Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T21:18:52.988Z Has data issue: false hasContentIssue false

55 - EBV-induced oncogenesis

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Nancy Raab-Traub
Affiliation:
Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

The Epstein–Barr virus (EBV) is a human herpesvirus that is a ubiquitous infectious agent, infecting greater than 90% of the world's population (Henle et al., 1969). The majority of infections occur early in life without significant illness. However, EBV is clearly an important factor in multiple human cancers. This dichotomy raises the question as to what are the unique aspects of infection in those who develop cancers. The study of EBV and its associated tumors points to specific interactions between environmental, genetic, and viral factors.

Many of the malignancies associated with EBV develop in the setting of immunosuppression or have endemic patterns of incidence (Raab-Traub, 1996). EBV has potent growth transforming properties in vitro where it efficiently induces permanent growth of infected lymphocytes (Nilsson et al., 1971). Therefore it is not surprising that EBV is clearly the etiologic factor in post-transplant lymphoma and a subset of AIDS-associated lymphomas.

The endemic patterns of incidence characteristic of many EBV-associated tumors were initially apparent as EBV was originally isolated from samples of African Burkitt's Lymphoma (BL) (Epstein et al., 1964). This childhood tumor develops with high incidence in subequatorial Africa (Burkitt, 1962a). EBV was subsequently identified in nasopharyngeal carcinoma (NPC), a major tumor that occurs with extraordinarily high incidence in the southern Chinese and with elevated incidence in Inuit populations and in Mediterranean Africa (Henle et al., 1978a; Wolf et al., 1973).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 986 - 1006
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Hamid, M., Chen, J. J., Constantine, N.et al. (1992). EBV strain variation: geographical distribution and relation to disease state. Virol., 190, 168–175.CrossRefGoogle ScholarPubMed
Adams, A. and Lindahl, T. (1975). Intracellular forms of Epstein–Barr virus DNA in Raji cells. IARC Sci. Publ., 11, 125–132.Google Scholar
Ambinder, R. F., (2001). Epstein–Barr virus associated lymphoproliferations in the AIDS setting. Eur. J. Cancer, 37, 1209–1216.CrossRefGoogle ScholarPubMed
Ambinder, R. F. and Mann, R. B. (1994). Epstein–Barr-encoded RNA in situ hybridization: diagnostic applications. Hum. Pathol., 25, 602–605.CrossRefGoogle ScholarPubMed
Ambinder, R. F., Lemas, M. V., Moore, S.et al. (1999). Epstein–Barr virus and lymphoma. Cancer Treat Res., 99, 27–45.CrossRefGoogle ScholarPubMed
Babcock, G. J., Hochberg, D., and Thorley-Lawson, A. D., (2000a). The expression pattern of Epstein–Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity, 13, 497–506.CrossRefGoogle Scholar
Babcock, G. J. and Thorley-Lawson, D. A. (2000b). Tonsillar memory B cells, latently infected with Epstein–Barr virus, express the restricted pattern of latent genes previously found only in Epstein–Barr virus-associated tumors. Proc. Natl Acad. Sci. USA, 97, 12250–12255.CrossRefGoogle Scholar
Bhatia, K., Raj, A., Guitierrez, M. I., Judde, J. G.et al. (1996). Variation in the sequence of Epstein Barr virus nuclear antigen 1 in normal peripheral blood lymphocytes and in Burkitt's lymphomas. Oncogene, 13, 177–181.Google ScholarPubMed
Blaumueller, C. M., Zagouras, P., and Artavanis-Tsakonas, S.(1997). Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell, 90, 281–291.CrossRefGoogle ScholarPubMed
, Bollard C. M., , S. K., Huls, M. H., Leen, A.et al. (2004). The generation and characterization of LMP2-specific CTLs for use as adoptive transfer from patients with relapsed EBV-positive Hodgkin disease. J. Immunother., 27, 317–327.Google Scholar
Brooks, L. A., Lear, A. L., Young, L. S.et al. (1993). Transcripts from the Epstein–Barr virus BamHI A fragment are detectable in all three forms of virus latency. J. Virol., 67, 3182–3190.Google ScholarPubMed
Brown, N. A., Liu, C. R., Wang, Y. F.et al. (1988). B-cell lymphoproliferation and lymphomagenesis are associated with clonotypic intracellular terminal regions of the Epstein–Barr virus. J. Virol., 62, 962–969.Google ScholarPubMed
Buell, P., (1974). The effect of migration on the risk of developing nasopharyngeal carcinoma. Cancer Res., 34, 1189–1191.Google Scholar
