Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T21:34:19.034Z Has data issue: false hasContentIssue false

41 - HCMV: pathogenesis and disease consequences

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: HCMV

Published online by Cambridge University Press:  24 December 2009

William Britt
Affiliation:
Department of Pediatrics, University of Alabama at Birmingham, AL, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Cytomegaloviruses (CMV) were initially identified by distinct histopathological findings that were observed in tissue from a variety of infected mammals, including humans. Perhaps the most well-recognized finding were inclusion bearing cells in the salivary glands of infected animals (Jesionek and Kiolemenoglou, 1904; Ribbert, 1904; Goodpasture and Talbot, 1921; Cole and Kuttner, 1926). Similar histopathologic findings of intracellular inclusions were noted in tissues from infants dying as a result of severe congenital (present at birth) cytomegalovirus infection leading to the designation of this clinical syndrome as cytomegalic inclusion disease (Farber and Wolbach, 1932). Studies by several groups of investigators provided compelling evidence from natural history studies that HCMV was a relatively frequent cause of disease in infants infected in utero and, that this viral infection could result in neurologic impairment in infected infants (Hanshaw, 1971; Stagno et al., 1977; Pass et al., 1980; Williamson et al., 1982; Bale, 1984; Fowler et al., 1992). Importantly, these early studies demonstrated that even infants with subclinical or silent infections could develop neurological sequelae (Stagno et al., 1982, 1983; Williamson et al., 1992). In the late 1960s, HCMV was recognized as a significant cause of disease in allograft recipients and in the case of hematopoietic allograft recipients, HCMV infection became recognized as one of the most frequent causes of death in the post-transplant period (Rifkind, 1965; Myers et al., 1975; Ho, 1977; Rubin et al., 1979; Winston et al., 1979; Rubin et al., 1981; Rubin and Colvin, 1986; Rubin, 1990).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 737 - 764
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achim, C. L., Nagra, R. M.Wang, R., Nelson, J. A., and Wiley, C. A. (1994). Detection of cytomegalovirus in cerebrospinal fluid autopsy specimens from AIDS patients. J. Infect. Dis., 169, 623–627.CrossRefGoogle ScholarPubMed
Adler, S. P. (1983). Transfusion-associated cytomegalovirus infections. Rev. Infect. Dis., 5, 977–993.CrossRefGoogle ScholarPubMed
Adler, S. P. (1985). The molecular epidemiology of cytomegalovirus transmission among children attending a day care center. J. Infect. Dis., 152, 760–768.CrossRefGoogle ScholarPubMed
Adler, S. P. (1988a). Cytomegalovirus transmission among children in day care, their mothers and caretakers. Pediatr. Infect. Dis. J., 7, 279–285.CrossRefGoogle Scholar
Adler, S. P. (1988b). Molecular epidemiology of cytomegalovirus: viral transmission among children attending a day care center, their parents, and caretakers. J. Pediatr., 112, 366–372.CrossRefGoogle Scholar
Adler, S. P. (1989). Cytomegalovirus and child day care. Evidence for an increased infection rate among day-care workers. N. Engl. J. Med., 321, 1290–1296.CrossRefGoogle ScholarPubMed
Adler, S. P. (1991a). Cytomegalovirus and child day care: risk factors for maternal infection. Pediatr. Infect. Dis. J., 10, 590.CrossRefGoogle Scholar
Adler, S. P. (1991b). Molecular epidemiology of cytomegalovirus: a study of factors affecting transmission among children at three day-care centers. Pediatr. Infect. Dis. J., 10, 584–590.CrossRefGoogle Scholar
Adler, S. P., Chandrika, T., Lawrence, L., and Baggett, J. (1983). Cytomegalovirus infections in neonates due to blood transfusions. Pediatr. Infect. Dis., 2, 114–118.CrossRefGoogle ScholarPubMed
Adler, S. P., Baggett, J., Wilson, M., , Lawrence L., and McVoy, M. (1986). Molecular epidemiology of cytomegalovirus in a nursery: lack of evidence for nosocomial transmission. J. Pediatr., 108, 117–123.CrossRefGoogle Scholar
Adler, S. P., Starr, S. E., Plotkin, S. A.et al. (1995). Immunity induced by primary human cytomegalovirus infection protects against secondary infection among women of childbearing age. J. Infect. Dis., 171, 26–32.CrossRefGoogle ScholarPubMed
Ahlfors, K. and Ivarsson, S. A. (1985). Cytomegalovirus in breast milk of Swedish milk donors. Scand. J. Infect. Dis., 17, 11.CrossRefGoogle ScholarPubMed
Aldrete, J. S., Sterlin, W. A., Hathway, B. M., Morgan, J. M., and Diethelm, A. G. (1975). Gastrointestinal and hepatic complications affecting patients with renal allografts. Am. J. Surg., 129, 115–124.CrossRefGoogle ScholarPubMed
Alford, C. A., Stagno, S., Pass, R. F., and Huang, E. S. (1981). Epidemiology of cytomegalovirus. In The Human Herpesviruses: An Interdisciplinary Perspective, ed Nahmais, A., Dowdle, W., and Schinazi, R., pp. 159–171. New York: Elsevier.Google Scholar
Arribas, J. R., Storch, G. A., Clifford, D. B., and Tselis, A. C., (1996). Cytomegalovirus encephalitis. Ann. Int. Med., 125, 577–587.CrossRefGoogle ScholarPubMed
Armstrong, J. A., Tarr, G. C., Youngblood, L. A.et al. (1976). Cytomegalovirus infection in children undergoing open heart surgery. Yale. J. Biol. Med., 49, 83–91.Google ScholarPubMed
Asanuma, H., Numazaki, K., Nagata, N., Hotsubo, T., Horino, K., and Chiba, S. (1996). Role of milk whey in the transmission of human cytomegalovirus infection by breast milk. Microbiol. Immunol., 40, 201–204.CrossRefGoogle ScholarPubMed
Baldanti, F., Revello, M. G., Percivalle, E., and Gerna, G. (1998). Use of the human cytomegalovirus (HCMV) antigenemia assay for diagnosis and monitoring of HCMV infections and detection of antiviral drug resistance in the immunocompromised. J. Clin. Virol., 11, 51–60.CrossRefGoogle ScholarPubMed
Bale, J. F. (1984). Human cytomegalovirus infection and disorders of the nervous system. Arch. Neurol., 41, 310–320.CrossRefGoogle ScholarPubMed
Bale, J. F. Jr. and Neil, O' M. E. (1989). Detection of murine cytomegalovirus DNA in circulating leukocytes harvested during acute infection of mice.[erratum appears in J. Virol. 1989 Sep;63(9):4120]. J. Virol., 63, 2667–2673.Google Scholar
Bale, J. F. Jr., O'Neil, M. E., Hart, M. N., Harris, J. D., and Stinski, M. F. (1989). Human cytomegalovirus nucleic acids in tissues from congenitally infected infants. Pediatr. Neurol. 5, 216–220.CrossRefGoogle ScholarPubMed
Bale, J. F. Jr., Petheram, S. J., Souza, I. E., and Murph, J. R. (1996). Cytomegalovirus reinfection in young children. J. Pediatr. 128, 347–352.CrossRefGoogle ScholarPubMed
Balfour, C. L. and Balfour, H. H. (1986). Cytomegalovirus is not an occupational risk for nurses in renal transplant and neonatal units. J. Am. Med. Assoc., 256, 1909–1914.CrossRefGoogle Scholar
Balthesen, M., Messerle, M., and Reddehase, M. J. (1993). Lungs are a major organ site of cytomegalovirus latency and recurrence. J. Virol., 67, 5360–5366.Google ScholarPubMed
Barry, S. M., Johnson, M. A., and Janossy, G. (2000). Cytopathology or immunopathology? The puzzle of cytomegalovirus pneumonitis revisited. Bone Marrow Transpl. 26, 591–597.CrossRefGoogle ScholarPubMed
Becroft, D. M. O. (1981). Prenatal cytomegalovirus infection: epidemiology, pathology, and pathogenesis. In Perspective in Pediatric Pathology, vol. 6, ed. Rosenberg, H. S. and Bernstein, J., pp. 203–241. New York; Masson Press.Google Scholar
Beisser, P. S., Goh, C. S., Cohen, F. E., and Michelson, S.(2002). Viral chemokine receptors and chemokines in human cytomegalovirus trafficking and interaction with the immune system. CMV chemokine receptors. Curr Top. Microbiol. Immunol., 269, 203–234.Google ScholarPubMed
Bernstein, D. I. and Bourne, N. (1999). Animal models for cytomegalovirus infection: guinea-pig CMV. In Handbook of Animal Models of Infection, ed. Zak, M. S. O.. London: Academic Press.Google Scholar
Schroeder, Billstrom M. and Worthen, G. S. (2001). Viral regulation of RANTES expression during human cytomegalovirus infection of endothelial cells. J. Virol., 75, 3383–3390.CrossRefGoogle Scholar
Schroeder, Billstrom M., , Christensen R., and Worthen, G. S. (2002). Human cytomegalovirus protects endothelial cells from apoptosis induced by growth factor withdrawal. J. Clini. Virol., 25, S149–S157.CrossRefGoogle Scholar
Blaser, M. J. and , Cohn D. L. (1986). Opportunistic infections in patients with AIDS: clues to the epidemiology of AIDS and the relative virulence of pathogens. Rev. Infect. Dis., 8, 21–30.CrossRefGoogle ScholarPubMed
Bodaghi, B., Jones, T. R., Zipeto, D.et al. (1998). Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J. Exp. Medi. 188, 855–866.CrossRefGoogle ScholarPubMed
Boeckh, M. and Boivin, G. (1998). Quantitation of cytomegalovirus: methodologic aspects and clinical applications. Clin. Microbiol. Rev. 11, 533–554.Google ScholarPubMed
Boeckh, M. and Bowden, R. (1995). Cytomegalovirus infection in marrow transplantation. In C. D. Buckner (ed.), Technical and Biological Components of Marrow Transplantation, ed. Buckner, C. D., pp. 97–136. Boston: Kluwer Academic Publishers.Google Scholar
Boeckh, M., Gooley, T. A., Myerson, D., Cunningham, T., Schoch, G., and Bowden, R. A., (1996). Cytomegalovirus pp65 antigenemia-guided early treatment with ganciclovir versus ganciclovir at engraftment after allogeneic marrow transplantation: a randomized double-blind study. Blood, 88, 4063–4071.Google ScholarPubMed
Boeckh, M., Gallez-Hawkins, G. M., Myerson, D., Zaia, J. A., and Bowden R. A. (1997). Plasma polymerase chain reaction for cytomegalovirus DNA after allogeneic marrow transplantation: comparison with polymerase chain reaction using peripheral blood leukocytes, pp65 antigenemia, and viral culture. Transplantation, 64, 108–113.CrossRefGoogle ScholarPubMed
Boeckh, M., Leisenring, W., Riddell, S. R.et al. (2003). Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T–cell immunity. Blood, 101, 407–414.CrossRefGoogle ScholarPubMed
Bolovan-Fritts, C. and Wiedeman, J. A. (2001). Human cytomegalovirus strain Toledo lacks a virus-encoded tropism factor required for infection of aortic endothelial cells. J. Infect. Dis., 184, 1252–1261.CrossRefGoogle ScholarPubMed
Boppana, S. B., Rivera, L. B., Fowler, K. B., Mach, M., and Britt W. J. (2001a). Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N. Engl. J. Medi., 344, 1366–1371.CrossRefGoogle Scholar
Boppana, S. B., Rivera, L. B., Fowler, K. B., Yang, J., and Britt, W. J. (2001b). Presented at the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, December 16–19.
