Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-21T12:39:06.297Z Has data issue: false hasContentIssue false

5 - Impacts of Climate Change on Allergenicity

Published online by Cambridge University Press:  05 August 2016

Paul J. Beggs
Affiliation:
Macquarie University, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou Chakra, O. R., Sutra, J. P., Thomas, E. D., et al. (2012). Proteomic analysis of major and minor allergens from isolated pollen cytoplasmic granules. Journal of Proteome Research, 11(2), 12081216.CrossRefGoogle ScholarPubMed
Ahlholm, J. U., Helander, M. L., Savolainen, J. (1998). Genetic and environmental factors affecting the allergenicity of birch (Betula pubescens ssp. czerepanovii [Orl.] Hämet-Ahti) pollen. Clinical and Experimental Allergy, 28(11), 13841388.CrossRefGoogle ScholarPubMed
Andersen, L. K., Hercogová, J., Wollina, U., Davis, M. D. P. (2012). Climate change and skin disease: a review of the English-language literature. International Journal of Dermatology, 51(6), 656661.CrossRefGoogle ScholarPubMed
Asher, M. I., Montefort, S., Björkstén, B., et al. (2006). Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. The Lancet, 368(9537), 733743.CrossRefGoogle ScholarPubMed
Azuma, K., Ikeda, K., Kagi, N., et al. (2014). Effects of water-damaged homes after flooding: health status of the residents and the environmental risk factors. International Journal of Environmental Health Research, 24(2), 158175.CrossRefGoogle ScholarPubMed
Beggs, P. J. (2009). Climate change and plant food allergens. The Journal of Allergy and Clinical Immunology, 123(1), 271272.CrossRefGoogle ScholarPubMed
Beggs, P. J., Walczyk, N. E. (2008). Impacts of climate change on plant food allergens: a previously unrecognized threat to human health. Air Quality, Atmosphere & Health, 1(2), 119123.CrossRefGoogle Scholar
Bielory, L., Lyons, K., Goldberg, R. (2012). Climate change and allergic disease. Current Allergy and Asthma Reports, 12(6), 485494.CrossRefGoogle ScholarPubMed
Bienboire-Frosini, C., Cozzi, A., Lafont-Lecuelle, C., et al. (2012). Immunological differences in the global release of the major cat allergen Fel d 1 are influenced by sex and behaviour. The Veterinary Journal, 193(1), 162167.CrossRefGoogle Scholar
Bolhaar, S. T. H. P., van de Weg, W. E., van Ree, R., et al. (2005). In vivo assessment with prick-to-prick testing and double-blind, placebo-controlled food challenge of allergenicity of apple cultivars. The Journal of Allergy and Clinical Immunology, 116(5), 10801086.CrossRefGoogle ScholarPubMed
Burbach, G. J., Heinzerling, L. M., Edenharter, G., et al. (2009). GA2LEN skin test study II: clinical relevance of inhalant allergen sensitizations in Europe. Allergy, 64(10), 15071515.CrossRefGoogle ScholarPubMed
Buters, J. (2014). Pollen allergens and geographical factors. In: Akdis, C. A., Agache, I., eds. Global Atlas of Allergy. Zurich: European Academy of Allergy and Clinical Immunology, pp. 3638.Google Scholar
Buters, J., Prank, M., Sofiev, M., et al. (2015). Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. The Journal of Allergy and Clinical Immunology, 136(1), 8795.CrossRefGoogle Scholar
Buters, J. T. M., Thibaudon, M., Smith, M., et al. (2012). Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmospheric Environment, 55, 496505.CrossRefGoogle Scholar
Buters, J. T. M., Weichenmeier, I., Ochs, S., et al. (2010). The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy, 65(7), 850858.CrossRefGoogle Scholar
Byremo, G., Rød, G., Carlsen, K. H. (2006). Effect of climatic change in children with atopic eczema. Allergy, 61(12), 14031410.CrossRefGoogle ScholarPubMed
Carnés, J., Ferrer, A., Fernández-Caldas, E. (2006). Allergenicity of 10 different apple varieties. Annals of Allergy, Asthma & Immunology, 96(4), 564570.CrossRefGoogle ScholarPubMed
Dabrera, G., Murray, V., Emberlin, J., et al. (2013). Thunderstorm asthma: an overview of the evidence base and implications for public health advice. QJM: an International Journal of Medicine, 106(3), 207217.CrossRefGoogle ScholarPubMed