Burkitt, D., (1962a). A children's cancer dependent on climatic factors. Nauchni. Tr. Vissh. Med. Inst. Sofiia, 194, 232–234.Google Scholar
Burkitt, D., (1962b). A lymphoma syndrome in African children. Ann. R. Coll. Surg. Engl., 30, 211–219.Google Scholar
Busson, P., Mccoy, R., Sadler, R.et al. (1992). Consistent transcription of the Epstein–Barr virus LMP2 gene in nasopharyngeal carcinoma. J. Virol., 66, 3257–3262.Google ScholarPubMed
Caldwell, R. G., Wilson, J. B., Anderson, S. J.et al. (1998). Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity, 9, 405–411.CrossRefGoogle ScholarPubMed
Chapman, A. L. and Rickinson, A. B. (1998). Epstein–Barr virus in Hodgkin's disease. Ann. Oncol., 9 Suppl 5, S5–S16.CrossRefGoogle ScholarPubMed
Chen, H., Lee, J. M., Wang, Y.et al. (1999a). The Epstein–Barr virus latency BamHI-Q promoter is positively regulated by STATs and Zta interference with JAK/STAT activation leads to loss of BamHI-Q promoter activity. Proc. Natl Acad. Sci. USA, 96, 9339–9344.CrossRefGoogle Scholar
Chen, H., Smith, P., Ambinder, R. F., and Hayward, S. D. (1999b). Expression of Epstein–Barr virus BamHI-A rightward transcripts in latently infected B cells from peripheral blood. Blood, 93, 3026–3032.Google Scholar
Chen, H., Lee, J. M., Zong, Y.et al. (2001). Linkage between STAT regulation and Epstein–Barr virus gene expression in tumors. J. Virol., 75, 2929–2937.CrossRefGoogle ScholarPubMed
Chen, H., Cao, L., and Hayward, S. D. (2003). A positive autoregulatory loop of LMP1 expression and STAT activation in epithelial cells latently infected with Epstein–Barr virus. J. Virol., 77, 4139–4148.CrossRefGoogle ScholarPubMed
Chen, R. H., Ding, W. V., and Mccormick, F. (2000). Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase C. J. Biol. Chem., 275, 17894–17899.CrossRefGoogle ScholarPubMed
Cheng, Y., P. N., Lung, M. L., Hampton, G. et al. (1998). Functional evidence for a nasopharyngeal carcinoma tumour suppressor gene that maps at chromosome 3p21.3.
Cohen, J. I., Wang, F., Mannick, J., and Kieff, E. (1989). Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc. Natl Acad. Sci. USA, 86, 9558–9562.CrossRefGoogle ScholarPubMed
Cross, D. A., Alessi, D. R., Cohen, P.et al. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378, 785–789.CrossRefGoogle ScholarPubMed
Dalla-Favera, R., Lombardi, L., Pelicci, P. G.et al. (1987). Mechanism of activation and biological role of the c-myc oncogene in B-cell lymphomagenesis. Ann. N Y Acad. Sci., 511, 207–218.CrossRefGoogle ScholarPubMed
Dambaugh, T., Hennessy, K., Chamnankit, L.et al. (1984). U2 region of Epstein–Barr virus DNA may encode Epstein–Barr nuclear antigen 2. Proc. Natl Acad. Sci. USA, 81, 7632–7636.CrossRefGoogle ScholarPubMed
Deacon, E. M., Pallesen, G., Niedobitek, G.et al. (1993). Epstein–Barr virus and Hodgkin's disease: transcriptional analysis of virus latency in the malignant cells. J. Exp. Med., 177, 339–349.CrossRefGoogle ScholarPubMed
Devergne, O., Hatzivassiliou, E., Izumi, K. M.et al. (1996). Association of TRAF1, TRAF2, and TRAF3 with an Epstein–Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol. Cell. Biol., 16, 7098–7108.CrossRefGoogle ScholarPubMed
Devergne, O., Mcfarland, E. C., Mosialos, G.et al. (1998). Role of the TRAF binding site and NF-kappaB activation in Epstein–Barr virus latent membrane protein 1-induced cell gene expression. J. Virol., 72, 7900–7908.Google ScholarPubMed
Dykstra, M. L., Longnecker, R., and Pierce, S. K. (2001). Epstein–Barr virus coopts lipid rafts to block the signaling and antigen transport functions of the BCR. Immunity, 14, 57–67.CrossRefGoogle ScholarPubMed
Edwards, R., Sitki-Green, D., Moore, D. T.et al. (2004). Potential selection of LMP1 variants in nasopharyngeal carcinoma. J. Virol., 78, 868–881.CrossRefGoogle ScholarPubMed
Edwards, R. H., Seillier-Moiseiwitsch, F., and Raab-Traub, N. (1999). Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virolo., 261, 79–95.CrossRefGoogle ScholarPubMed
Effert, P., Mccoy, R., Abdel-Hamid, M., Flynn, K.et al. (1992). Alterations of the p53 gene in nasopharyngeal carcinoma. J. Virol., 66, 3768–3775.Google ScholarPubMed
Eliopoulos, A. G. and Young, L. S. (1998). Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein–Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene, 16, 1731–1742.CrossRefGoogle Scholar
Eliopoulos, A. G., Gallagher, N. J., Blake, S. M., Dawson, C. W., and Young, L. S. (1999). Activation of the p38 mitogen-activated protein kinase pathway by Epstein–Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J. Biol. Chem., 274, 16085–16096.CrossRefGoogle ScholarPubMed