Borisch, B., Jahn, G., Scholl, B. C.et al. (1988). Detection of human cytomegalovirus DNA and viral antigens in tissues of different manifestations of CMV infections. Virch. Arch.[B], 55, 93–99.Google Scholar
Bowden, R. A. (1995). Transfusion-transmitted cytomegalovirus infection. Hematol. – Oncol. Clini. N. Am. 9, 155–166.CrossRefGoogle ScholarPubMed
Bowden, R. A., Slichter, S. J., Sayers, M. H., Mori, M., Cays, M. J., and Meyers, J. D. (1991). Use of leukocyte-depleted platelets and cytomegalovirus-seronegative red blood cells for prevention of primary cytomegalovirus infection after marrow transplant. Blood, 78, 246–250.Google ScholarPubMed
Bowen, E. F., Wilson, P., Atkins, M., et al. (1995). Natural history of untreated cytomegalovirus retinitis. Lancet, 346, 1671–1673.CrossRefGoogle ScholarPubMed
Bowen, E. F., Wilson, P., Cope, A.et al. (1996). Cytomegalovirus retinitis in AIDS patients: influence of cytomegaloviral load on response to ganciclovir, time to recurrence and survival. AIDS 10, 1515–1520.CrossRefGoogle ScholarPubMed
Brady, M. T., Milam, J. D.Anderson, D. C.et al. (1984). Use of deglycerolized red blood cells to prevent posttransfusion infection with cytomegalovirus in neonates. J. Infect. Dis., 150, 334–339.CrossRefGoogle ScholarPubMed
Brody, A. R. and Craighead, J. E. (1974). Pathogenesis of pulmonary cytomegalovirus infection in immunosuppressed mice. J. Infect. Dis., 129, 677.CrossRefGoogle ScholarPubMed
Browne, E. P., Wing, B., Coleman, D., and Shenk, T., (2001a). Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J. Virol., 75, 12319–12330.CrossRefGoogle Scholar
Browne, G., Whitworth, C., Bellamy, C., and Ogilvie, M. M. (2001b). Acute allograft glomerulopathy associated with CMV viraemia. Nephrol. Dial. Transpl., 16, 861–862.CrossRefGoogle Scholar
Brune, W., Hasan, M., Krych, M., Bubic, I., Jonjic, S., and Koszinowski U. H. (2001a). Secreted virus-encoded proteins reflect murine cytomegalovirus productivity in organs. J. Infect. Dis. 184, 1320–1324.CrossRefGoogle Scholar
Brune, W., Menard, C.Heesemann, J., and Koszinowski, U. H. (2001b). A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science, 291, 303–305.CrossRefGoogle Scholar
Burns, L. J., Pooley, J. C., Walsh, D. J., Vercellotti, G. M., Weber, M. L., and Kovacs, A., (1999). Intercellular adhesion molecule–1 expression in endothelial cells is activated by cytomegalovirus immediate early proteins. Transplantation, 67, 137–144.CrossRefGoogle ScholarPubMed
CDC (1985). Prevalence of cytomegalovirus excretion from children in five day care centers – Alabama. Morb. Mortal. Wkly Rep., 34, 49–51.
Cha, T., Tom, E.Kembel, G. W., Duke, G. M., Mocarski, E. S., and Spaete, R. R. (1996). Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J. Virol. 70, 78–83.Google Scholar
Chandler, S. H., Holmes, K. K., Wentworth, B. B.et al. (1985). The epidemiology of cytomegaloviral infection in women attending a sexually transmitted disease clinic. J. Infect. Dis., 152, 597–605.CrossRefGoogle ScholarPubMed
Chandler, S. H., Handsfield, H. H., and McDougally, J. K. (1987). Isolation of multiple strains of cytomegalovirus from women attending a clinic for sexually transmitted disease. J. Infect. Dis. 155, 655–660.CrossRefGoogle ScholarPubMed
Chern, K. C., Chandler, D. B., Martin, D. F., Kuppermann, B. D., Wolitz, R. A., and Margolis, T. P. (1998). Glycoprotein B subtyping of cytomegalovirus (CMV) in the vitreous of patients with AIDS and CMV retinitis. J. Infect. Dis., 178, 1149–1153.CrossRefGoogle ScholarPubMed
Chou, S. W. (1986). Acquisition of donor strains of cytomegalovirus by renal-transplant recipients. N. Engl. J. Med., 314, 1418–1423.CrossRefGoogle ScholarPubMed
Chou, S. W. (1987). Cytomegalovirus infection and reinfection transmitted by heart transplantation. J. Infect. Dis., 155, 1054–1056.CrossRefGoogle ScholarPubMed
Cinatl, J. Jr., Cinatl, J., Vogel, J. U., Rabenau, H., Kornhuber, B., and Doerr, H. W. (1996). Modulatory effects of human cytomegalovirus infection on malignant properties of cancer cells. Intervirology, 39, 259–269.CrossRefGoogle ScholarPubMed
Cobbs, C. S., Harkins, L., Samanta, M.et al. (2002). Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res., 62, 3347–3350.Google ScholarPubMed
Cole, R. and Kuttner, A. G. (1926). A filtrable virus present in the submaxillary glands of guinea pigs. J. Exp. Med. 44, 855–873.CrossRefGoogle Scholar
Collier, A. C., Handsfield, H. H., Roberts, P. L.et al. (1990). Cytomegalovirus infection in women attending a sexually transmitted disease clinic. J. Infect. Dis., 162, 46–51.CrossRefGoogle ScholarPubMed
Collier, A. C., Handsfield, H. H., Ashley R. et al. (1995). Cervical but not urinary excretion of cytomegalovirus is related to sexual activity and contraceptive practices in sexually active women. J. Infect. Dis., 171, 33–38.CrossRefGoogle Scholar
Collins, T. M., Quirk, M. R., and Jordan, M. C. (1994). Biphasic viremia and viral gene expression in leukocytes during acute cytomegalovirus infection of mice. J. Virol., 68, 6305–6311.Google ScholarPubMed
Compton, T., Kurt-Jones, E. A.Bochme, K. W., et al. (2003). Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol., 77, 4588–4596.CrossRefGoogle ScholarPubMed
Coonrod, D., Collier, A. C., Ashley, R., DeRouen, T., and Corey, L. (1998). Association between cytomegalovirus seroconversion and upper genital tract infection among women attending a sexually transmitted disease clinic: a prospective study. J. Infect. Dis. 177, 1188–1193.CrossRefGoogle ScholarPubMed
Cope, A. V., Sabin, C., Burroughs, A., Rolles, K., Griffiths, P. D., and Emery V. C. (1997). Interrelationships among quantity of human cytomegalovirus (HCMV) DNA in blood, donor-recipient serostatus, and administration of methylprednisolone as risk factors for HCMV disease following liver transplantation. J. Infect. Dis., 176, 1484–1490.CrossRefGoogle ScholarPubMed
Craigen, J. L., Yong, K. L., Jordan, N. J.et al. (1997). Human cytomegalovirus infection up-regulates interleukin–8 gene expression and stimulates neutrophil transendothelial migration. Immunology, 92, 138–145.CrossRefGoogle ScholarPubMed
Davis-Poynter, N. J., Lynch, D. M., Vally, H.et al. (1997). Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J. Virol., 71, 1521–1529.Google Scholar
Melena, V. T., Kreklywich, C. N., Streblow, D. N.et al. (2001). Kinetics and development of CMV–accelerated transplant vascular sclerosis in rat cardiac allografts is linked to early increase in chemokine expression and presence of virus. Transpl. Proc 33, 1822–1823.CrossRefGoogle Scholar
Demmler, G. J., Yow, M. D., Spector, S. A.et al. (1987). Nosocomial cytomegalovirus infections within two hospitals caring for infants and children. J. Infect. Dis., 156, 9–16.CrossRefGoogle ScholarPubMed
Diamond, C., Speck, C., Huang, M. L., Corey, L., Coombs, R. W., and Krieger, J. N. (2000). Comparison of assays to detect cytomegalovirus shedding in the semen of HIV–infected men. J. Virol. Methods, 90, 185–191.CrossRefGoogle ScholarPubMed
Dieterich, D. T. and Rahmin, M. (1991). Cytomegalovirus colitis in AIDS: presentation in 44 patients and a review of the literature. J. AIDS, 4, S29–S35.Google Scholar
Dobbins, J. G., Adler, S. P., Pass, R. F., Bale, J. F., Grillner, L., and Stewart, J. A. (1993). The risks and benefits of cytomegalovirus transmission in child day care. Am. J. Publ. Hlth in press.
