Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-30T17:49:55.118Z Has data issue: false hasContentIssue false

3 - The physics of icebergs

from Part I - The science of icebergs

Published online by Cambridge University Press:  05 December 2015

Grant R. Bigg
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Icebergs
Their Science and Links to Global Change
, pp. 52 - 81
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coleridge, S. T., The Rime of the Ancient Mariner (1789), Part 1, verse 13.Google Scholar
Bigg, G. R., Wadley, M. R., Stevens, D. P. and Johnson, J. A., Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Technol., 26 (1997), 113–35.CrossRefGoogle Scholar
Smith, S. D., Hindcasting iceberg drift using current profiles and winds. Cold Reg. Sci. Technol., 22 (1993), 3345.CrossRefGoogle Scholar
Lighey, C. and Hellmer, H. H., Modeling giant-iceberg drift under the influence of sea ice in the Weddell Sea, Antarctica. J. Glaciol., 47 (2001), 452–60.Google Scholar
Bigg, G. R., Wadley, M. R., Stevens, D. P. and Johnson, J. A., Prediction of iceberg trajectories in the North Atlantic and Arctic Oceans. Geophys. Res. Lett., 23 (1996), 3587–90.CrossRefGoogle Scholar
Jansen, D., Sandhäger, H. and Rack, W., Model experiments on large tabular iceberg evolution: ablation and strain thinning. J. Glaciol., 51 (2005), 363–72.CrossRefGoogle Scholar
Crépon, M., Houssais, M. N. and Guily, B. Saint, The drift of icebergs under wind action. J. Geophys. Res. Oceans, 93 (1988), 3608–12.CrossRefGoogle Scholar
Fahrbach, E., Rohardt, G. and Krause, G., The Antarctic Coastal Current in the southeastern Weddell Sea. Polar Biol., 12 (1992), 171–82.CrossRefGoogle Scholar
Weeks, W. F. and Mellor, M., Some elements of iceberg technology. In: Proceedings of the First Conference on iceberg utilization for freshwater production, ed. Husseiny, A. A.. Ames: Iowa State University (1978), pp. 4598.Google Scholar
Burton, J. C., MacCathles, L. and Wilder, W. G., The role of cooperative iceberg capsize in ice-shelf disintegration. Ann. Glaciol., 54 (2013), 8490.CrossRefGoogle Scholar
Scambos, T., Ross, R., Bauer, R., et al., Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift. J. Glaciol., 54 (2008), 579–91.CrossRefGoogle Scholar
MacAyeal, D. R., Okal, M. H., Thom, J. E., et al., Tabular iceberg collisions within the coastal regime. J. Glaciol., 54 (2008), 371–86.CrossRefGoogle Scholar
Martin, S., Drucker, R., Aster, R., et al., Kinematic and seismic analysis of giant tabular iceberg breakup at Cape Adare, Antarctica. J. Geophys. Res. Solid Earth, 115 (2010), B06311, doi:10.1029/2009JB006700.CrossRefGoogle Scholar
El-Tahan, M. S., Venkatesh, S. and El-Tahan, H., Validation and quantitative assessment of the deterioration mechanisms of Arctic icebergs. J. Offshore Mech. Arctic Eng., 109 (1987), 102–8.CrossRefGoogle Scholar
Silva, T. A. M., Bigg, G. R. and Nicholls, K. W., The contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans, 111 (2006), C03004, doi:10.1029/2004JC002843.CrossRefGoogle Scholar
de Boyer Montégut, C., Madec, G., Fischer, A. S., et al., Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. Oceans, 109 (2004), C12003, doi:10.1029/2004JC002378.CrossRefGoogle Scholar
Gladstone, R., Bigg, G. R. and Nicholls, K.W., Icebergs and fresh water fluxes in the Southern Ocean. J. Geophys. Res. Oceans, 106 (2001), 19903–15.Google Scholar
Jansen, D., Luckman, A., Kulessa, B., et al., Marine ice formation in a suture zone of the Larsen C Ice Shelf and its influence on ice shelf dynamics. J. Geophys. Res. Oceans, 118 (2013), 1628–40.CrossRefGoogle Scholar
Rignot, E., Velicogna, I., van den Broecke, M. R., et al., Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38 (2011), L05503, doi:10.1029/2011GL046583.CrossRefGoogle Scholar
Huppert, H. H. and Turner, J. S., On melting icebergs. Nature, 271 (1978), 46–8.CrossRefGoogle Scholar
Stephenson, G. R. Jr., Sprintall, J., Gille, S. T., et al., Subsurface melting of a free-floating Antarctic iceberg. Deep Sea Res. II, 58 (2011), 1336–45.CrossRefGoogle Scholar
Morison, J. and Goldberg, D., A brief study of the force balance between a small iceberg, the ocean, sea ice, and the atmosphere in the Weddell Sea. Cold Reg. Sci. Technol., 76–77 (2012), 6976.CrossRefGoogle Scholar