Emmerich, F., Theurich, S., Hummel, M.et al. (2003). Inactivating I kappa B epsilon mutations in Hodgkin/Reed–Sternberg cells. J. Pathol., 201, 413–420.CrossRefGoogle ScholarPubMed
Epstein, M. A., Achong, B. G., and Barr, Y. M. (1964). Virus particles in cultured lymphoblasts from burkitt's lymphoma. Lancet, 15, 702–703.CrossRefGoogle Scholar
Fennewald, S., Santen, V., and Kieff, E., (1984). Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. J. Virol., 51, 411–419.Google ScholarPubMed
Finerty, S., Tarlton, J., Mackett, M.et al. (1992). Protective immunization against Epstein–Barr virus-induced disease in cottontop tamarins using the virus envelope glycoprotein gp340 produced from a bovine papillomavirus expression vector. J. Gen. Virol., 73, 449–453.CrossRefGoogle ScholarPubMed
Fortini, M. A. (1994). The suppressor of hairless participates in notch receptor signaling. Cell, 79, 273–282.CrossRefGoogle ScholarPubMed
Fries, K. L., Miller, W. E., and Raab-Traub, N. (1996). Epstein–Barr virus latent membrane protein 1 blocks p53-mediated apoptosis through the induction of the A20 gene. J. Virol., 70, 8653–8659.Google ScholarPubMed
Gan, Y. J., Chodosh, J., Morgan, A.et al. (1997). Epithelial cell polarization is a determinant in the infectious outcome of immunoglobulin A-mediated entry by Epstein–Barr virus. J. Virol., 71, 519–526.Google ScholarPubMed
Garcia, J. F., Camacho, F. I., Morente, M.et al. (2003). Hodgkin and Reed–Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood, 101, 681–689.CrossRefGoogle ScholarPubMed
Gilligan, K., Rajadurai, P., Resnick, L.et al. (1990a). Epstein–Barr virus small nuclear RNAs are not expressed in permissively infected cells in Aids-associated leukoplakia. Proc. Natl Acad. Sci. USA, 87, 8790–8794.CrossRefGoogle Scholar
Gilligan, K., Sato, H., Rajadurai, P.et al. (1990b). Novel transcription from the Epstein–Barr virus terminal EcoRI fragment, DIJhet, in a nasopharyngeal carcinoma. J. Virol., 64, 4948–4956.Google Scholar
Given, D., Yee, D., Griem, K.et al. (1979). DNA of Epstein–Barr virus. V. Direct repeats of the ends of Epstein–Barr virus DNA. J. Virol., 30, 852–862.Google ScholarPubMed
, Gottschalk S, , N. C., Perez, M., Smith, C. A.et al. (2001). An Epstein–Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood, 97, 835–843.Google Scholar
Greenspan, J. S., Greenspan, D., Lennette, E. T.et al. (1985). Replication of Epstein–Barr virus within the epithelial cells of oral hairy leukoplakia, an Aids-associated lesion. N. Engl. J. Med., 313, 1564–1571.CrossRefGoogle ScholarPubMed
Grossman, S. R., Johannsen, E., Tong, X.et al. (1994). The Epstein–Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc. Natl Acad. Sci. USA, 91, 7568–7572.CrossRefGoogle ScholarPubMed
Gu, S. Y., Huang, T. M., Ruan, L.et al. (1995). First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen. Dev. Biol. Stand., 84, 171–177.Google ScholarPubMed
Harabuchi, Y., Imai, S., Wakashima, J.et al. (1996). Nasal T-cell lymphoma causally associated with Epstein–Barr virus: clinicopathologic, phenotypic, and genotypic studies. Cancer, 77, 2137–2149.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Henkel, T., Ling, P. D., Hayward, S. D.et al. (1994). Mediation of Epstein–Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science, 265, 92–95.CrossRefGoogle ScholarPubMed
Henle, G., and Henle, W. (1976a). Epstein—Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int. J. Cancer, 17, 1–7.CrossRefGoogle Scholar
Henle, G., Henle, W., Clifford, P.et al. (1969). Antibodies to Epstein–Barr virus in Burkitt's lymphoma and control groups. J. Natl Cancer Inst., 43, 1147–1157.Google ScholarPubMed
Henle, G., Henle, W., Klein, G.et al. (1971). Antibodies to early Epstein–Barr virus-induced antigens in Burkitt's lymphoma. J. Natl Cancer Inst., 46, 861–871.Google ScholarPubMed
Henle, W., and Henle, G. (1974). Epstein–Barr virus and human malignancies. Cancer, 34 (Suppl), 1368–1374.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Henle, W. and Henle, G. (1976b). The sero-epidemiology of Epstein–Barr virus. Adv. Pathobiol., 5, 5–17.Google Scholar
Hinz, M., Lemke, P., Anagnostopoulos, I., Hacker, C.et al. (2002). Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J. Exp. Med., 196, 605–617.CrossRefGoogle ScholarPubMed
Hitt, M. M., Allday, M. J., Hara, T.et al. (1989). EBV gene expression in an NPC-related tumour. Embo J., 8, 2639–2651.Google Scholar
Ho, H. C. (1976). Epidemiology of nasopharyngeal carcinoma. In Hirayama, T., ed. Cancer in Asia.Baltimore: Univ. Park Press, pp. 49–61.Google Scholar