Drew, W. L. (1992). Cytomegalovirus infection in patients with AIDS. Clin. Infect. Dis., 14, 608–615.CrossRefGoogle ScholarPubMed
Drew, W. L. and Mintz, L. (1984). Cytomegalovirus infection in healthy and immune-deficient homosexual men. In The Acquired Immune Deficiency Syndrome and Infections of Homosexual Men, ed. Ma, P. and Armstrong, D., pp. 117–123. New York: Yorke Medical Books.Google Scholar
Drew, W. L., Mintz, L.,Miner, R. C., Sands, M., and Ketterer, B. (1981). Prevalence of cytomegalovirus infection in homosexual men. J. Infect. Dis., 143, 188–192.CrossRefGoogle ScholarPubMed
Drew, W. L., Sweet, E. S., Miner, R. C., and Mocarski, E. S. (1984). Multiple infections by cytomegalovirus in patients with acquired immunodeficiency syndrome: documentation by Southern blot hybridization. J. Infect. Dis., 150, 952–953.CrossRefGoogle ScholarPubMed
Drew, W. L., Tegtmeier, G., Alter, H. J., Laycock, M. E., Miner, R. C., and Busch, M. P. (2003). Frequency and duration of plasma CMV viremia in seroconverting blood donors and recipients.[comment]. Transfusion, 43, 309–313.CrossRefGoogle Scholar
Dworsky, M., Welch, K., Cassady, G., and Stagno, S. (1983a). Occupational risk for primary cytomegalovirus infection among pediatric health care workers. N. Engl. J. Med., 309, 950–953.CrossRefGoogle Scholar
Dworsky, M., Yow, M., Stagno, S., Pass, R. F., and Alford, C. (1983b). Cytomegalovirus infection of breast milk and transmission in infancy. Pediatrics, 72, 295–299.Google Scholar
Dworsky, M., Lakeman, A., and Stagno, S. (1984). Cytomegalovirus transmission within a family. Pediatr. Infect. Dis. 3, 236–238.CrossRefGoogle ScholarPubMed
Emanuel, D., Cunningham, I., Jules-Elysee, K.et al. (1988). Cytomegalovirus pneumonia after bone marrow transplantation successfully treated with the combination of ganciclovir and high-dose intravenous immune globulin. Ann. Intern. Med., 109, 777–782.CrossRefGoogle ScholarPubMed
Emery, V. C., Sabin, C. A., Cope, A. V., Gor, D., Hassan-Walker, A. F., and Griffiths, P. D. (2000). Application of viral-load kinetics to identify patients who develop cytomegalovirus disease after transplantation.[comment]. Lancet, 355, 2032–2036.CrossRefGoogle Scholar
Epstein, S. E., Speir, E., Zhou, Y. F., Guetta, E., Leon, M., and Finkel, T. (1996). The role of infection in restenosis and atherosclerosis: focus on cytomegalovirus. Lancet, 348, s13–s17.CrossRefGoogle ScholarPubMed
Erice, A., Holm, M. A., Gill, P. C.et al. (1992). Cytomegalovirus (CMV) antigenemia assay is more sensitive than shell vial cultures for rapid detection of CMV in polymorphonuclear blood leukocytes. J. Clin. Microbiol., 30, 2822–2825.Google ScholarPubMed
Evans, P. C., Coleman, N., Wreghitt, T. G., Wight, D. G., and Alexander, G. J. (1999). Cytomegalovirus infection of bile duct epithelial cells, hepatic artery and portal venous endothelium in relation to chronic rejection of liver grafts. J. Hepatol., 31, 913–920.CrossRefGoogle ScholarPubMed
Everett, J. P., Hershberger, R. E., Norman, D. J. et al. (1992). Prolonged cytomegalovirus infection with viremia is associated with development of cardiac allograft vasculopathy. J. Heart Lung Transpl..
Farber, S. and Wolbach, S. B. (1932). Intranuclear and cytoplasmic inclusions (“protozoan-like bodies”) in the salivary glands and other organs of infants. Am. J. Pathol. Child., 8, 123–126.Google ScholarPubMed
Fish, K. N., Stenglein, S. G., Ibanez, C., and Nelson, J. A. (1995). Cytomegalovirus persistence in macrophages and endothelial cells. Scand. J. Infect. Dis. – Sppl. 99, 34–40.Google ScholarPubMed
Fish, K. N., Soderberg-Naucler, C., Mills, L. K., Stenglein, S., and Nelson, J. A. (1998). Human cytomegalovirus persistently infects aortic endothelial cells. J. Virol., 72, 5661–5668.Google ScholarPubMed
Fleming, P., Davis-Poynter, N., Degli-Eposti, M.et al. (1999). The murine cytomegalovirus chemokine homolog, m131/129, is a determinant of viral pathogenicity. J. Virol., 73, 6800–6809.Google ScholarPubMed
Fortunato, E. A., McElroy, A. K., Sanchez, I., and Spector, D. H. (2000). Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends Microbiol., 8, 111–119.CrossRefGoogle ScholarPubMed
Foster, K. M. and Jack, I. (1969). A prospective study of the role of cytomegalovirus in post-transfusion mononucleosis. N. Engl. J. Med., 280, 1311–1315.CrossRefGoogle ScholarPubMed
Fowler, K. B. and Pass, R. F. (1991). Sexually transmitted diseases in mothers of neonates with congenital cytomegalovirus infection. J. Infect. Dis., 164, 259–264.CrossRefGoogle ScholarPubMed
Fowler, K. B., Stagno, S., Pass, R. F., Britt, W. J., Boll, T. J., and Alford, C. A. (1992). The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N. Engl. J. Med., 326, 663–667.CrossRefGoogle ScholarPubMed
Fowler, K. B., Stagno, S., and Pass, R. F. (1993). Maternal age and congenital cytomegalovirus infection: screening of two diverse newborn populations, 1980–1990. J. Infect. Dis., 168, 552–556.CrossRefGoogle ScholarPubMed
Fowler, K. B., Pass, R. F., and Stagno, S. (1997). Presented at the Society for Pediatric Epidemiological Research 10th Annual Meeting, Edmonton, Alberta, Canada, June 10–11.
Francis, N. D., Boylston, A. W., Roberts, A. H., Parkin, J. M., and Pinching, A. J. (1989). Cytomegalovirus infection in gastrointestinal tracts of patients infected with HIV-1 or AIDS. J. Clin. Pathol., 42, 1055–1064.CrossRefGoogle ScholarPubMed
Gallant, J. E., Moore, R. D., Richman, D. D., Keruly, J., and Chaisson, R. E. (1992). Incidence and natural history of cytomegalovirus disease in patients with advanced human immunodeficiency virus disease treated with zidovudine. The Zidovudine Epidemiology Study Group. J. Infect. Dis., 166, 1223–1227.CrossRefGoogle ScholarPubMed
Geder, L., Sanford, E. J., Rohner, T. J., and Rapp, F. (1977). Cytomegalovirus and cancer of the prostate: in vitro transformation of human cells. Cancer Treat. Rep., 61, 139–146.Google ScholarPubMed
Gerna, G., Zipeto, D., Parea, M.et al. (1991). Monitoring of human cytomegalovirus infections and ganciclovir treatment in heart transplant recipients by determination of viremia, antigenemia, and DNAemia. J. Infect. Dis., 164, 488–498.CrossRefGoogle ScholarPubMed
Gerna, G., Zipeto, D., Percivalle, E.et al. (1992). Human cytomegalovirus infection of the major leukocyte subpopulations and evidence for initial viral replication in polymorphonuclear leukocytes from viremic patients. J. Infect. Dis., 166, 1236–1244.CrossRefGoogle ScholarPubMed
Gerna, G., Zavattoni, M., Baldanti, F.et al. (1998). Circulating cytomegalic endothelial cells are associated with high human cytomegalovirus (HCMV) load in AIDS patients with late-stage disseminated HCMV disease. J. Med. Virol., 55, 64–74.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Gerna, G., Percivalle, E., Baldanti, F.et al. (2000). Human cytomegalovirus replicates abortively in polymorphonuclear leukocytes after transfer from infected endothelial cells via transient microfusion events. J. Virol., 74, 5629–5638.CrossRefGoogle ScholarPubMed
Gerna, G., Percivalle, E., Baldanti, F., and Revello, M. G. (2002). Lack of transmission to polymorphonuclear leukocytes and human umbilical vein endothelial cells as a marker of attenuation of human cytomegalovirus. J. Med. Virol., 66, 335–339.CrossRefGoogle ScholarPubMed
Gnann, J. W. Jr., Ahlmen, J., Svalander, C., Olding, L., Oldstone, M. B., and Nelson. J. A. (1988). Inflammatory cells in transplanted kidneys are infected by human cytomegalovirus. Am. J. Pathol., 132, 239–248.Google ScholarPubMed
Gold, E. and Nankervis, G. A. (1982). Cytomegalovirus. In Viral Infections of Humans: Epidemiology and Control, 2nd ed, ed. Evans, A. S., pp. 167–186. New York: Plenum Press.CrossRefGoogle Scholar
Goldmacher, V. S., Bartle, L. M., Skaletskaya, A.et al. (1999). A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc. Natl Acad. Sci. USA, 96, 12536–12541.CrossRefGoogle Scholar
Goodpasture, E. W. and Talbot, F. B. (1921). Concerning the nature of “proteozoan-like” cells in certain lesions of infancy. Am. J. Dis. Child., 21, 415–421.Google Scholar
Goodrich, J. M., Bowden, R. A., Fisher, L.et al. (1993). Ganciclovir prophylaxis to prevent cytomegalovirus disease after allogeneic marrow transplant. Ann. Intern. Med., 118, 173–178.CrossRefGoogle ScholarPubMed
Goodrum, F. D., Jordan, C. T., High, K., and Shenk, T. (2002). Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. Proc. Natl Acad. Sci. USA, 99, 16255–16260.CrossRefGoogle ScholarPubMed
Grattan, M. T., Moreno-Cabral, C. E., Starnes, V. A., Oyer, P. E., Stinson, E. B., and Shumway. N. E. (1989). Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. J. Am. Med. Assoc., 261, 3561–3566.CrossRefGoogle ScholarPubMed
Grefte, A., van der Giessen, M., van Son, W., and The, T. H. (1993). Circulating cytomegalovirus (CMV)-infected endoethelial cells in patients with an active CMV infection. J. Infect. Dis., 167, 270–277.CrossRefGoogle Scholar
Griffiths, P. D., Clark, D. A., and Emery, V. C. (2000). Betaherpesviruses in transplant recipients. J. Antimicrob. Chemother., 45, 29–34.CrossRefGoogle ScholarPubMed
Grose, C. (1994). Varicella zoster virus infections: chickenpox, shingles, and varicella vaccine. In Herpesvirus Infections, ed. Glaser, R. and Jones, J. F., pp. 117–185. New York: Marcel Dekker, Inc.Google Scholar