D’Amato, G., Cecchi, L., Annesi-Maesano, I. (2012). A trans-disciplinary overview of case reports of thunderstorm-related asthma outbreaks and relapse. European Respiratory Review, 21(124), 8287.CrossRefGoogle ScholarPubMed
D’Amato, G., Cecchi, L., Liccardi, G. (2008). Thunderstorm-related asthma: not only grass pollen and spores. The Journal of Allergy and Clinical Immunology, 121(2), 537538.CrossRefGoogle Scholar
D’Amato, G., Corrado, A., Cecchi, L., et al. (2013). A relapse of near-fatal thunderstorm-asthma in pregnancy. European Annals of Allergy and Clinical Immunology, 45(3), 116117.Google ScholarPubMed
Durham, S. R., Nelson, H. S., Nolte, H., et al. (2014). Magnitude of efficacy measurements in grass allergy immunotherapy trials is highly dependent on pollen exposure. Allergy, 69(5), 617623.CrossRefGoogle ScholarPubMed
Du Toit, G., Roberts, G., Sayre, P. H., et al. (2015). Randomized trial of peanut consumption in infants at risk for peanut allergy. The New England Journal of Medicine, 372(9), 803813.CrossRefGoogle ScholarPubMed
Eduard, W. (2009). Fungal spores: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Critical Reviews in Toxicology, 39(10), 799864.CrossRefGoogle ScholarPubMed
Ege, M. J., Mayer, M., Normand, A.-C., et al. (2011). Exposure to environmental microorganisms and childhood asthma. The New England Journal of Medicine, 364(8), 701709.CrossRefGoogle ScholarPubMed
El Kelish, A., Zhao, F., Heller, W., et al. (2014). Ragweed (Ambrosia artemisiifolia) pollen allergenicity: SuperSAGE transcriptomic analysis upon elevated CO2 and drought stress. BMC Plant Biology, 14, 176.CrossRefGoogle ScholarPubMed
Elliot, A. J., Hughes, H. E., Hughes, T. C., et al. (2014). The impact of thunderstorm asthma on emergency department attendances across London during July 2013. Emergency Medicine Journal, 31(8), 675678.CrossRefGoogle ScholarPubMed
Feo Brito, F., Gimeno, P. M., Carnés, J., et al. (2011). Olea europaea pollen counts and aeroallergen levels predict clinical symptoms in patients allergic to olive pollen. Annals of Allergy, Asthma & Immunology, 106(2), 146152.Google Scholar
Frenguelli, G., Passalacqua, G., Bonini, S., et al. (2010). Bridging allergologic and botanical knowledge in seasonal allergy: a role for phenology. Annals of Allergy, Asthma & Immunology, 105(3), 223227.CrossRefGoogle ScholarPubMed
Galan, C., Antunes, C., Brandao, R., et al. (2013). Airborne olive pollen counts are not representative of exposure to the major olive allergen Ole e 1. Allergy, 68(6), 809812.CrossRefGoogle ScholarPubMed
Gassner, M., Gehrig, R., Schmid-Grendelmeier, P. (2013). Hay fever as a Christmas gift. The New England Journal of Medicine, 368(4), 393394.CrossRefGoogle ScholarPubMed
Gehrig, R., Gassner, M., Schmid-Grendelmeier, P. (2015). Alnus × spaethii pollen can cause allergies already at Christmas. Aerobiologia, 31(2), 239247.CrossRefGoogle Scholar
Gieras, A., Cejka, P., Blatt, K., et al. (2011). Mapping of conformational IgE epitopes with peptide-specific monoclonal antibodies reveals simultaneous binding of different IgE antibodies to a surface patch on the major birch pollen allergen, Bet v 1. The Journal of Immunology, 186(9), 53335344.CrossRefGoogle ScholarPubMed
Gilles, S., Fekete, A., Zhang, X., et al. (2011). Pollen metabolome analysis reveals adenosine as a major regulator of dendritic cell-primed TH cell responses. The Journal of Allergy and Clinical Immunology, 127(2), 454461.CrossRefGoogle Scholar
Gilles, S., Mariani, V., Bryce, M., et al. (2009). Pollen allergens do not come alone: pollen associated lipid mediators (PALMS) shift the human immune systems towards a TH2-dominated response. Allergy, Asthma & Clinical Immunology, 5(1), 3.CrossRefGoogle ScholarPubMed
Gladman, A. C. (2006). Toxicodendron dermatitis: poison ivy, oak, and sumac. Wilderness & Environmental Medicine, 17(2), 120128.CrossRefGoogle ScholarPubMed