Hofelmayr, H., Strobl, L. J., Marschall, G.et al. (2001). Activated Notch1 can transiently substitute for EBNA2 in the maintenance of proliferation of LMP1-expressing immortalized B cells. J. Virol., 75, 2033–2040.CrossRefGoogle ScholarPubMed
Howe, J. G. and Steitz, J. A., (1986). Localization of Epstein–Barr virus-encoded small RNAs by in situ hybridization. Proc. Natl Acad. Sci. USA, 83, 9006–9010.CrossRefGoogle ScholarPubMed
Hu, L. F., Zabarovsky, E. R., Chen, F.et al. (1991). Isolation and sequencing of the Epstein–Barr virus BNLF-1 gene (LMP1) from a Chinese nasopharyngeal carcinoma. J. Gen. Virol., 72, 2399–2409.CrossRefGoogle Scholar
Huang, D., , L. K., Hasselt, A, Woo, J. K. S.et al. (1994). A region of homozygous deletion on chromosome 9p21–22 in primary nasopharyngeal carcinoma. Cancer Res., 54, 4003–4006.Google ScholarPubMed
Huang, D. P., Lo, K. W., Choi, P. H.et al. (1991). Loss of heterozygosity on the short arm of chromosome 3 in nasopharyngeal carcinoma. Cancer Genet. Cytogenet., 54, 91–99.CrossRefGoogle ScholarPubMed
Huen, D. S., Henderson, S. A., Croom-Carter, D.et al. (1995). The Epstein–Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene, 10, 549–560.Google ScholarPubMed
Ikeda, M., Ikeda, A., and Longnecker, R. (2001). PY motifs of Epstein–Barr virus LMP2A regulate protein stability and phosphorylation of LMP2A-associated proteins. J. Virol., 75, 5711–5718.CrossRefGoogle ScholarPubMed
Iwakiri, D., Eizuru, Y., Tokunaga, M.et al. (2003). Autocrine growth of Epstein–Barr virus-positive gastric carcinoma cells mediated by an Epstein–Barr virus-encoded small RNA. Cancer Res., 63, 7062–7067.Google ScholarPubMed
Izumi, K. M., and Kieff, E. D. (1997). The Epstein–Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc. Natl Acad. Sci. USA, 94, 12592–12597.CrossRefGoogle ScholarPubMed
Johannsen, E., Koh, E., Mosialos, G.et al. (1995). Epstein–Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J. Virol., 69, 253–262.Google Scholar
Kanegane, H., Miyawaki, T., Yachie, A.et al. (1999). Development of EBV-positive T-cell lymphoma following infection of peripheral blood T cells with EBV. Leuk. Lymphoma, 34, 603–607.CrossRefGoogle Scholar
Kaye, K. M., Izumi, K. M., Li, H.et al. (1999). An Epstein–Barr virus that expresses only the first 231 LMP1 amino acids efficiently initiates primary B-lymphocyte growth transformation. J. Virol., 73, 10525–10530.Google ScholarPubMed
Khanim, F., Yao, Q. Y., Niedobitek, G., Sihota, S.et al. (1996). Analysis of Epstein–Barr virus gene polymorphisms in normal donors and in virus-associated tumors from different geographic locations. Blood, 88, 3491–3501.Google ScholarPubMed
Kieff, E. and Rickinson, A. B. (2001). Epstein–Barr virus and its replication. In Fields, B. N., Howley, P. M., Griffin, D. E.et al. (eds.) Field's Virology. 4th edn. Philadelphia, PA: Lippincott Williams & Wilkins Publishers.Google Scholar
Knecht, H., Joske, D. J., Bachmann, E.et al. (1992). Significance of the detection of Epstein–Barr virus DNA in lymph nodes in patients with Hodgkin's disease. Leuk Lymphoma, 8, 319–325.CrossRefGoogle ScholarPubMed
Knecht, H., Berger, C., Mcquain, C., Rothenberger, S.et al. (1999). Latent membrane protein 1 associated signaling pathways are important in tumor cells of Epstein–Barr virus negative Hodgkin's disease. Oncogene, 18, 7161–7167.CrossRefGoogle ScholarPubMed
Komano, J., Sugiura, M., and Takada, K. (1998). Epstein–Barr virus contributes to the malignant phenotype and to apoptosis resistance in Burkitt's lymphoma cell line Akata. J. Virol., 72, 9150–9156.Google ScholarPubMed
Komano, J., Maruo, S., Kurozumi, K.et al. (1999). Oncogenic role of Epstein–Barr virus-encoded RNAs in Burkitt's lymphoma cell line Akata. J. Virol., 73, 9827–9831.Google ScholarPubMed
Kulwichit, W., Edwards, R. H., Davenport, E. M.et al. (1998). Expression of the Epstein–Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc. Natl Acad. Sci. USA, 95, 11963–11968.CrossRefGoogle ScholarPubMed
Kusano, S., and Raab-Traub, N. (2001). An Epstein–Barr virus protein interacts with Notch. J. Virol., 15, 384–395.CrossRefGoogle Scholar
Lanier, A. P., Clift, S. R., Bornkamm, G.et al. (1991). Epstein–Barr virus and malignant lymphoepithelial lesions of the salivary gland. Arctic Med. Res., 50, 55–61.Google ScholarPubMed
Laux, G., Perricaudet, M., and Farrell, P. J. (1988). A spliced Epstein–Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J., 7, 769–774.Google ScholarPubMed
