Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T11:30:09.481Z Has data issue: false hasContentIssue false

13 - Trace fossils in biostratigraphy

from Part III - A matter of time

Published online by Cambridge University Press:  25 October 2011

Luis A. Buatois
Affiliation:
University of Saskatchewan, Canada
M. Gabriela Mángano
Affiliation:
University of Saskatchewan, Canada
Get access

Summary

Invertebrate trace fossils can be used for the stratigraphic correlation of otherwise nonfossiliferous clastic sequences, provided that they share particular “fingerprints” and thus reflect behavioral diversification within taxonomically coherent groups of (commonly unknown) tracemakers.

Dolf Seilacher Trace Fossil Analysis (2007)

In contrast to body fossils, trace fossils are often characterized by long temporal ranges and narrow facies ranges (see Section 1.2.8). As a consequence, trace fossils are highly useful in paleoenvironmental analysis and less so in biostratigraphic studies. Although most ichnogenera display long temporal ranges, it is also true that some biogenic structures can preserve specific fingerprints of their producers. If the producers record significant evolution, then the trace fossils may also yield biostratigraphic implications (Seilacher, 2007b). There are some ichnofossils that reflect particular kinds of animals in which body morphology and behavior underwent closely related evolutionary transformations through time (Seilacher, 2000). The more complex (in terms of fine morphological detail) a structure is, the more direct its biological relationship, distinctive its behavioral program, and hence, larger its biostratigraphic significance. Historically invertebrate trace fossils have been applied in biostratigraphy in two main areas: the positioning of the Proterozoic–Cambrian boundary (e.g. Seilacher, 1956; Banks, 1970; Alpert, 1977; Crimes et al., 1977; Narbonne et al., 1987; Crimes, 1992, 1994; Jensen, 2003) and the establishment of relative ages in lower Paleozoic clastic successions based on Cruziana and related trilobite trace fossils (e.g. Seilacher, 1970, 1992a, 1994; Crimes, 1975). In recent years, attempts have been made to incorporate other ichnotaxa, such as Arthrophycus and related trace fossils (e.g. Seilacher, 2000; Mángano et al., 2005b). In the field of vertebrate ichnology, tetrapod trackways have a long tradition in biostratigraphy, particularly in upper Paleozoic–Mesozoic strata (e.g. Haubold and Katsung, 1978; Lucas, 2007). In this chapter we will address the utility of both invertebrate and vertebrate trace fossils in biostratigraphy.

Type
Chapter
Information
Ichnology
Organism-Substrate Interactions in Space and Time
, pp. 252 - 264
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×