Grundy, J. E., Shanley, J. D., and Griffiths, P. D. (1987). Is cytomegalovirus interstitial pneumonitis in transplant recipients an immunopathological condition?Lancet, 2, 996–999.CrossRefGoogle ScholarPubMed
Grundy, J. E., Lui, S. F., Super, M.et al. (1988). Symptomatic cytomegalovirus infection in seropositive kidney recipients: reinfection with donor virus rather than reactivation of recipient virus. Lancet, 2, 132–135.CrossRefGoogle ScholarPubMed
Grundy, J. E., Lawson, K. M., MacCormac, L. P., Fletcher, J. M., and Yong, K. L. (1998). Cytomegalovirus-infected endothelial cells recruit neutrophils by the secretion of C–X–C chemokines and transmit virus by direct neutrophil-endothelial cell contact and during neutrophil transendothelial migration. J. Infect. Dis., 177, 1465–1474.CrossRefGoogle ScholarPubMed
Guetta, E., Guetta, V., Shibutani, T., and Epstein, S. E. (1997). Monocytes harboring cytomegalovirus: interactions with endothelial cells, smooth muscle cells, and oxidized low-density lipoprotein. Possible mechanisms for activating virus delivered by monocytes to sites of vascular injury. Circ. Res., 81, 8–16.CrossRefGoogle ScholarPubMed
Hahn, G., Jores, R., and Mocarski, E. S. (1998). Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc. Natl Acad. Sci. USA, 95, 3937–3942.CrossRefGoogle Scholar
Hahn, G., Khan, H., Baldanti, F., Koszinowski, U. H., Revello, M. G., and Gerna, G. (2002). The human cytomegalovirus ribonucleotide reductase homolog UL45 is dispensable for growth in endothelial cells, as determined by a BAC-cloned clinical isolate of human cytomegalovirus with preserved wild-type characteristics. J. Virol., 76, 9551–9555.CrossRefGoogle ScholarPubMed
Hahn, G., Revello, M. G., Patrone, M., et al. (2004). Human cytomegalovirus UL131–128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J. Virol., 78, 10023–10033.CrossRefGoogle ScholarPubMed
Hamprecht, K., Vochem, M., Baumeister, A., Boniek, M., Speer, C. P., and Jahn, G. (1998). Detection of cytomegaloviral DNA in human milk cells and cell free milk whey by nested PCR. J. Virol. Method, 70, 167–176.CrossRefGoogle ScholarPubMed
Handsfield, H. H., Chandler, S. H., Caine, V. A.et al. (1985). Cytomegalovirus infection in sex partners: evidence for sexual transmission. J. Infect. Dis., 151, 344–348.CrossRefGoogle ScholarPubMed
Hanshaw, J. B. (1971). Congenital cytomegalovirus infection: a fifteen year perspective. J. Infect. Dis., 123, 555–561.CrossRefGoogle ScholarPubMed
Hanson, L. K., Slater, J. S., Karabekian, Z.et al. (1999). Replication of murine cytomegalovirus in differentiated macrophages as a determinant of viral pathogenesis. J. Virol., 73, 5970–5980.Google ScholarPubMed
Hanson, L. K., Slater, J. S., Karabekian, Z., Ciocco-Schmitt, G., and Campbell, A. E. (2001). Products of US22 genes M140 and M141 confer efficient replication of murine cytomegalovirus in macrophages and spleen. J. Virol., 75, 6292–6302.CrossRefGoogle ScholarPubMed
Harkins, L., Volk, A. L., Samanta, M.et al. (2002). Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet, 360, 1557–1563.CrossRefGoogle ScholarPubMed
Ho, M. (1977). Virus infections after transplantation in man. Arch. Virol., 55, 1–24.CrossRefGoogle ScholarPubMed
Holland, G. N. (1999). Immune recovery uveitis. Ocular Immunol. Inflammation, 7, 215–221.CrossRefGoogle ScholarPubMed
Holsward, T. R., Engle, M. A.Redo, S. F.Goldsmith, E. I., and Barondess, J. A. (1963). Development of viral diseases and a viral disease-like syndrome after extracorporeal circulation. Circulation, 27, 812–815.CrossRefGoogle Scholar
Hosenpud, J. D. (1999). Coronary artery disease after heart transplantation and its relation to cytomegalovirus. Am. Heart J., 138, S469–S472.CrossRefGoogle ScholarPubMed
Hsieh, C. Y., You, S. L., Kao, C. L., and Chen, C. J. (1999). Reproductive and infectious risk factors for invasive cervical cancer in Taiwan. Anticancer Res., 19, 4495–4500.Google ScholarPubMed
Huang, E. S. and Pagano. J. S. (1978). Cytomegalovirus DNA and adenocarcinoma of the colon: evidence for latent infection. Lancet, 1, 957–960.CrossRefGoogle Scholar
Hummel, M., Zhang, Z., Yan, S.et al. (2001). Allogeneic transplantation induces expression of cytomegalovirus immediate-early genes in vivo: a model for reactivation from latency. J. Virol., 75, 4814–4822.CrossRefGoogle ScholarPubMed
Hutto, S. C., Ricks, R. E., Garvie, M., and Pass, R. F. (1985). Epidemiology of cytomegalovirus infections in young children: day care vs home care. Pediatr. Infect. Dis., 4, 149–152.CrossRefGoogle ScholarPubMed
Hutto, C., Little, E. A., Ricks, R., Lee, J. D., and Pass, R. F. (1986). Isolation of cytomegalovirus from toys and hands in a day care center. J. Infect. Dis., 154, 527–530.CrossRefGoogle Scholar
Jacobson, M. A., O'Donnell, J. J., Porteus, D., Brodie, H. R., Feigal, D., and Mills, J. (1988). Retinal and gastrointestinal disease due to cytomegalovirus in patients with the acquired immune deficiency syndrome: prevalence, natural history and response to ganciclovir therapy. Quart. J. Med., 67, 473.Google ScholarPubMed
Jahn, G., Stenglein, S., Riegler, S., Einsele, H., and Sinzger, C. (1999). Human cytomegalovirus infection of immature dendritic cells and macrophages. Intervirology, 42, 365–372.CrossRefGoogle ScholarPubMed
Jarvis, M. A., Wang, C. E., Meyers, H. L.et al. (1999). Human cytomegalovirus infection of Caco-2 cells occurs at the basolateral membrane and is differentiation state dependent. J. Virol., 73, 4552–4560.Google ScholarPubMed
Jesionek, A. and Kiolemenoglou, B. (1904). Uber einen befund von protozoenartigen gebilden in den organen eines heriditarluetischen fotus. Munch. Med. Wochenschr., 51, 1905–1907.Google Scholar
Jonjic, S., Pavic, I., Polic, B., Crnkovic, I., Lucin, P., and Koszinowski, U. H. (1994). Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J. Exp. Med., 179, 1713–1717.CrossRefGoogle Scholar
Jordan, M. C. and Mar, V. L. (1982). Spontaneous activation of latent cytomegalovirus from murine spleen explants. Role of lymphocytes and macrophages in release and replication of virus. J. Clin. Invest., 70, 762–768.CrossRefGoogle ScholarPubMed
Jordan, M. C., Rousseau, W. E., Noble, G. R., Stewart, J. A., and Chin, T. D. Y. (1973). Association of cervical cytomegaloviruses with venereal disease. N. Engl. J. Med., 288, 932–934.CrossRefGoogle ScholarPubMed
Jordan, M. C., Takagi, J. L., and Stevens, J. G. (1982). Activation of latent murine cytomegalovirus in vivo and in vitro: a pathogenetic role for acute infection. J. Infect. Dis., 145, 699–705.CrossRefGoogle ScholarPubMed
Kahl, M., Siegel-Axel, D., Stenglein, S., Jahn, G., and Sinzger, C. (2000). Efficient lytic infection of human arterial endothelial cells by human cytomegalovirus strains. J. Virol., 74, 7628–7635.CrossRefGoogle ScholarPubMed
Kalejta, R. F. and Shenk, T. (2002). Manipulation of the cell cycle by human cytomegalovirus. Frontiers Biosci., 7, d295–d306.CrossRefGoogle ScholarPubMed
Kalejta, R. F. and Shenk, T. (2003). The human cytomegalovirus UL82 gene product (pp71) accelerates progression through the G1 phase of the cell cycle. J. Virol., 77, 3451–3459.CrossRefGoogle ScholarPubMed
Kalejta, R. F., Bechtel, J. T., and Shenk, T. (2003). Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. Mol. Cell. Biol., 23, 1885–1895.CrossRefGoogle ScholarPubMed
Kaplan, C. S., Petersen, E. A., Icenogle, T. B.et al. (1989). Gastrointestinal cytomegalovirus infection in heart and heart-lung transplant recipients. Arch. Intern. Med., 149, 2095–2100.CrossRefGoogle ScholarPubMed
Karavellas, M. P., Lowder, C. Y., Macdonald, C., Avila, C. P. Jr., and Freeman, W. R. (1998). Immune recovery vitritis associated with inactive cytomegalovirus retinitis: a new syndrome. Arch. Ophthalmol., 116, 169–175.CrossRefGoogle ScholarPubMed
Kas-Deelen, A. M., de Maar, E. F., Harmsen, M. C., Driessen, C., van Son, W. J., and The, T. H. (2000). Uninfected and cytomegalic endothelial cells in blood during cytomegalovirus infection: effect of acute rejection. J. Infect. Dis., 181, 721–724.CrossRefGoogle ScholarPubMed
Kas-Deelen, A. M., The, T. H., Blom, N.et al. (2001). Uptake of pp65 in in vitro generated pp65-positive polymorphonuclear cells mediated by phagocytosis and cell fusion?Intervirology, 44, 8–13.CrossRefGoogle ScholarPubMed
Kern, E. R. (1999). Animal models for cytomegalovirus infection: murine CMV. In Handbook of Animal Models of Infection, ed. Zak, O. and Sande, M., pp. 927–934. London: Academic Press.Google Scholar
Klatt, E. C. and Shibata, D. (1988). Cytomegalovirus infection in the acquired immunodeficiency syndrome. Clinical and autopsy findings. Arch. Pathol. Lab. Med., 112, 540–544.Google ScholarPubMed
Kledal, T. N., Rosenkilde, M. M., and Schwartz, T. W. (1998). Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett., 441, 209–214.CrossRefGoogle ScholarPubMed
Kondo, K., Xu, J., and Mocarski, E. S. (1996). Human cytomegalovirus latent gene expression in granulocyte-macrophage progenitors in culture and in seropositive individuals. Proc. Natl. Acad. Sci. USA, 93, 11137–11142.CrossRefGoogle ScholarPubMed
Koskinen, P. K. (1993). The association of the induction of vascular cell adhesion molecule-1 with cytomegalovirus antigenemia in human heart allografts. Transplantation, 56, 1103–1108.CrossRefGoogle ScholarPubMed
Koskinen, P. K., Nieminen, M. S., Krogerus, L. A.et al. (1993). Cytomegalovirus infection and accelerated cardiac allograft vasculopathy in human cardiac allografts. J. Heart Lung Transpl., 12, 724–729.Google ScholarPubMed