Lerner, M. R., Andrews, N. C., Miller, G.et al. (1981). Two small RNAs encoded by Epstein–Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc. Natl Acad. Sci. USA, 78, 805–809.CrossRefGoogle ScholarPubMed
Levitskaya, J., Coram, M., Levitsky, V.et al. (1995). Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. Nature, 375, 685–688.CrossRefGoogle ScholarPubMed
Levitskaya, J., Sharipo, A., Leonchiks, A.et al. (1997). Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. Proc. Natl Acad. Sci. USA, 94, 12616–12621.CrossRefGoogle ScholarPubMed
Li, S. N., Chang, Y. S., and Liu, S. T. (1996). Effect of a 10-amino acid deletion on the oncogenic activity of latent membrane protein 1 of Epstein–Barr virus. Oncogene, 12, 2129–2135.Google ScholarPubMed
Lo, K.-W., Huang, D. P., and Lau, K. M. (1995). p16 gene alterations in nasopharyngeal carcinoma. Cancer Res., 55, 2039–2043.Google ScholarPubMed
Lo, K.-W., and Huang, D. P. (2002). Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin. Cancer Biol., 12, 451–462.CrossRefGoogle ScholarPubMed
Longnecker, R., and Miller, C. L. (1996). Regulation of Epstein–Barr virus latency by latent membrane protein 2. Trends Microbiol., 4, 38–42.CrossRefGoogle ScholarPubMed
Longnecker, R., Merchant, M., Brown, M. E.et al. (2000). WW- and SH3-domain interactions with Epstein–Barr virus LMP2A. Exp. Cell Res., 257, 332–340.CrossRefGoogle ScholarPubMed
Lung, M. L., Chang, R. S., Huang, M. L.et al. (1990). Epstein–Barr virus genotypes associated with nasopharyngeal carcinoma in southern China. Virology, 177, 44–53.CrossRefGoogle ScholarPubMed
MacMahon, E. M., Glass, J. D., Hayward, S. D.et al. (1992). Association of Epstein–Barr virus with primary central nervous system lymphoma in AIDS. AIDS Res. Hum. Retroviruses, 8, 740–742.Google Scholar
Magrath, I., (1990). The pathogenesis of Burkitt's lymphoma. Advy. Cancer Res., 55, 133–270.CrossRefGoogle ScholarPubMed
Marafioti, T. H. M., Foss, H. D., Laumen, H.et al. (2000). Hodgkin and reed-sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood, 95, 1443–1450.Google ScholarPubMed
Miller, C. L., Burkhardt, A. L., Lee, J. H.et al. (1995a). Integral membrane protein 2 of Epstein–Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity, 2, 155–166.CrossRefGoogle Scholar
Miller, G., Niederman, J. C., and Andrews, L. L. (1973). Prolonged oropharyngeal excretion of Epstein–Barr virus after infectious mononucleosis. N. Engl. J. Med., 288, 229–232.CrossRefGoogle ScholarPubMed
Miller, W. E., Edwards, R. H., Walling, D. M.et al. (1994). Sequence variation in the Epstein–Barr virus latent membrane protein 1. J. Gen. Virol., 75, 2729–2740.CrossRefGoogle ScholarPubMed
Miller, W. E., Earp, H. S., and Raab-Traub, N. (1995). The Epstein–Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J. Virol., 69, 4390–4398.Google ScholarPubMed
Miller, W. E., Mosialos, G., Kieff, E.et al. (1997). Epstein–Barr virus LMP1 induction of the epidermal growth factor receptor is mediated through a TRAF signaling pathway distinct from NF-kappaB activation. J. Virol., 71, 586–594.Google ScholarPubMed
Miller, W. E., Cheshire, J. L., and Raab-Traub, N. (1998). Interaction of tumor necrosis factor receptor-associated factor signaling proteins with the latent membrane protein 1 PXQXT motif is essential for induction of epidermal growth factor receptor expression. Mol. Cell. Biol., 18, 2835–2844.CrossRefGoogle ScholarPubMed
Moody, C. A., Su, T., and Sixbey, J. W. (2003). Length of Epstein–Barr virus termini as a determinant of epithelial cell clonal emergence. J. Virol., 77, 8555–8561.CrossRefGoogle ScholarPubMed
Morrison, J. A., Klingelhutz, A. J., and Raab-Traub, N. (2003). Epstein–Barr virus latent membrane protein 2A activates beta-catenin signaling in epithelial cells. J. Virol., 77, 12276–12284.CrossRefGoogle ScholarPubMed
Mosialos, G., Birkenbach, M., Yalamanchili, R.et al. (1995). The Epstein–Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell, 80, 389–399.CrossRefGoogle ScholarPubMed
Moss, D. J., Schmidt, C., Elliott, S.et al. (1996). Strategies involved in developing an effective vaccine for EBV-associated diseases. Adv. Cancer Res., 69, 213–245.CrossRefGoogle ScholarPubMed
Mueller, N., Evans, A., Harris, N. L.et al. (1989). Hodgkin's disease and Epstein–Barr virus. Altered antibody pattern before diagnosis. N. Engl. J. Med., 320, 689–695.CrossRefGoogle ScholarPubMed
Murray, R. J., Kurilla, M. G., Griffin, H. M.et al. (1990). Human cytotoxic T-cell responses against Epstein–Barr virus nuclear antigens demonstrated by using recombinant vaccinia viruses. Proc. Natl Acad. Sci. USA, 87, 2906–2910.CrossRefGoogle ScholarPubMed