Helly, J. J., Kaufmann, R. S., Stephenson, G. R. Jr. and Vernet, M., Cooling, dilution and mixing of ocean water by free-drifting icebergs in the Weddell Sea. Deep Sea Res. II, 58 (2011), 1346–63.CrossRefGoogle Scholar
Chelton, D. B., deSzoeke, R. A., Schlax, M. G., et al., Geographic variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28 (1998), 433–60.2.0.CO;2>CrossRefGoogle Scholar
Bigg, G. R., Marsh, R. A., Wilton, D. J. and Ivchenko, V., B31 – a giant iceberg in the Southern Ocean. Ocean Challenge, 20 (2014), 32–4.Google Scholar
Meredith, M. P., Woodworth, P. L., Chereskin, T. K., et al., Sustained monitoring of the Southern Ocean at Drake Passage: past achievements and future priorities. Rev. Geophys., 49 (2011), RG4005, doi:10.1029/2010RG000348.CrossRefGoogle Scholar
Smith, K. L. Jr., Robison, B. H., Helly, J. J., et al., Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science, 317 (2007), 478–82.CrossRefGoogle ScholarPubMed
Lin, H., Rauschenberg, S., Hexel, C. R., et al., Free-drifting icebergs as sources of iron to the Weddell Sea. Deep Sea Res. II, 58 (2011), 1392–406.CrossRefGoogle Scholar
Smith, K. L. Jr., Sherman, A. D., Shaw, T. J., et al., Icebergs as unique Lagrangian ecosystems in polar seas. Ann. Rev. Mar. Sci., 5 (2013), 269–87.CrossRefGoogle ScholarPubMed
Cefarelli, A. O., Vernet, M. and Ferrario, M. E., Phytoplankton composition and abundance in relation to free-floating Antarctic icebergs. Deep Sea Res. II, 58 (2011), 1436–50.CrossRefGoogle Scholar
Ruhl, H. A., Ellena, J. A., Wilson, R. C. and Helly, J., Seabird aggregation around free-drifting icebergs in the northwest Weddell and Scotia Seas. Deep Sea Res. II, 58 (2011), 1497–504.CrossRefGoogle Scholar
Lord, W., Fellowes, J. and Lavery, B., A Night to Remember: The Classic Best selling Account of the Sinking of the Titantic. London: Penguin (2012).Google Scholar
Durran, D. R., Lee waves and mountain waves. In: Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Pyle, J. and Curry, J. A.. Amsterdam: Elsevier (2003), pp. 1161–9.Google Scholar
Parrish, T. R. and Walker, R., A re-examination of the winds of Adelie Land, Antarctica. Austral. Meteor. Mag., 55 (2006), 105–17.Google Scholar
Pinty, J. O. and Curry, J. A., Atmospheric convective plumes emanating from leads 2. microphysical and radiative processes. J. Geophys. Res. Oceans, 100 (1995), 4633–42.Google Scholar
Gaull, B. A., Adamson, D. A. and Pickard, J., Seismicity associated with icebergs calving from glaciers near Mawson, East Antarctica. Austr. J. Earth Sci., 39 (1992), 473–80.Google Scholar
Amundsen, J. M., Truffer, M., Luethi, M. P., et al., Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbrae, Greenland. Geophys. Res. Lett., 35 (2008), L22501, doi:10.1029/2008GL035281.Google Scholar
Walter, F., Olivieri, M. and Clinton, J. F., Calving event detection by observation of seiche effects on the Greenland fjords. J. Glaciol., 59 (2013), 162–78.CrossRefGoogle Scholar
MacAyeal, D. R., Okal, E. A., Aster, R. C. and Bassis, J. N., Seismic and hydroacoustic tremor generated by colliding icebergs. J. Geophys. Res. Earth Surf., 113 (2008), F03011, doi:10.1029/2008JF001005.CrossRefGoogle Scholar
MacAyeal, D. R., Okal, M. H., Thom, J. E., et al., Tabular iceberg collisions within the coastal regime. J. Glaciol., 54 (2008), 371–86.CrossRefGoogle Scholar
Harris, L. M. and Jollymor, P. G., Iceberg furrow marks on continental-shelf northeast of Belle-Isle, Newfoundland. Can. J. Earth Sci., 11 (1974), 4352.CrossRefGoogle Scholar
Delage, M. and Gangloff, P., Relict iceberg marks near Montreal, Quebec. Geogr. Phys. Quater., 47 (1993), 6980.Google Scholar
Kristoffersen, Y., Coakley, B., Jokat, W., et al., Seabed erosion on the Lomonsov Ridge, central Arctic: a tale of deep draft icebergs in the Eurasia Basin and the influence of Atlantic water inflow on iceberg motion? Paleoceanogr., 19 (2004), PA3006, doi:10.1029/2003PA000985.CrossRefGoogle Scholar
Eyles, N., Eyles, C. H. and Goston, V. A., Iceberg rafting and scouring in the Early Permian Shoalhaven Group of New South Wales, Australia: evidence of Heinrich-like events? Palaeogeogr. Palaeoclimatol. Palaeoecol., 136 (1997), 117.CrossRefGoogle Scholar