Koskinen, P., Lemstrom, K., Bruggeman, C., Lautenschlager, I., and Hayry, P. (1994). Acute cytomegalovirus infection induces a subendothelial inflammation (endothelialitis) in the allograft vascular wall. A possible linkage with enhanced allograft arteriosclerosis. Am. J. Pathol., 144, 41–50.Google Scholar
Koskinen, P. K., Kallio, E. A., Tikkanen, J. M., Sihvola, R. K., Hayry, P. J., and Lemstrom, K. B. (1999). Cytomegalovirus infection and cardiac allograft vasculopathy. Transpl. Infect. Dis., 1, 115–126.CrossRefGoogle ScholarPubMed
Kosugi, I., Shinmura, Y., Li, R. Y.et al. (1998). Murine cytomegalovirus induces apoptosis in non-infected cells of the developing mouse brain and blocks apoptosis in primary neuronal culture. Acta Neuropath., 96, 239–247.CrossRefGoogle ScholarPubMed
Kotenko, S. V., Saccani, S., Izotova, L. S., Mirochnitchenko, O. V., and Pestka, S. (2000). Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc. Natl Acad. Sci. USA, 97, 1695–1700.CrossRefGoogle Scholar
Krech, U. and Tobin, J. (1981). A collaborative study of cytomegalovirus antibodies in mothers and young children in 19 countries. Bull. WHO, 59, 605–610.Google Scholar
Kurz, S., Steffens, H. P., Mayer, A., Harris, J. R., and Reddehase, M. J. (1997). Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J. Virol., 71, 2980–2987.Google ScholarPubMed
Kurz, S. K., Rapp, M., Steffens, H. P., Grzimek, N. K., Schmalz, S., and Reddehase, M. J. (1999). Focal transcriptional activity of murine cytomegalovirus during latency in the lungs. J. Virol., 73, 482–494.Google ScholarPubMed
Landry, M. L. and Ferguson, D. (1993). Comparison of quantitative cytomegalovirus antigenemia assay with culture methods and correlation with clinical disease. J. Clin. Microbiol., 31, 2851–2856.Google ScholarPubMed
Lang, D. J. and Kummer, J. F. (1975). Cytomegalovirus in semen: observations in selected populations. J. Infect. Dis., 132, 472–473.CrossRefGoogle ScholarPubMed
Lemstrom, K., Koskinen, P., Krogerus, L., Daemen, M., Bruggeman, C., and Hayry, P. (1995). Cytomegalovirus antigen expression, endothelial cell proliferation, and intimal thickening in rat cardiac allografts after cytomegalovirus infection. Circulation, 92, 2594–2604.CrossRefGoogle ScholarPubMed
Lemstrom, K., Sihvola, R., Bruggeman, C., Hayry, P., and Koskinen, P. (1997). Cytomegalovirus infection-enhanced cardiac allograft vasculopathy is abolished by DHPG prophylaxis in the rat. Circulation, 95, 2614–2616.CrossRefGoogle ScholarPubMed
Li, F., Yin, M., Dam, J. G., Grauls, G., Rozing, J., and Bruggeman, C. A. (1998). Cytomegalovirus infection enhances the neointima formation in rat aortic allografts: effect of major histocompatibility complex class I and class II antigen differences. Transplantation, 65, 1298–1304.CrossRefGoogle Scholar
Liapis, H., Storch, G. A., Hill, D. A., Rueda, J., and Brennan, D. C. (2003). CMV infection of the renal allograft is much more common than the pathology indicates: a retrospective analysis of qualitative and quantitative buffy coat CMV-PCR, renal biopsy pathology and tissue CMV-PCR. Nephrol. Dial. Transpl., 18, 397–402.CrossRefGoogle Scholar
Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420, 868–874.CrossRefGoogle ScholarPubMed
Libby, P. (2003). Vascular biology of atherosclerosis: overview and state of the art. Am. J. Cardiol., 91, 3A–6A.CrossRefGoogle ScholarPubMed
Liesnard, C. A., Revelard, P., and Englert, Y. (1998). Is matching between women and donors feasible to avoid cytomegalovirus infection in artificial insemination with donor semen? [comment]. Hum. Reprod., 13, 25–31; discussion 32–34.CrossRefGoogle Scholar
Ljungman, P. (2002). Beta-herpesvirus challenges in the transplant recipient. J. Infect. Dis., 186, S99–S109.CrossRefGoogle ScholarPubMed
Ljungman, P., Griffiths, P., and Paya, C. (2002a). Definitions of cytomegalovirus infection and disease in transplant recipients. Clin. Infect. Dis., 34, 1094–1097.CrossRefGoogle Scholar
Ljungman, P., Larsson, K., Kumlien, G.et al. (2002b). Leukocyte depleted, unscreened blood products give a low risk for CMV infection and disease in CMV seronegative allogeneic stem cell transplant recipients with seronegative stem cell donors. Scand. J. Infect. Dis., 34, 347–350.CrossRefGoogle Scholar
Lockridge, K. M., Sequar, G., Zhou, S. S., Yue, Y., Mandell, C. P., and Barry, P. A. (1999). Pathogenesis of experimental rhesus cytomegalovirus infection. J. Virol., 73, 9576–9583.Google ScholarPubMed
Loebe, M., Schuler, S., Zais, O., Warnecke, H., Fleck, E., and Hetzer, R. (1990). Role of cytomegalovirus infection in the development of coronary artery disease in the transplanted heart. J. Heart Transpl., 9, 707–711.Google ScholarPubMed
MacDonald, M. R., Burney, M. W., Resnick, S. B., and Virgin, H. I. (1999). Spliced mRNA encoding the murine cytomegalovirus chemokine homolog predicts a beta chemokine of novel structure. J. Virol., 73, 3682–3691.Google Scholar
Maidji, E., Percivalle, E., Gerna, G., Fisher, S., and Pereira, L. (2002). Transmission of human cytomegalovirus from infected uterine microvascular endothelial cells to differentiating/invasive placental cytotrophoblasts. Virology, 304, 53–69.CrossRefGoogle ScholarPubMed
Margulies, B. J., Browne, H., and Gibson, W. (1996). Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology, 225, 111–125.CrossRefGoogle ScholarPubMed
Mattes, F. M., McLaughlin, J. E., Emery, V. C., Clark, D. A., and Griffiths, P. D. (2000). Histopathological detection of owl's eye inclusions is still specific for cytomegalovirus in the era of human herpesviruses 6 and 7. J. Clin. Pathol., 53, 612–614.CrossRefGoogle ScholarPubMed
McDonald, K., Rector, T. S., Braulin, E. A., Kubo, S. H., and Olivari, M. T. (1989). Association of coronary artery disease in cardiac transplant recipients with cytomegalovirus infection. Am. J. Cardiol., 64, 359–362.Google Scholar
Melnick, J. L., Adam, E., and Debakey, M. E. (1993). Cytomegalovirus and atherosclerosis. Eur. Heart. J., 14, 30–38.Google ScholarPubMed
Menard, C., Wagner, M., Ruzsics, Z.et al. (2003). Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J. Virol., 77, 5557–5570.CrossRefGoogle ScholarPubMed
Mendez, J., Espy, M., Smith, T. F., Wilson, J., Wiesner, R., and Paya, C. V. (1998). Clinical significance of viral load in the diagnosis of cytomegalovirus disease after liver transplantation. Transplantation, 65, 1477–1481.CrossRefGoogle Scholar
Minamishima, I., Ueda, K., Minematsu, T.et al. (1994). Role of breast milk in acquisition of cytomegalovirus infection. Microbiol. Immunol., 38, 549–552.CrossRefGoogle ScholarPubMed
Mitchell, B. M., Leung, A., and Stevens, J. G. (1996). Murine cytomegalovirus DNA in peripheral blood of latently infected mice is detectable only in monocytes and polymorphonuclear leukocytes. Virology, 223, 198–207.CrossRefGoogle ScholarPubMed
Mocarski, E. S. Jr. (2002). Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion. Trends Microbiol., 10, 332–339.CrossRefGoogle ScholarPubMed
Morgello, S., Cho, E. S., Nielson, S., Devinsky, O., and Petito, C. K. (1987). Cytomegalovirus encephalitis in patients with acquired immunodeficiency syndrome: an autopsy study of 30 cases and a review of the literature. Hum. Pathol., 18, 289–297.CrossRefGoogle Scholar
Moro, D., Lloyd, M. L., Smith, A. L., Shellam, G. R., and Lawson, M. A. (1999). Murine viruses in an island population of introduced house mice and endemic short-tailed mice in Western Australia. J. Wildlife Dis., 35, 301–310.CrossRefGoogle Scholar
Murph, J. R., Bale, J. F., Murray, J. C., Stinski, M. F., and Perlman, S. (1986). Cytomegalovirus transmission in a Midwest day care center: possible relationship to child care practices. J. Pediatr., 109, 35–39.CrossRefGoogle Scholar
Murph, J. R., Baron, J. C., Brown, K., Ebelhack, C. L., and Bale, J. F. (1991). The occupational risk of cytomegalovirus infection among day care providers. J. Am. Med. Assoc., 265, 603–608.CrossRefGoogle ScholarPubMed
Mutimer, H. P., Akatsuka, Y., Manley, T.et al. (2002). Association between immune recovery uveitis and a diverse intraocular cytomegalovirus-specific cytotoxic T cell response. J. Infect. Dis., 186, 701–705.CrossRefGoogle Scholar
Myers, J. D., Spencer, H. C. Jr., Watts, J. C.et al. (1975). Cytomegalovirus pneumonia after human marrow transplantation. Ann. Int. Med., 82, 181–188.CrossRefGoogle ScholarPubMed
Myerson, D., Hackman, R. C., Nelson, J. A.et al. (1984). Widespread presence of histologically occult cytomegalovirus. Hum. Pathol., 15, 430–439.CrossRefGoogle ScholarPubMed
Nichols, W. G. and Boeckh, M. (2000). Recent advances in the therapy and prevention of CMV infections. J. Clini. Virol., 16, 25–40.CrossRefGoogle ScholarPubMed
Nichols, W. G., Corey, L., Gooley, T.et al. (2001). Rising pp65 antigenemia during preemptive anticytomegalovirus therapy after allogeneic hematopoietic stem cell transplantation: risk factors, correlation with DNA load, and outcomes. Blood, 97, 867–874.CrossRefGoogle ScholarPubMed
Nieto, F. J., Adam, E., Sorlie, P.et al. (1996). Cohort study of cytomegalovirus infection as a risk factor for carotid intimal-medial thickening, a measure of subclinical atherosclerosis. Circulation, 94, 922–927.CrossRefGoogle ScholarPubMed
