Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-06T22:35:33.352Z Has data issue: false hasContentIssue false

4 - In-plane Vibration of Plates

Published online by Cambridge University Press:  05 June 2012

Maurice Petyt
Affiliation:
University of Southampton
Get access

Summary

Flat plate structures which vibrate in their plane, such as shear wall buildings, can be analysed by dividing the plate up into an assemblage of two-dimensional finite elements, called membrane elements. The most common shapes of element used are triangles, rectangles and quadrilaterals. These elements can also be used to analyse the low frequency vibrations of complex shell-type structures such as aircraft and ships. In these cases the membrane action of the walls of the structures are more predominant than the bending action.

In Chapter 3 it is shown that in order to satisfy the convergence criteria, the element displacement functions should be derived from complete polynomials. In one dimension the polynomial terms are 1, x, x2, x3,…, etc. Complete polynomials in two variables, x and y, can be generated using Pascal's triangle, as shown in Figure 4.1. Node points are normally situated at the vertices of the element, although additional ones are sometimes situated along the sides of the element in order to increase accuracy. (This technique is analogous to having additional node points along the length of a one-dimensional element, as described in Section 3.8.) When two adjacent elements are joined together, they are attached at their node points. The nodal degrees of freedom and element displacement functions should be chosen to ensure that the elements are conforming, that is, the displacement functions and their derivatives up to order (p − 1), are continuous at every point on the common boundary (see Section 3.2). In some cases it is not possible to achieve the necessary continuity using complete polynomials [4.1, 4.2]. This is overcome by using some additional terms of higher degree. When selecting these terms care should be taken to ensure that the displacement pattern is independent of the direction of the coordinate axes. This property is known as geometric invariance. For the two-dimensional case, the additional terms should be chosen in pairs, one from either side of the axis of symmetry in Figure 4.1. As an example, consider the derivation of a quadratic model with eight terms. Selecting all the constant, linear and quadratic terms plus the x2y and xy2 terms, produces a function which is quadratic in x along y = constant and quadratic in y along x = constant. Thus the deformation pattern will be the same whatever the orientation of the axes. This would not be true if the terms x3 and x2y had been selected. In this case the function is cubic in x along y = constant and quadratic in y along x = constant. Therefore, the deformation pattern depends upon the orientation of the axes. Note that complete polynomials are invariant.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • In-plane Vibration of Plates
  • Maurice Petyt, University of Southampton
  • Book: Introduction to Finite Element Vibration Analysis
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511761195.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • In-plane Vibration of Plates
  • Maurice Petyt, University of Southampton
  • Book: Introduction to Finite Element Vibration Analysis
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511761195.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • In-plane Vibration of Plates
  • Maurice Petyt, University of Southampton
  • Book: Introduction to Finite Element Vibration Analysis
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511761195.006
Available formats
×