Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-14T03:15:40.681Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  06 July 2010

M. S. Howe
Affiliation:
Boston University
Get access

Summary

Fluid mechanics impinges on practically all areas of human endeavour. But it is not easy to grasp its principles and ramifications in all of its diverse manifestations. Industrial applications usually require the numerical solution of the equations of motion of a fluid on a very large scale, perhaps coupled in a complicated manner to equations describing the response of solid structures in contact with the fluid. There has developed a tendency to regard the subject as defined solely by its governing equations whose treatment by numerical methods can furnish the solution of any problem.

There are actually many practical problems that are not yet amenable to full numerical evaluation in a reasonable time, even on the fastest of present-day computers. It is therefore important to have a proper theoretical understanding that will permit sensible simplifications to be made when formulating a problem. As in most technical subjects such understanding is acquired by detailed study of highly simplified ‘model problems’. Many of these problems fall within the realm of classical fluid mechanics, which is often criticised for its emphasis on ideal fluids and potential flow theory. The criticism is misplaced, however: For example, potential flow methods provide a good first approximation to airfoil theory, and ‘free-streamline’ theory (pioneered in its modern form by Chaplygin) permits the two-dimensional modelling of complex flows involving separation and jet formation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • M. S. Howe, Boston University
  • Book: Hydrodynamics and Sound
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754616.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • M. S. Howe, Boston University
  • Book: Hydrodynamics and Sound
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754616.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • M. S. Howe, Boston University
  • Book: Hydrodynamics and Sound
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754616.001
Available formats
×