Nelson, J. A., Bariband, F., Edwards, T., and Swanstrom, R. (2000). Patterns of changes in Human Immunodeficiency Virus type 1 V3 sequence populations late in infection. J. Virol., 74, 8494–8501.CrossRefGoogle Scholar
Niedobitek, G., Hansmann, M. L., Herbst, H.et al. (1991a). Epstein–Barr virus and carcinomas: undifferentiated carcinomas but not squamous cell carcinomas of the nasopharynx are regularly associated with the virus. J. Pathol., 165, 17–24.CrossRefGoogle Scholar
Niedobitek, G., Young, L. S., Lau, R.et al. (1991b). Epstein–Barr virus infection in oral hairy leukoplakia: virus replication in the absence of a detectable latent phase. J Gen Virol., 72 (12), 3035–3046.CrossRefGoogle Scholar
Niedobitek, G., Agathanggelou, A., Rowe, M.et al. (1995). Heterogeneous expression of Epstein–Barr virus latent proteins in endemic Burkitt's lymphoma. Blood, 86, 659–665.Google ScholarPubMed
Nilsson, K., Klein, G., Henle, W.et al. (1971). The establishment of lymphoblastoid lines from adult and fetal human lymphoid tissue and its dependence on EBV. Int. J. Cancer., 8, 443–450.CrossRefGoogle ScholarPubMed
Nonkwelo, C., Skinner, J., Bell, A.et al. (1996). Transcription start sites downstream of the Epstein–Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein. J. Virol., 70, 623–627.Google ScholarPubMed
, Ohtani N B. P., Gaubatz, S., Sanij, E.et al. (2003). Epstein–Barr virus LMP1 blocks p16INK4a-RB pathway by promoting nuclear export of E2F4/5. J. Cell. Biol., 162, 173–183.Google Scholar
Packham, G., Brimmell, M., Cook, D.et al. (1993). Strain variation in Epstein–Barr virus immediate early genes. Virology, 192, 541–550.CrossRefGoogle ScholarPubMed
Paine, E., Scheinman, R. I., Baldwin, A. S. Jr., and Raab-Traub, N. (1995). Expression of LMP1 in epithelial cells leads to the activation of a select subset of NF-kappa B/Rel family proteins. J. Virol., 69, 4572–4576.Google ScholarPubMed
Pathmanathan, R., Prasad, U., Chandrika, et al. (1995a). Undifferentiated, nonkeratinizing, and squamous cell carcinoma of the nasopharynx. Variants of Epstein–Barr virus-infected neoplasia. Am. J. Path., 146, 1355–1367.Google Scholar
Pathmanathan, R., Prasad, U., Sadler, R.et al. (1995b). Clonal proliferations of cells infected with Epstein–Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N. Engl. J. Med., 333, 693–698.CrossRefGoogle Scholar
Pelicci, P. G., Knowles, D. M. D., Arlin, Z. A.et al. (1986). Multiple monoclonal B cell expansions and c-myc oncogene rearrangements in acquired immune deficiency syndrome-related lymphoproliferative disorders. Implications for lymphomagenesis. J. Exp. Med., 164, 2049–2060.CrossRefGoogle ScholarPubMed
Poirier, S., Bouvier, G., Malaveille, C.et al. (1989). Volatile nitrosamine levels and genotoxicity of food samples from high-risk areas for nasopharyngeal carcinoma before and after nitrosation. Int. J. Cancer, 44, 1088–1094.CrossRefGoogle ScholarPubMed
Portis, T. and Longnecker, R., (2003). Epstein–Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development. J. Virol., 77, 105–144.CrossRefGoogle ScholarPubMed
Raab-Traub, N., (1996). Pathogenesis of Epstein–Barr virus and its associated malignancies. Semin. Virol., 7, 315–323.CrossRefGoogle Scholar
Raab-Traub, N., (2002). Epstein–Barr virus in the pathogenesis of NPC. Semin. Cancer Biol., 12, 431–441.CrossRefGoogle ScholarPubMed
Raab-Traub, N., and Flynn, K. (1986). The structure of the termini of the Epstein–Barr virus as a marker of clonal cellular proliferation. Cell, 47, 883–889.CrossRefGoogle ScholarPubMed
Raab-Traub, N., Hood, R., Yang, C. S.et al. (1983). Epstein–Barr virus transcription in nasopharyngeal carcinoma. J. Virol, 48, 580–590.Google ScholarPubMed
Raab-Traub, N., Flynn, K., Pearson, G.et al. (1987). The differentiated form of nasopharyngeal carcinoma contains Epstein–Barr virus DNA. Int. J. Cancer, 39, 25–29.CrossRefGoogle ScholarPubMed
Raab-Traub, N., Rajadurai, P., Flynn, K.et al. (1991). Epstein–Barr virus infection in carcinoma of the salivary gland. J. Virol., 65, 7032–7036.Google ScholarPubMed
Rickinson, A. B. and Moss, D. J. (1997). Human cytotoxic T lymphocyte responses to Epstein–Barr virus infection. Annu. Rev. Immunol., 15, 405–431.CrossRefGoogle ScholarPubMed
Rickinson, A. A. K. (2001). Epstein–Barr virus. Fields, In B. N., Howley, P. M., Griffin, D. E.et al., eds. Field's Virology, 4th edn.Philadelphia, PA: Lippincott Williams and Wilkins.Google Scholar