Woodworth-Lynas, C. M. T., Josenhans, H. W., Barrie, J. V., et al., The physical processes of seabed disturbance during iceberg grounding and scouring. Continental Shelf Res., 11 (1991), 939–61.CrossRefGoogle Scholar
Peck, L. S., Brockington, S., Vanhove, S. and Beghyn, M., Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar. Ecol. Prog. Ser., 186 (1999), 18.CrossRefGoogle Scholar
Gutt, J., On the direct impact of ice on marine benthic communities. Polar Biol., 24 (2001), 553–64.CrossRefGoogle Scholar
Dowdeswell, J. A., Whittington, R. J. and Hodgkins, R., The sizes, frequencies and freeboards of East Greenland icebergs observed using ship radar and sextant. J. Geophys. Res. Oceans, 97 (1992), 3515–28.CrossRefGoogle Scholar
Murphy, D. L. and Cass, J. L., The International Ice Patrol – safeguarding life and property at sea. Coast Guard Proc. Mar. Safety Security Council, 69 (2012), 1316.Google Scholar
Hill, B. T., Ruffman, A. and Ivany, K., Historical data added to the Grand Banks iceberg database. Ottawa: NRC Publications Archive (2008), ICETECH08-109-RF, 1–7. http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=8895044&lang=en.Google Scholar
International Ice Patrol (IIP), Iceberg sightings database, http://nsidc.org/data/g00807 [accessed 7 May 2014].Google Scholar
Abramov, V. A., Russian iceberg observations in the Barents Sea, 1933–1990. Polar Res., 11 (1992), 93–7.Google Scholar
Zhao, Y., Bigg, G. R., Billings, S. A., et al., Inferring the variation of climatic and glaciological contributions to West Greenland iceberg discharge in the Twentieth Century. Cold Reg. Sci. Technol., (2015), doi:10.1016/j.coldregions.2015.08.006.CrossRefGoogle Scholar
Wilton, D. J., Bigg, G. R. and Hanna, E., Modelling twentieth century global ocean circulation and iceberg flux at 48°N: implications for west Greenland iceberg discharge. Prog. Oceanogr., (2015), doi:10.1016/j.pocean.2015.07.003.CrossRefGoogle Scholar
Keghouche, I., Counillon, F. and Bertino, L., Modeling dynamics and thermodynamics in the Barents Sea from 1987 to 2005. J. Geophys. Res. Oceans, 115 (2010), C12062, doi:10.1029/2010JC006165.CrossRefGoogle Scholar
Bigg, G. R., Wei, H., Wilton, D. J., et al., A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change. Proc. Roy. Soc Ser. A, 470 (2014), 20130662, doi:10.1098/rspa.2013.0662.CrossRefGoogle ScholarPubMed
Christensen, E. and Luzader, J., From sea to air to space: a century of iceberg tracking technology. Coast Guard Proc. Mar. Safety Security Council, 69 (2012), 1722.Google Scholar
Romanov, Y. A., Romanova, N. A. and Romanov, P., Shape and size of Antarctic icebergs derived from ship observation data. Antarct. Sci., 24 (2012), 7787.CrossRefGoogle Scholar
Australian iceberg observations, http://staff.acecrc.org.au/~jacka/IceData/html/icedata.html [accessed 8 May, 2014].Google Scholar
Romanov, Y. A., Romanova, N. A. and Romanov, P., Distribution of icebergs in the Atlantic and Indian ocean sectors of the Antarctic region and its possible links with ENSO. Geophys. Res. Lett., 35 (2008), L02506, doi:10.1029/2007GL031685.CrossRefGoogle Scholar
Jacka, T. H. and Giles, A. B., Antarctic iceberg distribution and dissolution from ship-based observations. J. Glaciol., 53 (2007), 341–56.CrossRefGoogle Scholar
Stuart, K. M. and Long, D. G., Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer. Deep Sea Res. II, 58 (2011), 1285–300.CrossRefGoogle Scholar
Madsen, N., Reeves, S., Stuart, K., et al., The Antarctic Iceberg tracking database, www.scp.byu.edu/data/iceberg/database1.html [accessed 8 May, 2014].Google Scholar
Stuart, K. M. and Long, D. G., Iceberg size and orientation estimation using SeaWinds. Cold Reg. Sci. Technol., 69 (2011), 3951.CrossRefGoogle Scholar
Tournadre, J., Giaud-Ardhuin, F. and Legrésy, B., Antarctic icebergs distributions, 2002–2010. J. Geophys. Res. Oceans, 117 (2012), C05004, doi:10.1029/2011JC007441.CrossRefGoogle Scholar
Silva, T. A. M., Quantifying Antarctic icebergs and their melting in the ocean. Sheffield: University of Sheffield, Ph. D. thesis (2006).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×