Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-09T14:35:23.017Z Has data issue: false hasContentIssue false

7 - Real fluid effects and comparisons of theoretically and experimentally determined characteristics

Published online by Cambridge University Press:  07 May 2010

John P. Breslin
Affiliation:
Stevens Institute of Technology, New Jersey
Poul Andersen
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

We have this fax completely neglected the fact that all fluids possess viscosity. This property gives rise to tangential frictional forces at the boundaries of a moving fluid and to dissipation within the fluid as the “lumps” of fluid shear against one another. The regions where viscosity significantly alters the flow from that given by inviscid irrotational theory are confined to narrow or thin domains termed boundary layers along the surfaces moving through the fluid or along those held fixed in an onset flow. The tangential component of the relative velocity is zero at the surface held fixed in a moving stream and for the moving body in still fluid all particles on the moving boundary adhere to the body.

The resulting detailed motions in the thin shearing layer are complicated, passing from the laminar state in the extreme forebody through a transitional regime (due to basic instability of laminar flow) to a chaotic state referred to as turbulent. We do not calculate these flows.

In what follows we show that viscous effects are a function of a dimensionless grouping of factors known as the Reynolds number and review the significant influences of viscosity in terms of the magnitude of this number upon the properties of foils as determined by measurements in windtunnels at low subsonic speeds.

PHENOMENOLOGICAL ASPECTS OF VISCOUS FLOWS

The equations of motion for an incompressible but viscous fluid can be derived in the same way as for a non-viscous fluid, cf. Chapter 1, p. 3 and sequel, but now with inclusion of terms to account for the viscous shear stresses.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×