González-Parrado, Z., Valencia-Barrera, R. M., Vega-Maray, A. M., Fuertes-Rodríguez, C. R., Fernández-González, D. (2014). The weak effects of climatic change on Plantago pollen concentration: 17 years of monitoring in Northwestern Spain. International Journal of Biometeorology, 58(7), 16411650.CrossRefGoogle ScholarPubMed
Grinn-Gofroń, A., Strzelczak, A. (2013). Changes in concentration of Alternaria and Cladosporium spores during summer storms. International Journal of Biometeorology, 57(5), 759768.CrossRefGoogle ScholarPubMed
Grote, M., Valenta, R., Reichelt, R. (2003). Abortive pollen germination: a mechanism of allergen release in birch, alder, and hazel revealed by immunogold electron microscopy. The Journal of Allergy and Clinical Immunology, 111(5), 10171023.CrossRefGoogle ScholarPubMed
Hamaoui-Laguel, L., Vautard, R., Liu, L., et al. (2015). Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nature Climate Change, 5, 766771.CrossRefGoogle Scholar
Hesselmar, B., Åberg, B., Eriksson, B., Åberg, N. (2001). Allergic rhinoconjunctivitis, eczema, and sensitization in two areas with differing climates. Pediatric Allergy and Immunology, 12(4), 208215.CrossRefGoogle ScholarPubMed
Hesselmar, B., Åberg, B., Eriksson, B., Björkstén, B., Åberg, N. (2003). High-dose exposure to cat is associated with clinical tolerance – a modified Th2 immune response? Clinical and Experimental Allergy, 33(12), 16811685.CrossRefGoogle ScholarPubMed
Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257265.Google Scholar
Hjelmroos, M., Schumacher, M. J., Van Hage-Hamsten, M. (1995). Heterogeneity of pollen proteins within individual Betula pendula trees. International Archives of Allergy and Immunology, 108(4), 368376.CrossRefGoogle ScholarPubMed
IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R. K., Meyer, L. A., eds.]. Geneva, Switzerland: IPCC.Google Scholar
Kaminski, U., Glod, T. (2011). Are there changes in Germany regarding the start of the pollen season, the season length and the pollen concentration of the most important allergenic pollens? Meteorologische Zeitschrift, 20(5), 497507.Google Scholar
Kelly, L. A., Erwin, E. A., Platts-Mills, T. A. E. (2012). The indoor air and asthma: the role of cat allergens. Current Opinion in Pulmonary Medicine, 18(1), 2934.CrossRefGoogle ScholarPubMed
Khwarahm, N., Dash, J., Atkinson, P. M., et al. (2014). Exploring the spatio-temporal relationship between two key aeroallergens and meteorological variables in the United Kingdom. International Journal of Biometeorology, 58(4), 529545.CrossRefGoogle ScholarPubMed
Kishikawa, R., Sahashi, N., Saitoh, A., et al. (2009). Japanese cedar airborne pollen monitoring by Durham’s and Burkard samplers in Japan – estimation of the usefulness of Durham’s sampler on Japanese cedar pollinosis. Global Environmental Research, 13(1), 5562.Google Scholar
Lang-Yona, N., Levin, Y., Dannemiller, K. C., et al. (2013). Changes in atmospheric CO2 influence the allergenicity of Aspergillus fumigatus. Global Change Biology, 19(8), 23812388.CrossRefGoogle ScholarPubMed
León-Ruiz, E., Alcázar, P., Domínguez-Vilches, E., Galán, C. (2011). Study of Poaceae phenology in a Mediterranean climate. Which species contribute most to airborne pollen counts? Aerobiologia, 27(1), 3750.CrossRefGoogle Scholar
Low, S. Y., Dannemiller, K., Yao, M., Yamamoto, N., Peccia, J. (2011). The allergenicity of Aspergillus fumigatus conidia is influenced by growth temperature. Fungal Biology, 115(7), 625632.Google ScholarPubMed
Meiler, F., Zumkehr, J., Klunker, S., et al. (2008). In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. The Journal of Experimental Medicine, 205(12), 28872898.CrossRefGoogle Scholar
Mitlehner, W. (2013). Allergy against horses. Are curly horses an alternative for horse-allergic riders? Allergo Journal, 22(4), 244251.Google Scholar
Mohan, J. E., Ziska, L. H., Schlesinger, W. H., et al. (2006). Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 90869089.CrossRefGoogle ScholarPubMed