Noda, S., Aguirre, S. A., Bitmansour, A.et al. (2006) Cytomegalovirus MCK-2 controls mobilization and recruitment of myeloid progenitor cells to facilitate dissemination. Blood, 107, 30–38.CrossRefGoogle ScholarPubMed
O'Connor, S., Taylor, C., Campbell, L. A., Epstein, S., and Libby, P. (2001). Potential infectious etiologies of atherosclerosis: a multifactorial perspective. Emerg. Infect. Dis., 7, 780–788.CrossRefGoogle ScholarPubMed
Odeberg, J., Cerboni, C., Browne, H.et al. (2002). Human cytomegalovirus (HCMV)-infected endothelial cells and macrophages are less susceptible to natural killer lysis independent of the downregulation of classical HLA class I molecules or expression of the HCMV class I homologue, UL18. Scand. J. Immunol., 55, 149–161.CrossRefGoogle ScholarPubMed
Oliveira, S. A. and Shenk, T. E. (2001). Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA. Proc. Natl Acad. Sci. USA, 98, 3237–3242.CrossRefGoogle Scholar
Paloheimo, J. A., von Essen, R., Klemola, E., Kaariainen, L., and Siltanen, P. (1968). Subclinical cytomegalovirus infections and cytomegalovirus mononucleosis after open heart surgery. Am. J. Cardiol., 22, 624–630.CrossRefGoogle ScholarPubMed
Pass, R. F., Stagno, S., Myers, G. J., and Alford, C. A. (1980). Outcome of symptomatic congenital CMV infection: results of long-term longitudinal follow-up. Pediatrics, 66, 758–762.Google ScholarPubMed
Pass, R. F., August, A. M., Dworsky, M. E., and Reynolds, D. W. (1982a). Cytomegalovirus infection in a day care center. N. Engl. J. Med., 307, 477–479.CrossRefGoogle Scholar
Pass, R. F., Stagno, S., Dworsky, M. E., Smith, R. J., and Alford, C. A. (1982b). Excretion of cytomegalovirus in mothers: observation after delivery of congenitally infected and normal infants. J. Infect. Dis., 146, 1–6.CrossRefGoogle Scholar
Pass, R. F., Hutto, C., Reynolds, D. W., and Polhill, R. B. (1984). Increased frequency of cytomegalovirus in children in group day care. Pediatrics, 74, 121–126.Google ScholarPubMed
Pass, R. F., Hutto, S. C., Ricks, R., and Cloud, G. A. (1986). Increased rate of cytomegalovirus infection among parents of children attending day care centers. N. Engl. J. Med., 314, 1414–1418.CrossRefGoogle ScholarPubMed
Pass, R. F., Little, E. A., Stagno, S., Britt, W. J., and Alford, C. A. (1987). Young children as a probable source of maternal and congenital cytomegalovirus infection. N. Engl. J. Med., 316, 1366–1370.CrossRefGoogle ScholarPubMed
Pass, R. F., Hutto, C., Lyon, M. D., and Cloud, G. (1990). Increased rate of cytomegalovirus infection among day care center workers. Pediatr. Infect. Dis. J., 9, 465–470.CrossRefGoogle ScholarPubMed
Pecorella, I., Ciardi, A., Garner, A., McCartney, A. C., and Lucas, S. (2000). Postmortem histological survey of the ocular lesions in a British population of AIDS patients. Br. J. Ophthalmol., 84, 1275–1281.CrossRefGoogle Scholar
Penfold, M. E., Dairaghi, D. J., Duke, G. M.et al. (1999). Cytomegalovirus encodes a potent alpha chemokine. Proc. Natl Acad. Sci. USA, 96, 9839–9844.CrossRefGoogle ScholarPubMed
Penfold, M. E., Schmidt, T. L., Dairaghi, D. J., Barry, P. A., and Schall, T. J. (2003). Characterization of the rhesus cytomegalovirus US28 locus. J. Virol., 77, 10404–10413.CrossRefGoogle ScholarPubMed
Pepose, J. S., Holland, G. N., Nestor, M. S., Cochran, A. J., and Foos, R. Y. (1985). Acquired immune deficiency syndrome. Pathogenic mechanisms of ocular disease. Ophthalmology, 92, 472–484.CrossRefGoogle ScholarPubMed
Pepose, J. S., Newman, C., Bach, M. C.et al. (1987). Pathologic features of cytomegalovirus retinopathy after treatment with the antiviral agent ganciclovir. Ophthalmology, 94, 414–424.CrossRefGoogle ScholarPubMed
Percivalle, E., Revello, M. G., Vago, L., Morini, F., and Gerna, G. (1993). Circulating endothelial giant cells permissive for human cytomegalovirus (HCMV) are detected in disseminated HCMV infections with organ involvement. J. Clin. Invest., 92, 663–670.CrossRefGoogle ScholarPubMed
Perlman, J. M. and Argyle, C. (1992). Lethal cytomegalovirus infection in preterm infants: clinical, radiological, and neuropathological findings. Ann. Neurol., 31, 64–68.CrossRefGoogle ScholarPubMed
Peterson, P. K., Balfour, H. H., Marker, S. C.et al. (1980). Cytomegalovirus disease in renal allograft recipients: a prospective study of the clinical features, risk factors and impact on renal transplantation. Medicine, 59, 283–300.CrossRefGoogle ScholarPubMed
Petrie, B. L., Adam, E., and Melnick, J. L. (1988). Association of herpesvirus/cytomegalovirus infections with human atherosclerosis. Progr. Med. Virol., 35, 21–42.Google ScholarPubMed
Plachter, B., Sinzger, C., and Jahn, G. (1996). Cell types involved in replication and distribution of human cytomegalovirus. Adv. Virus Res., 46, 195–261.CrossRefGoogle ScholarPubMed
Plotkin, S. A., Starr, S. E., Friedman, H. M.et al. (1989). Protective effects of Towne cytomegalovirus vaccine against low-passage cytomegalovirus administered as a challenge. J. Infect. Dis., 159, 860–865.CrossRefGoogle ScholarPubMed
Plotkin, S. A., Starr, S. E., Friedman, H. M.et al. (1991). Effect of Towne live virus vaccine on cytomegalovirus disease after renal transplant. A controlled trial. Ann. Intern. Med., 114, 525–531.CrossRefGoogle ScholarPubMed
Pooley, R. J. Jr., Peterson, L., Finn, W. G., and Kroft, S. H. (1999). Cytomegalovirus-infected cells in routinely prepared peripheral blood films of immunosuppressed patients. Am. J. Clin. Pathol., 112, 108–112.CrossRefGoogle ScholarPubMed
Prince, A. M., Szumuness, W., Millian, S. J., and David, D. S. (1971). A serologic study of cytomegalovirus infections associated with blood transfusions. N. Engl. J. Med., 284, 1125–1131.CrossRefGoogle ScholarPubMed
Randolph-Habecker, J. R., Rahill, B., Torok-Storb, B.et al. (2002). The expression of the cytomegalovirus chemokine receptor homolog US28 sequesters biologically active CC chemokines and alters IL-8 production. Cytokine, 19, 37–46.CrossRefGoogle ScholarPubMed
Rapp, F. and Robbins, D. (1984). Cytomegalovirus and human cancer. Birth Defects: Original Article Series, 20, 175–192.Google ScholarPubMed
Reddehase, M. J., Balthesen, M., Rapp, M., Jonjic, S., Pavic, I., and Koszinowski, U. H. (1994). The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J. Exp. Med., 179, 185–193.CrossRefGoogle ScholarPubMed
Reddehase, M. J., Podlech, J., and Grzimek, N. K. (2002). Mouse models of cytomegalovirus latency: overview. J. Clin. Virol., 25, S23–S36.CrossRefGoogle ScholarPubMed
Redman, T. K., Britt, W. J., Wilcox, C. M., Graham, M. F., and Smith, P. D. (2002). Human cytomegalovirus enhances chemokine production by lipopolysaccharide-stimulated lamina propria macrophages. J. Infect. Dis., 185, 584–590.CrossRefGoogle ScholarPubMed
Reed, E. C., Wolford, J. L., Kopecky, K. J., Lilleby, K. E., Dandliker, P. S., and Todaro, J. L. (1990). Ganciclovir for the treatment of cytomegalovirus gastroenteritis in bone marrow transplant patients. A randomized, placebo-controlled trial. Ann. Intern. Med., 112, 505–510.CrossRefGoogle ScholarPubMed
Reyman, T. A. (1966). Postperfusion syndrome: a review and report of 21 cases. Am. Heart J., 72, 116–123.CrossRefGoogle ScholarPubMed
Reynolds, D. W., Stagno, S., Hosty, T. S., Tiller, M., and Alford, C. A. (1973). Maternal cytomegalovirus excretion and perinatal infection. N. Engl. J. Med., 289, 1–5.CrossRefGoogle ScholarPubMed
Ribalta, T., Martinez, A. J., Jares, P.et al. (2002). Presence of occult cytomegalovirus infection in the brain after orthotopic liver transplantation. An autopsy study of 83 cases. [see comment]. Virchows Arch., 440, 166–171.CrossRefGoogle Scholar
Ribbert, D. (1904). Uber protozoenartige zellen in der niere eines syphilitischen neugoborenen und in der parotis von kindern. Zentralbl. Allg. Pathol., 15, 945–948.Google Scholar
Rice, G. P. A., Schrier, R. D., and Oldstone, M. B. A. (1984). Cytomegalovirus infects human lymphocytes and monocytes: virus expression is restricted to immediate-early gene products. Proc. Natl. Acad. Sci. USA, 81, 6134.CrossRefGoogle ScholarPubMed
Richardson, W. P., Colvin, R. B., Cheeseman, S. H.et al. (1981). Glomerulopathy associated with cytomegalovirus viremia in renal allografts. N. Engl. J. Med., 305, 57–63.CrossRefGoogle ScholarPubMed
Riegler, S., Hebart, H., Einsele, H., Brossart, P., Jahn, G., and Sinzger, C. (2000). Monocyte-derived dendritic cells are permissive to the complete replicative cycle of human cytomegalovirus. J. Gen. Virol., 81, 393–399.CrossRefGoogle ScholarPubMed
Rifkind, D. (1965). Cytomegalovirus infection after renal transplantation. Arch. Intern. Med., 116, 554–558.CrossRefGoogle ScholarPubMed
Rinaldo, C. R. Jr., Kingsley, L. A., Ho, M., Armstrong, J. A., and Zhou, S. Y. (1992). Enhanced shedding of cytomegalovirus in semen of human immunodeficiency virus-seropositive homosexual men. J. Clin. Microbiol., 30, 1148–1155.Google ScholarPubMed
Roback, J. D., Hillyer, C. D., Drew, W. L.et al. (2001). Multicenter evaluation of PCR methods for detecting CMV DNA in blood donors. Transfusion., 41, 1249–1257.CrossRefGoogle ScholarPubMed
Rosenkilde, M. M., Waldhoer, M., Luttichau, H. R., and Schwartz, T. W. (2001). Virally encoded 7TM receptors. Oncogene, 20, 1582–1593.CrossRefGoogle ScholarPubMed
Rubin, R. H. (1990). Impact of cytomegalovirus infection on organ transplant recipients. Rev. Infect. Dis., 12, S754–S766.CrossRefGoogle ScholarPubMed
