Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-25T14:13:06.452Z Has data issue: false hasContentIssue false

8 - Nuclear Fusion Energy

Published online by Cambridge University Press:  22 October 2009

Robert G. Watts
Affiliation:
Tulane University, Louisiana
Get access

Summary

Introduction

Fusion could become the energy source of choice early in the third millennium – it is a long-term, inexhaustible energy option that offers the possibility of generating power in an economically and environmentally attractive system, which is compact relative to renewable energy power plants, and does not emit carbon dioxide or other greenhouse gases. The small loss of mass when light nuclei fuse into heavier nuclei provides the source of energy. In one sense it is the only longterm option other than fission, since the sun, which is the source of all forms of renewable energy, is powered by fusion reactions. In this chapter, we will present our personal vision of fusion's potential, illustrated with examples of innovative concepts at an early stage of development, and grounded in the dramatic progress towards fusion energy demonstrated by the more traditional concepts.

Fusion occurs when two positively charged nuclei approach closely enough for the attractive short-range nuclear forces to overcome the repulsive Coulomb force. Getting two nuclei this close requires that they have a high energy or temperature of about ten thousand electron volts (10 keV ≈ 100 million Kelvin). (At temperatures above 0.01 keV, the atoms have such a high velocity that the electrons are knocked off by collisions. This results in the mixture of equal amounts of positively charged ions and negatively charged electrons that is known as a plasma.)

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×