion on memory retrieval in younger and older adults: is task difficulty or task domain critical?British Journal of Nutrition, 95, 414–420.CrossRefGoogle ScholarPubMed
Rocher, A. B., Chapon, F., Blaizot, X., et al. (2003). Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. NeuroImage, 20, 1894–1898.CrossRefGoogle ScholarPubMed
Sakai, K. L. (2005). Language acquisition and brain development. Science, 310, 815–819.CrossRefGoogle ScholarPubMed
Schore, A. (1994). Affect Regulation and the Origin of the Self: the Neurobiology of Emotional Development. Hillsdale, NJ: Erlbaum.Google Scholar
Schore, A. (1997). Early origins of the nonlinear right brain and the development of a predisposition to psychiatric disorders. Development and Psychopathology, 9, 595–631.CrossRefGoogle Scholar
Schore, A. (2002). Advances in neuropsychoanalysis, attachment theory, and trauma research: implications for self psychology. Psychoanalytic Inquiry, 22, 433–484.CrossRefGoogle Scholar
Schurr, A., Miller, J. J., Payne, R. S., et al. (1999). An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. Journal of Neuroscience, 19, 34–39.CrossRefGoogle ScholarPubMed
Scott, L., Kruse, M. S., Forssberg, H., et al. (2002). Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 99, 1661–1664.CrossRefGoogle ScholarPubMed
Segovia, G., Yague, A. G., Garcia-Verdugo, J. M., et al. (2006). Environmental enrichment promotes neurogenesis and changes in extracellular concentrations of glutamate and GABA in the hippocampus of aged rats. Brain Research Bulletin, 70, 8–14.CrossRefGoogle ScholarPubMed
Shen, N. R., Petersen, K., Behar, K. L., et al. (1999). Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proceedings of the National Academy of Sciences of the United States of America, 96, 8235–8240.CrossRefGoogle ScholarPubMed
Shulman, R. G., Hyder, F. and Rothman, D. L. (2001). Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proceedings of the National Academy of Sciences of the United States of America, 98, 6417–6422.CrossRefGoogle ScholarPubMed
Shulman, R. G., Rothman, D. L., Behar, K. L., et al. (2004). Energetic basis of brain activity: implications for neuroimaging. Trends in Neuroscience, 27, 489–495.CrossRefGoogle ScholarPubMed
Sibson, N. R., Dhankhar, A., Mason, G. F., et al. (1998). Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proceedings of the National Academy of Sciences of the United States of America, 95, 316–321.CrossRefGoogle ScholarPubMed
Sisk, C. L. and Foster, D. L. (2004). The neural basis of puberty and adolescence. Nature Neuroscience, 7, 1040–1047.CrossRefGoogle ScholarPubMed
Sisk, C. L. and Zehr, J. L. (2005). Pubertal hormones organize the adolescent brain and behavior. Frontiers of Neuroendocrinology, 26, 163–174.CrossRefGoogle ScholarPubMed
Snodgrass, J. J., Leonard, W. R., Tarskaia, L. A., et al. (2007). Anthropometric correlates of C-reactive protein among indigenous Siberians. Journal of Physiological Anthropology, 26, 241–246.CrossRefGoogle ScholarPubMed
Sowell, E. R., Thompson, P. M., Holmes, C. J., et al. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859–861.CrossRefGoogle ScholarPubMed
Sulcova, J., Hill, M., Hampl, R., et al. (1997). Age and sex related differences in serum levels of unconjugated dehydroepiandrosterone and its sulfate in normal subjects. Journal of Endocrinology, 154, 57–62.CrossRefGoogle ScholarPubMed
Trudeau, L. E. and Gutiérrez, R. (2007). On cotransmission and neurotransmitter phenotype plasticity. Molecular Interventions, 7, 138–146.CrossRefGoogle ScholarPubMed
Ullian, E. M., Christopherson, K. S. and Barres, B. A. (2004). Role for glia in synaptogenesis. Glia, 47, 209–216.CrossRefGoogle ScholarPubMed
Bogaert, P., Wikler, D., Damhaut, P., et al. (1998). Regional changes in glucose metabolism during brain development from the age of 6 years. NeuroImage, 8, 62–68.CrossRefGoogle ScholarPubMed
Itallie, T. B. and Nufert, T. H. (2003). Ketones: metabolism's ugly duckling. Nutrition Review, 61, 327–341.Google Scholar
Vizmanos, B. C. and Marti-Henneberg, C. (2000). Puberty begins with a characteristic body fat mass in each sex. European Journal of Clinical Nutrition, 54, 203–208.CrossRefGoogle ScholarPubMed
Waylen, A. and Wolke, D. (2004). Sex ‘n’ drugs ‘n’ rock ‘n’ roll: the meaning and social consequences of pubertal timing. European Journal of Endocrinology, 151, U151–U159.CrossRefGoogle ScholarPubMed
Winter, B., Breitenstein, C., Mooren, F. C., et al. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87, 597–609.CrossRefGoogle ScholarPubMed
Wood, R. I. (2004). Reinforcing aspects of androgens. Physiology and Behavior, 83, 279–289.CrossRefGoogle ScholarPubMed
Yeakel, J. D., Bennett, N. C., Koch, P. L., et al. (2007). The isotopic ecology of African mole rats informs hypotheses on the evolution of human diet. Proceedings of the Royal Society of London. Series B, 274, 1723–1730.Google Scholar
Ziv, N. E. and Smith, S. J. (1996). Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron, 17, 91–102.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×