Rubin, R. (2002). Clinical approach to infection in the compromised host, In Infection in the Organ Transplant Recipient, ed. Rubin, R., pp. 573–679 New York: Kluwer Academic Press.CrossRefGoogle ScholarPubMed
Rubin, R. H. and Colvin, R. B. (1986). Cytomegalovirus infection in renal transplantation: clinical importance and control. In Kidney Transplant Rejection: Diagnosis and Treatment, ed. Williams, G. M., Burdick, J. F., and Solez, K., pp. 283–304. New York: Dekker.Google Scholar
Rubin, R. H., Russell, P. S., Levin, M., and Cohen, C. (1979). From the National Institutes of Health. Summary of a workshop on cytomegalovirus infections during organ transplantation. J. Infect. Dis., 139, 728–734.CrossRefGoogle ScholarPubMed
Rubin, R. H., Wolfson, J. S., Cosimi, A. B.et al. (1981). Infection in the renal transplant recipient. Am. J. Med., 70, 405–411.CrossRefGoogle ScholarPubMed
Saederup, N., Lin, Y. C., Dairaghi, D. J., Schall, T. J., and Mocarski, E. S. (1999). Cytomegalovirus-encoded beta chemokine promotes monocyte-associated viremia in the host. Proc. Natl Acad. Sci. USA, 96, 10881–10886.CrossRefGoogle Scholar
Saederup, N., Aguirre, S. A., Sparer, T. E., Bouley, D. M., and Mocarski, E. S. (2001). Murine cytomegalovirus CC chemokine homolog MCK-2 (m131–129) is a determinant of dissemination that increases inflammation at initial sites of infection. J. Virol., 75, 9966–9976.CrossRefGoogle ScholarPubMed
Saederup, N. and Mocarski, E. S. Jr, (2002). Fatal attraction: cytomegalovirus-encoded chemokine homologs. Curr. Top. Microbiol. Immunol., 269, 235–256.Google ScholarPubMed
Salzberger, B., Myerson, D., and Boeckh, M. (1997). Circulating cytomegalovirus (CMV)-infected endothelial cells in marrow transplant patients with CMV disease and CMV infection. J. Infect. Dis., 176, 778–781.CrossRefGoogle ScholarPubMed
Schafer, P., Tenschert, W., Cremaschi, L., Schroter, M., Gutensohn, K., and Laufs, R. (2000). Cytomegalovirus cultured from different major leukocyte subpopulations: association with clinical features in CMV immunoglobulin G-positive renal allograft recipients. J. Med. Virol., 61, 488–496.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Schmidbauer, M., Budka, H., Ulrich, W., and Ambros, P. (1989). Cytomegalovirus (CMV) disease of the brain in AIDS and connatal infection: a comparative study by histology, immunocytochemistry and in situ DNA hybridization. Acta Neuropathol. (Berl.), 79, 286–293.CrossRefGoogle ScholarPubMed
Schmidt, G. M., Horak, D. A., Niland, J. C., Duncan, S. R., Forman, S. J., and Zaia, J. A. (1991). A randomized, controlled trial of prophylactic ganciclovir for cytomegalovirus pulmonary infection in recipients of allogeneic bone marrow transplants; The City of Hope-Stanford-Syntex CMV Study Group. N. Engl. J. Med., 324, 1005–1011.CrossRefGoogle ScholarPubMed
Sedmak, D. D., Knight, D. A., Vook, N. C., and Waldman, J. W. (1994). Divergent patterns of ELAM-1, ICAM-1, and VCAM-1 expression on cytomegalovirus-infected endothelial cells. Transplantation, 58, 1379–1385.Google ScholarPubMed
Selik, R. M., Chu, S. Y., and Ward, J. W. (1996). Trends in infectious diseases and cancers among persons dying of HIV infection in the United States from 1987 to 1992. Ann. Intern. Med., 123, 933–936.CrossRefGoogle Scholar
Sequar, G., Britt, W. J., Lakeman, F. D.et al. (2002). Experimental coinfection of rhesus macaques with rhesus cytomegalovirus and simian immunodeficiency virus: pathogenesis. J. Virol., 76, 7661–7671.CrossRefGoogle ScholarPubMed
Shen, C. Y., Ho, M. S., Chang, S. F.et al. (1993). High rate of concurrent genital infections with human cytomegalovirus and human papillomaviruses in cervical cancer patients. J. Infect. Dis., 168, 449–452.CrossRefGoogle ScholarPubMed
Shen, Y., Zhu, H., and Shenk, T. (1997). Human cytomagalovirus IE1 and IE2 proteins are mutagenic and mediate “hit-and-run” oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc. Natl Acad. Sci. USA, 94, 3341–3345.CrossRefGoogle ScholarPubMed
Sinclair, J. and Sissons, P. (1996). Latent and persistent infections of monocytes and macrophages. Intervirology, 39, 293–301.CrossRefGoogle ScholarPubMed
Singh, N., Dummer, J. S., Kusne, S.et al. (1988). Infections with cytomegalovirus and other herpesviruses in 121 liver transplant recipients: transmission by donated organ and the effect of OKT3 antibodies. J. Infect. Dis., 158, 124–131.CrossRefGoogle ScholarPubMed
Singh, N., Paterson, D. L., Gayowski, T., Wagener, M. M., and Marino, I. R. (2000). Cytomegalovirus antigenemia directed pre-emptive prophylaxis with oral versus I. V. ganciclovir for the prevention of cytomegalovirus disease in liver transplant recipients: a randomized, controlled trial. Transplantation, 70, 717–722.CrossRefGoogle Scholar
Sinzger, C. and Jahn, G. (1996). Human cytomegalovirus cell tropism and pathogenesis. Intervirology, 39, 302–319.CrossRefGoogle ScholarPubMed
Sinzger, C., Grefte, A., Plachter, B., Gouw, A. S., The, T. H., and Jahn, G. (1995). Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J. Gen. Virol., 76, 741–750.CrossRefGoogle ScholarPubMed
Sinzger, C., Knapp, J., Plachter, B., Schmidt, K., and Jahn, G. (1997). Quantification of replication of clinical cytomegalovirus isolates in cultured endothelial cells and fibroblasts by a focus expansion assay. J. Virol. Methods, 63, 103–112.CrossRefGoogle ScholarPubMed
Sinzger, C., Schmidt, K., Knapp, J.et al. (1999). Modification of human cytomegalovirus tropism through propagation in vitro is associated with changes in the viral genome. J. Gen. Virol., 80, 2867–2877.CrossRefGoogle ScholarPubMed
Sinzger, C., Kahl, M., Laib, K.et al. (2000). Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus. J. Gen. Virol., 81, 3021–3035.CrossRefGoogle ScholarPubMed
Soderberg-Naucler, C. and Emery, V. C. (2001). Viral infections and their impact on chronic renal allograft dysfunction. Transplantation., 71, SS224–SS230.Google ScholarPubMed
Soderberg-Naucler, C., Fish, K. N., and Nelson, J. A. (1997). Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell, 91, 119–126.CrossRefGoogle ScholarPubMed
Soderberg-Naucler, C., Fish, K. N., and Nelson, J. A. (1998). Growth of human cytomegalovirus in primary macrophages. Methods (Duluth), 16, 126–138.CrossRefGoogle ScholarPubMed
Soderberg-Naucler, C., Streblow, D. N., Fish, K. N., Allan-Yorke, J., Smith, P. P., and Nelson, J. A. (2001). Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J. Virol., 75, 7543–7554.CrossRefGoogle ScholarPubMed
Sohn, Y. M., Oh, M. K., Balcarek, K. B., Cloud, G. A., and Pass, R. F. (1991). Cytomegalovirus infection in sexually active adolescents. J. Infect. Dis., 163, 460–463.CrossRefGoogle ScholarPubMed
Spector, S. A. and Spector, D. H. (1982). Molecular epidemiology of cytomegalovirus infections in premature twin infants and their mother. Pediatr. Infect. Dis. J., 1, 405–409.CrossRefGoogle ScholarPubMed
Spector, S. A., Hirata, K. K., and Newman, T. R. (1984). Identification of multiple cytomegalovirus strains in homosexual men with acquired immunodeficiency syndrome. J. Infect. Dis., 150, 953–956.CrossRefGoogle ScholarPubMed
Spector, S. A., Wong, R., Hsia, K., Pilcher, M., and Stempien, M. J. (1998). Plasma cytomegalovirus (CMV) DNA load predicts CMV disease and survival in AIDS patients. J. Clin. Invest., 101, 497–502.CrossRefGoogle ScholarPubMed
Spector, S. A., Hsia, K., Crager, M., Pilcher, M., Cabral, S., and Stempien, M. J. (1999). Cytomegalovirus (CMV) DNA load is an independent predictor of CMV disease and survival in advanced AIDS. J. Virol., 73, 7027–7030.Google ScholarPubMed
Speir, E., Modali, R., Huang, E. S.et al. (1994). Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science, 265, 391–394.CrossRefGoogle ScholarPubMed
Speir, E., Yu, Z. X., Ferrans, V. J., Huang, E. S., and Epstein, S. E. (1998). Aspirin attenuates cytomegalovirus infectivity and gene expression mediated by cyclooxygenase-2 in coronary artery smooth muscle cells. Circ. Res., 83, 210–216.CrossRefGoogle ScholarPubMed
Spencer, J. V., Lockridge, K. M., Barry, P. A.et al. (2002). Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J. Virol., 76, 1285–1292.CrossRefGoogle ScholarPubMed
Stagno, S. (1995). Cytomegalovirus, In Infectious Diseases of the Fetus and Newborn Infant, 4th ed, ed. Remington, J. S. and Klein, J. O., pp. 312–353. Philadelphia: W. B. Saunders.Google Scholar
Stagno, S., Reynolds, D. W., Tsiantos, A.et al. (1975a). Cervical cytomegalovirus excretion in pregnant and nonpregnant women: suppression in early gestation. J. Infect. Dis., 131, 522–527.CrossRefGoogle Scholar
Stagno, S., Reynolds, D. W., Tsiantos, A., Fucillo, D. A., Long, W., and Alford, C. A. (1975b). Comparative, serial virologic and serologic studies of symptomatic and subclinical congenital and natally acquired cytomegalovirus infection. J. Infect. Dis., 132, 568–577.CrossRefGoogle Scholar
Stagno, S., Reynolds, D. W., Amos, C. S.et al. (1977). Auditory and visual defects resulting from symptomatic and subclinical congenital cytomegaloviral and toxoplasma infections. Pediatrics, 59, 669–678.Google ScholarPubMed
Stagno, S., Reynolds, D. W., Pass, R. F., and Alford, C. A. (1980). Breast milk and the risk of cytomegalovirus infection. N. Engl. J. Med., 302, 1073–1076.CrossRefGoogle ScholarPubMed
Stagno, S., Pass, R. F., Dworsky, M. E.et al. (1982). Congenital cytomegalovirus infection: the relative importance of primary and recurrent maternal infection. N. Engl. J. Med., 306, 945–949.CrossRefGoogle ScholarPubMed