Movérare, R., Westritschnig, K., Svensson, M., et al. (2002). Different IgE reactivity profiles in birch pollen-sensitive patients from six European populations revealed by recombinant allergens: an imprint of local sensitization. International Archives of Allergy and Immunology, 128(4), 325335.CrossRefGoogle ScholarPubMed
Mullins, J., Emberlin, J. (1997). Sampling pollens. Journal of Aerosol Science, 28(3), 365370.CrossRefGoogle Scholar
Pauli, G., Larsen, T. H., Rak, S., et al. (2008). Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis. The Journal of Allergy and Clinical Immunology, 122(5), 951960.CrossRefGoogle ScholarPubMed
Pauli, G., Oster, J. P., Deviller, P., et al. (1996). Skin testing with recombinant allergens rBet v 1 and birch profilin, rBet v 2: diagnostic value for birch pollen and associated allergies. The Journal of Allergy and Clinical Immunology, 97(5), 11001109.CrossRefGoogle ScholarPubMed
Pesonen, M., Jolanki, R., Filon, F. L., et al. (2015). Patch test results of the European baseline series among patients with occupational contact dermatitis across Europe – analyses of the European Surveillance System on Contact Allergy network, 2002–2010. Contact Dermatitis, 72(3), 154163.CrossRefGoogle ScholarPubMed
Platts-Mills, T. A. E. (2015). The allergy epidemics: 1870–2010. The Journal of Allergy and Clinical Immunology, 136(1), 313.CrossRefGoogle ScholarPubMed
Platts-Mills, T. A. E., Erwin, E. A., Woodfolk, J. A., Heymann, P. W. (2006). Environmental factors influencing allergy and asthma. In: Crameri, R. ed. Allergy and Asthma in Modern Society: A Scientific Approach. Chemical Immunology and Allergy, 91. Basel: Karger, pp. 315.CrossRefGoogle Scholar
Ramirez, J.-M., Brembilla, N. C., Sorg, O., et al. (2010). Activation of the aryl hydrocarbon receptor reveals distinct requirements for IL-22 and IL-17 production by human T helper cells. European Journal of Immunology, 40(9), 24502459.CrossRefGoogle ScholarPubMed
Rogers, C. A., Wayne, P. M., Macklin, E. A., et al. (2006). Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environmental Health Perspectives, 114(6), 865869.CrossRefGoogle ScholarPubMed
Rosenzweig, C., Karoly, D., Vicarelli, M., et al. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature, 453(7193), 353357.CrossRefGoogle ScholarPubMed
Sander, I., Zahradnik, E., van Kampen, V., et al. (2012). Development and application of mold antigen-specific enzyme-linked immunosorbent assays (ELISA) to quantify airborne antigen exposure. Journal of Toxicology and Environmental Health, Part A: Current Issues, 75(19–20), 11851193.CrossRefGoogle ScholarPubMed
Saxon, A., Diaz-Sanchez, D. (2005). Air pollution and allergy: you are what you breathe. Nature Immunology, 6(3), 223226.CrossRefGoogle ScholarPubMed
Schäppi, G. F., Taylor, P. E., Pain, M. C. F., et al. (1999a). Concentrations of major grass group 5 allergens in pollen grains and atmospheric particles: implications for hay fever and allergic asthma sufferers sensitized to grass pollen allergens. Clinical and Experimental Allergy, 29(5), 633641.CrossRefGoogle ScholarPubMed
Schäppi, G. F., Taylor, P. E., Staff, I. A., Rolland, J. M., Suphioglu, C. (1999b). Immunologic significance of respirable atmospheric starch granules containing major birch allergen Bet v 1. Allergy, 54(5), 478483.CrossRefGoogle ScholarPubMed
Schäppi, G. F., Taylor, P. E., Staff, I. A., Suphioglu, C., Knox, R. B. (1997). Source of Bet v 1 loaded inhalable particles from birch revealed. Sexual Plant Reproduction, 10(6), 315323.CrossRefGoogle Scholar
Schmitz, R., Ellert, U., Kalcklösch, M., Dahm, S., Thamm, M. (2013). Patterns of sensitization to inhalant and food allergens – findings from the German Health Interview and Examination Survey for Children and Adolescents. International Archives of Allergy and Immunology, 162(3), 263270.CrossRefGoogle ScholarPubMed
Schwarzer, M., Repa, A., Daniel, C., et al. (2011). Neonatal colonization of mice with Lactobacillus plantarum producing the aeroallergen Bet v 1 biases towards Th1 and T-regulatory responses upon systemic sensitization. Allergy, 66(3), 368375.CrossRefGoogle Scholar