Robertson, E. S., Lin, J., and Kieff, E. (1996). The amino-terminal domains of Epstein–Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). J. Virol., 70, 3068–3074.Google Scholar
Robertson, K. D. (2000). The role of DNA methylation in modulating Epstein–Barr virus gene expression. Curr. Top. Microbiol. Immunol., 249, 21–34.Google ScholarPubMed
Rooney, C. M., Smith, C. A., Ng, C. Y.et al. (1995). Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr-virus-related lymphoproliferation. Lancet, 345, 9–13.CrossRefGoogle ScholarPubMed
Rooney, C. M., Smith, C. A., and Heslop, H. E. (1997). Control of virus-induced lymphoproliferation: Epstein–Barr virus-induced lymphoproliferation and host immunity. Mol. Med. Today, 3, 24–30.CrossRefGoogle ScholarPubMed
Rowe, M., Rowe, D. T., Gregory, C. D.et al. (1987). Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J., 6, 2743–2751.Google Scholar
Sadler, R. H. and Raab-Traub, N. (1995a). The Epstein–Barr virus 3.5-kilobase latent membrane protein 1 mRNA initiates from a TATA-Less promoter within the first terminal repeat. J. Virol., 69, 4577–4581.Google Scholar
Sadler, R. H. and Raab-Traub, N. (1995b). Structural analyses of the Epstein–Barr virus BamHI A transcripts. J. Virol., 69, 1132–1141.Google Scholar
Saemundsen, A. K., Albeck, H., Hansen, J. P.et al. (1982). Epstein–Barr virus in nasopharyngeal and salivary gland carcinomas of Greenland Eskimoes. Br. J. Cancer, 46, 721–728.CrossRefGoogle ScholarPubMed
Sample, J., Liebowitz, D., and Kieff, E. (1989). Two related Epstein–Barr virus membrane proteins are encoded by separate genes. J. Virol., 63, 933–937.Google ScholarPubMed
Sample, J., Young, L., Martin, B.et al. (1990). Epstein–Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J. Virol., 64, 4084–4092.Google ScholarPubMed
Sample, J., Brooks, L., Sample, C.et al. (1991). Restricted. Epstein–Barr virus protein expression in Burkitt lymphoma is due to a different Epstein–Barr nuclear antigen 1 transcriptional initiation site. Proc. Natl Acad. Sci. USA, 88, 6343–6347.CrossRefGoogle ScholarPubMed
Sample, J., Henson, E. B., and Sample, C. (1992). The Epstein–Barr virus nuclear protein 1 promoter active in type I latency is autoregulated. J. Virol., 66, 4654–4661.Google ScholarPubMed
Scholle, F., Bendt, K. M., and Raab-Traub, N. (2000). Epstein–Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J. Virol., 74, 10681–10689.CrossRefGoogle ScholarPubMed
Shanmugaratnam, K. (1970). A study of nasopharyngeal carcinoma among Singapore Chinese with special reference to migrant status and specific community. J. Chronic. Dis., 23, 433–441.CrossRefGoogle Scholar
Shanmugaratnam, K. (1978). Histological typing of nasopharyngeal carcinoma. IARC Sci. Publ., 20, 3–12.Google Scholar
Shaw, J. E., (1985). The circular intracellular form of Epstein–Barr virus DNA is amplified by the virus-associated DNA polymerase. J. Virol., 53, 1012–1015.Google ScholarPubMed
Shaw, J. E., Levinger, L. F., and Carter, C. W. Jr. (1979). Nucleosomal structure of Epstein–Barr virus DNA in transformed cell lines. J. Virol., 29, 657–665.Google ScholarPubMed
Shibata, D., Tokunaga, M., Uemura, Y.et al. (1991). Association of Epstein–Barr virus with undifferentiated gastric carcinomas with intense lymphoid infiltration. Lymphoepithelioma-like carcinoma. Am. J. Pathol., 139, 469–474.Google ScholarPubMed
Sitki-Green, D., Edwards, R. H., Webster-Cyriaque, J.et al. (2002). Identification of Epstein–Barr virus strain variants in hairy leukoplakia and peripheral blood by use of a heteroduplex tracking assay. J. Virol., 76, 9645–9656.CrossRefGoogle ScholarPubMed
Sitki-Green, D., Covington, M., and Raab-Traub, N. (2003). Compartmentalization and transmission of multiple Epstein–Barr virus strains in asymptomatic carriers. J. Virol., 77, 1840–1847.CrossRefGoogle ScholarPubMed
Sixbey, J. W., Nedrud, J. G., Raab-Traub, N.et al. (1984). Epstein–Barr virus replication in oropharyngeal epithelial cells. N. Engl. J. Med., 310, 1225–1230.CrossRefGoogle Scholar
Sixbey, J. W., Shirley, P., Sloas, M.et al. (1991). A transformation-incompetent, nuclear antigen 2-deleted Epstein–Barr virus associated with replicative infection. J. Infect. Dis., 163, 1008–1015.CrossRefGoogle ScholarPubMed
Smith, P. R., Jesus, O., Turner, D.et al. (2000). Structure and coding content of CST (BART) family RNAs of Epstein–Barr virus. J. Virol., 74, 3082–3092.CrossRefGoogle ScholarPubMed
Stewart, J. P., Behm, F. G., Arrand, J. R.et al. (1994). Differential expression of viral and human interleukin-10 (IL-10) by primary B cell tumors and B cell lines. Virology, 200, 724–732.CrossRefGoogle ScholarPubMed