Stagno, S., Pass, R. F., Dworsky, M. E., and Alford, C. A. (1983). Congenital and perinatal cytomegaloviral infections. Semin. Perinatol., 7, 31–42.Google Scholar
Stevens, D. P., Barker, L. F., Ketcham, A. S., and Meyer, H. M. (1970). Asymptomatic cytomegalovirus infection following blood transfusion in tumor surgery. J. Am. Med. Assoc., 211, 1341–1344.CrossRefGoogle ScholarPubMed
Stoddart, C. A., Cardin, R. D., Boname, J. M., Manning, W. C., Abenes, G. B., and Mocarski, E. S. (1994). Peripheral blood mononuclear phagocytes mediate dissemination of murine cytomegalovirus. J. Virol., 68, 6243–6253.Google ScholarPubMed
Streblow, D. N., Soderberg-Naucler, C., Vieira, J.et al. (1999). The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell., 99, 511–520.CrossRefGoogle ScholarPubMed
Streblow, D. N., Orloff, S. L., and Nelson, J. A. (2001). Do pathogens accelerate atherosclerosis?J. Nutrit., 131, 2798S–2804S.Google ScholarPubMed
Streblow, D. N., Kreklywich, C., Yin, Q.et al. (2003). Cytomegalovirus-mediated upregulation of chemokine expression correlates with the acceleration of chronic rejection in rat heart transplants. J. Virol., 77, 2182–2194.CrossRefGoogle ScholarPubMed
Taber, L. H., Frank, A. L., Yow, M. D., and Bagley, A. (1985). Acquisition of cytomegaloviral infections in families with young children: a serological study. J. Infect. Dis., 151, 948–952.CrossRefGoogle ScholarPubMed
Taylor, P. M., Rose, M. L., Yacoub, M. H., and Pigott, R. (1992). Induction of vascular adhesion molecules during rejection of human cardiac allografts. Transplantation, 54, 451–457.CrossRefGoogle ScholarPubMed
Taylor-Wiedeman, J., Sissons, J. G., Borysiewicz, L. K., and Sinclair, J. H. (1991). Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J. Gen. Virol.CrossRef
Taylor-Wiedeman, J., Sissons, P., and Sinclair, J. (1994). Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J. Virol., 68, 1597–1604.Google ScholarPubMed
The, T. H., Bij, W., Berg, A. P.et al. (1990). Cytomegalovirus antigenemia. Rev. Infect. Dis., 12(S), 734–744.Google Scholar
Tolkoff-Rubin, N. E., Fishman, J. A., and Rubin, R. H. (2001). The bidirectional relationship between cytomegalovirus and allograft injury. Transpl. Proc., 33, 1773–1775.CrossRefGoogle ScholarPubMed
Valantine, H. A., Gao, S. Z., Menon, S. G.et al. (1999). Impact of prophylactic immediate posttransplant ganciclovir on development of transplant atherosclerosis: a post hoc analysis of a randomized, placebo-controlled study. Circulation, 100, 61–66.CrossRefGoogle ScholarPubMed
Valantine, H. A., Luikart, H., Doyle, R.et al. (2001). Impact of Cytomegalovirus hyperimmune globulin on outcome after cardiothoracic transplantation: a comparative study of combined prophylaxis with CMV hyperimmune globulin plus ganciclovir versus ganciclovir alone. Transplantation, 72, 1647–1852.CrossRefGoogle ScholarPubMed
Dam-Mieras, M. C., Bruggeman, C. A., Muller, A. D., Debie, W. H., and Zwaal, R. F. (1987). Induction of endothelial cell procoagulant activity by cytomegalovirus infection. Thromb. Res., 47, 69–75.CrossRefGoogle ScholarPubMed
Bij, W., Schirm, J., Torensma, R., van Son, W. J., Tegzess, A. M., and The, T. H. (1988). Comparison between viremia and antigenemia for detection of cytomegalovirus in blood. J. Clin. Microbiol., 26, 2531–2535.Google ScholarPubMed
Vinters, H. V., Kwok, M. K., Ho, H. W. et al. (1989). Cytomegalovirus in the nervous system of patients with the acquired immune deficiency syndrome. Brain,
Vochem, M., Hamprecht, K., Jahn, G., and Speer, C. P. (1998). Transmission of cytomegalovirus to preterm infants through breast milk. Pediatr. Infect. Dis. J., 17, 53–58.CrossRefGoogle ScholarPubMed
Vossen, R. C., Dam-Mieras, M. C., and Bruggeman, C. A. (1996). Cytomegalovirus infection and vessel wall pathology. Intervirology, 39, 213–221.CrossRefGoogle ScholarPubMed
Waldhoer, M., Kledal, T. N., Farrell, H., and Schwartz, T. W. (2002). Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J. Virol., 76, 8161–8168.CrossRefGoogle ScholarPubMed
Waldman, W. J. and Knight, D. A. (1996). Cytokine-mediated induction of endothelial adhesion molecule and histocompatibility leukocyte antigen expression by cytomegalovirus-activated T cells. Am. J. Pathol., 148, 105–119.Google ScholarPubMed
Waldman, W. J., Roberts, W. H., Davis, D. H., Williams, M. V.Sedmak, D. D., and Stephens, R. E. (1991). Preservation of natural endothelial cytopathogenicity of cytomegalovirus by propagation in endothelial cells. Arch. Virol., 117, 143–164.CrossRefGoogle ScholarPubMed
Waldman, W. J., Knight, D. A., Huang, E. H., and Sedmak, D. D. (1995). Bidirectional transmission of infectious cytomegalovirus between monocytes and vascular endothelial cells: an in vitro model. J. Infect. Dis., 171, 263–272.CrossRefGoogle Scholar
Walter, E. A., Greenberg, P. D., Gilbert, M. J.et al. (1995). Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med., 333, 1038–1044.CrossRefGoogle Scholar
Waner, J. L., Hopkins, D. R., Weller, T. H., and Allard, E. N. (1977). Cervical excretion of cytomegalovirus: correlation with secretory and humoral antibody. J. Infect. Dis., 136, 805–809.CrossRefGoogle ScholarPubMed
Wang, D. and Shenk, T. (2005a). Human cytomegaloviruses virion protein complex required for epithelial and edothelial cell tropism. Proc. Nat. Acad. Sci. USA, 102, 18153–18158.CrossRefGoogle Scholar
Wang, D. and Shenk T. (2005b). Human cytomegaloviruses UL131 open reading frame is required of epithelial cell tropism. J. Virol., 79, 10330–10338.CrossRefGoogle Scholar
Weller, T. H. (1971). The cytomegaloviruses: ubiquitous agents with protean clinical manifestations. N. Engl. J. Med., 285, 203–214.CrossRefGoogle ScholarPubMed
Wilcox, C. M., Chalasani, N., Lazenby, A., and Schwartz, D. A. (1998). Cytomegalovirus colitis in acquired immunodeficiency syndrome: a clinical and endoscopic study. Gastrointest. Endosc., 48, 39–43.CrossRefGoogle ScholarPubMed
Wiley, C. A. and Nelson, J. A. (1988). Role of human immunodeficiency virus and cytomegalovirus in AIDS encephalitis. Am. J. Pathol., 133, 73–81.Google ScholarPubMed
Williamson, W. D., Desmond, M. M., LaFevers, N., Taber, L. H., Catlin, F. I., and Weaver, T. G. (1982). Symptomatic congenital cytomegalovirus: disorders of language, learning and hearing. Am. J. Dis. Child., 136, 902–905.CrossRefGoogle ScholarPubMed
Williamson, W. D., Demmler, G. J., Percy, A. K., and Catlin, F. I. (1992). Progressive hearing loss in infants with asymptomatic congenital cytomegalovirus infection. Pediatrics, 90, 862–866.Google ScholarPubMed
Winston, D. J., Gale, R. P., Meyers, D. V.et al. (1979). Infectious complications of human bone marrow transplantation. Medicine, 58, 1–31.CrossRefGoogle ScholarPubMed
Winston, D. J., Ho, W. G., Bartoni, K.et al. (1993). Ganciclovir prophylaxis of cytomegalovirus infection and disease in allogeneic bone marrow transplant recipients. Results of a placebo-controlled, double-blind trial. Ann. Intern. Med., 118, 179–184.CrossRefGoogle ScholarPubMed
Wu, T. C., Hruban, R. H., Ambinder, R. F.et al. (1992). Demonstration of cytomegalovirus nucleic acids in the coronary arteries of transplanted hearts. Am. J. Pathol., 140, 739–747.Google ScholarPubMed
Yang, Y. S., Ho, H. N., Chen, H. F.et al. (1995). Cytomegalovirus infection and viral shedding in the genital tract of infertile couples. J. Med. Virol., 45, 179–182.CrossRefGoogle ScholarPubMed
Yeager, A. S. (1975). Longitudinal, serological study of cytomegalovirus infections in nurses and in personnel without patient contact. J. Clin. Microbiol., 2, 448–450.Google ScholarPubMed
Yeager, A. S. (1983). Transmission of cytomegalovirus to mothers by infected infants: another reason to prevent transfusion-acquired infections. Pediatr. Infect. Dis., 2, 295.CrossRefGoogle ScholarPubMed
Yeager, A. S., Grumet, F. C., Hafleigh, E. B., Arvin, A. M., Bradley, J. S., and Prober, C. G. (1981). Prevention of transfusion-acquired cytomegalovirus infections in newborn infants. J. Pediatr., 98, 281–287.CrossRefGoogle ScholarPubMed
Yilmaz, S., Koskinen, P. K., Kallio, E., Bruggeman, C. A., Hayry, P. J., and Lemstrom, K. B. (1996). Cytomegalovirus infection-enhanced chronic kidney allograft rejection is linked with intercellular adhesion molecule-1 expression. Kidney Int., 50, 526–537.CrossRefGoogle ScholarPubMed
Zhou, Y. F., Leon, M. B., Waclawiw, M. A.et al. (1996). Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N. Engl. J. Med., 335, 624–630.CrossRefGoogle ScholarPubMed
Zhou, Y. F., Shou, M., Guetta, E.et al. (1999). Cytomegalovirus infection of rats increases the neointimal response to vascular injury without consistent evidence of direct infection of the vascular wall. Circulation, 100, 1569–1575.CrossRefGoogle ScholarPubMed
Zhu, H., Shen, Y., and Shenk, T. (1995). Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J. Virol., 69, 7960–7970.Google ScholarPubMed
Zhu, H., Cong, J. P., Bresnahan, W. A., and Shenk, T. E. (2002). Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc. Natl Acad. Sci. USA, 99, 3932–3937.CrossRefGoogle ScholarPubMed
Zhu, J., Quyyumi, A. A., Norman, J. E., Csako, G., and Epstein, S. E. (1999). Cytomegalovirus in the pathogenesis of atherosclerosis: the role of inflammation as reflected by elevated C-reactive protein levels. J. Am. Coll. Cardiol., 34, 1738–1743.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×