Singer, B. D., Ziska, L. H., Frenz, D. A., Gebhard, D. E., Straka, J. G. (2005). Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Functional Plant Biology, 32(7), 667670.CrossRefGoogle Scholar
Skjøth, C. A., Ørby, P. V., Becker, T., et al. (2013). Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences, 10(1), 541554.CrossRefGoogle Scholar
Tashpulatov, A. S., Clement, P., Akimcheva, S. A., et al. (2004). A model system to study the environment-dependent expression of the Bet v 1a gene encoding the major birch pollen allergen. International Archives of Allergy and Immunology, 134(1), 19.Google Scholar
Taylor, P. E., Flagan, R. C., Valenta, R., Glovsky, M. M. (2002). Release of allergens as respirable aerosols: a link between grass pollen and asthma. The Journal of Allergy and Clinical Immunology, 109(1), 5156.CrossRefGoogle ScholarPubMed
Taylor, P. E., Jacobson, K. W., House, J. M., Glovsky, M. M. (2007). Links between pollen, atopy and the asthma epidemic. International Archives of Allergy and Immunology, 144(2), 162170.CrossRefGoogle ScholarPubMed
Taylor, P. E., Jonsson, H. (2004). Thunderstorm asthma. Current Allergy and Asthma Reports, 4(5), 409413.CrossRefGoogle ScholarPubMed
Tosi, A., Wüthrich, B., Bonini, M., Pietragalla-Köhler, B. (2011). Time lag between Ambrosia sensitisation and Ambrosia allergy: a 20-year study (1989–2008) in Legnano, northern Italy. Swiss Medical Weekly, 141, w13253.Google ScholarPubMed
Traidl-Hoffmann, C., Jakob, T., Behrendt, H. (2009). Determinants of allergenicity. The Journal of Allergy and Clinical Immunology, 123(3), 558566.CrossRefGoogle ScholarPubMed
Tripodi, S., Frediani, T., Lucarelli, S., et al. (2012). Molecular profiles of IgE to Phleum pratense in children with grass pollen allergy: implications for specific immunotherapy. The Journal of Allergy and Clinical Immunology, 129(3), 834839.CrossRefGoogle Scholar
Tschopp, J. M., Sistek, D., Schindler, C., et al. (1998). Current allergic asthma and rhinitis: diagnostic efficiency of three commonly used atopic markers (IgE, skin prick tests, and Phadiatop®). Results from 8329 randomized adults from the SAPALDIA study. Allergy, 53(6), 608613.CrossRefGoogle ScholarPubMed
Venables, K. M., Allitt, U., Collier, C. G., et al. (1997). Thunderstorm-related asthma – the epidemic of 24/25 June 1994. Clinical and Experimental Allergy, 27(7), 725736.Google ScholarPubMed
Weber, R. W. (2012). Impact of climate change on aeroallergens. Annals of Allergy, Asthma & Immunology, 108(5), 294299.CrossRefGoogle ScholarPubMed
Willumsen, N., Holm, J., Christensen, L. H., Würtzen, P. A., Lund, K. (2012). The complexity of allergic patients’ IgE repertoire correlates with serum concentration of allergen-specific IgE. Clinical & Experimental Allergy, 42(8), 12271236.CrossRefGoogle ScholarPubMed
Wolf, J., O’Neill, N. R., Rogers, C. A., Muilenberg, M. L., Ziska, L. H. (2010). Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production. Environmental Health Perspectives, 118(9), 12231228.CrossRefGoogle ScholarPubMed
Zafred, D., Nandy, A., Pump, L., Kahlert, H., Keller, W. (2013). Crystal structure and immunologic characterization of the major grass pollen allergen Phl p 4. The Journal of Allergy and Clinical Immunology, 132(3), 696703.CrossRefGoogle ScholarPubMed
Ziello, C., Sparks, T. H., Estrella, N., et al. (2012). Changes to airborne pollen counts across Europe. PLoS One, 7(4), e34076.CrossRefGoogle ScholarPubMed
Ziska, L. H., Beggs, P. J. (2012). Anthropogenic climate change and allergen exposure: the role of plant biology. The Journal of Allergy and Clinical Immunology, 129(1), 2732.CrossRefGoogle ScholarPubMed
Ziska, L. H., Gebhard, D. E., Frenz, D. A., et al. (2003). Cities as harbingers of climate change: common ragweed, urbanization, and public health. The Journal of Allergy and Clinical Immunology, 111(2), 290295.CrossRefGoogle ScholarPubMed
Ziska, L., Knowlton, K., Rogers, C., et al. (2011). Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 42484251.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×