Su, I. J., Lin, K. H., Chen, C. J.et al. (1990). Epstein–Barr virus-associated peripheral T-cell lymphoma of activated CD8 phenotype. Cancer, 66, 2557–2562.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Sun, Y., , H. G., and Colburn, N. H. (1993). Nasopharyngeal carcinoma shows no detectable retinoblastoma susceptibility gene alterations. Oncogene, 3, 791–795.Google Scholar
Sun, Y., Hildesheim, A., Lanier, A. E.et al. (1995). No point mutation but decreased expression of the p16/MTS1 tumor suppressor gene in nasopharyngeal carcinomas. Oncogene, 10, 785–788.Google ScholarPubMed
Swaminathan, S., Tomkinson, B., and Kieff, E. (1991). Recombinant Epstein–Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proc. Natl Acad. Sci. USA, 88, 1546–1550.CrossRefGoogle ScholarPubMed
Swart, R., Ruf, I. K., Sample, J.et al. (2000). Latent membrane protein 2A-mediated effects on the phosphatidylinositol 3-kinase/Akt pathway. Virol., 74, 10838–10845.CrossRefGoogle ScholarPubMed
Thornburg, N. J., Pathmanathan, R., and Raab-Traub, N. (2003). Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma. Cancer Res., 63, 8293–8301.Google ScholarPubMed
Tomkinson, B., Robertson, E., and Kieff, E. (1993). Epstein–Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J. Virol., 67, 2014–2025.Google ScholarPubMed
Walling, D. M., Edmiston, S. N., Sixbey, J. W.et al. (1992). Coinfection with multiple strains of the Epstein–Barr virus in human immunodeficiency virus-associated hairy leukoplakia. Proc. Natl Acad. Sci USA, 89, 6560–6564.CrossRefGoogle ScholarPubMed
Wang, D., Liebowitz, D., and Kieff, E. (1985). An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell, 43, 831–840.CrossRefGoogle ScholarPubMed
Wang, D., Liebowitz, D., Wang, F.et al. (1988). Epstein–Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: deletion of the amino terminus abolishes activity. J. Virol., 62, 4173–4184.Google ScholarPubMed
Wang, F., Tsang, S. F., Kurilla, M. G.et al. (1990). Epstein–Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J. Virol., 64, 3407–3416.Google ScholarPubMed
Weiss, L. M., Strickler, J. G., Warnke, R. A.et al. (1989a). Epstein–Barr viral DNA in tissues of Hodgkin's disease. Am. J. Pathol., 129, 86–91.Google Scholar
Weiss, L. M., Movahed, L. A., Warnke, R. A.et al. (1989b). Detection of Epstein–Barr viral genomes in Reed-Sternberg cells of Hodgkin's disease. N. Engl. J. Med., 320, 502–506.CrossRefGoogle Scholar
Wilson, A. D., Shooshstari, M., Finerty, S.et al. (1996). Virus-specific cytotoxic T cell responses are associated with immunity of the cottontop tamarin to Epstein–Barr virus (EBV). Clin. Exp. Immunol., 103, 199–205.CrossRefGoogle Scholar
Wolf, H., Hausen, H. Z., and Becker, V. (1973). EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nat. New. Biol., 244, 245–247.CrossRefGoogle ScholarPubMed
Wolf, H., and Haus, M., and Wilmes, E. (1984). Persistence of Epstein–Barr virus in the parotid gland. J. Virol., 51, 795–798.Google ScholarPubMed
Yates, J. L., Warren, N., and Sugden, B. (1985). Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature, 331, 812–815.CrossRefGoogle Scholar
Yeung, W. M., Zong, Y. S., Chiu, C. T.et al. (1993). Epstein–Barr virus carriage by nasopharyngeal carcinoma in situ. Int. J. Cancer, 53, 746–750.CrossRefGoogle ScholarPubMed
Young, L., Alfieri, C., Hennessy, K.et al. (1989). Expression of Epstein–Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N. Engl. J. Med., 321, 1080–1085.CrossRefGoogle ScholarPubMed
Young, L. S., Deacon, E. M., Rowe, M.et al. (1991). Epstein–Barr virus latent genes in tumour cells of Hodgkin's disease [letter; comment]. Lancet, 337, 1617.CrossRefGoogle Scholar
Yu, M. C. and Yuan, J. M. (2002). Epidemiology of nasopharyngeal carcinoma. Semin. Cancer Biol., 12, 421–429.CrossRefGoogle ScholarPubMed
Yu, M. C., Ho, J. H., Lai, S. H.et al. (1986). Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: report of a case-control study in Hong Kong. Cancer Res., 46, 956–961.Google ScholarPubMed
Zhang, J., Chen, H., Weinmaster, G.et al. (2001). Epstein–Barr virus BamHi-a rightward transcript-encoded RPMS protein interacts with the CBF1-associated corepressor CIR to negatively regulate the activity of EBNA2 and NotchIC. J. Virol., 75, 2946–2956.CrossRefGoogle ScholarPubMed
Zimber, U., Adldinger, H. K., Lenoir, G. M.et al. (1986). Geographical prevalence of two types of Epstein–Barr virus. Virology, 154, 56–66.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×