Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-22T20:11:06.840Z Has data issue: false hasContentIssue false

Chapter 6 - Linear Recurring Sequences

Published online by Cambridge University Press:  05 June 2012

Rudolf Lidl
Affiliation:
University of Tasmania
Harald Niederreiter
Affiliation:
National University of Singapore
Get access

Summary

Sequences in finite fields whose terms depend in a simple manner on their predecessors are of importance for a variety of applications. Such sequences are easy to generate by recursive procedures, which is certainly an advantageous feature from the computational viewpoint, and they also tend to have useful structural properties. Of particular interest is the case where the terms depend linearly on a fixed number of predecessors, resulting in a so-called linear recurring sequence. These sequences are employed, for instance, in coding theory (see Chapter 8, Section 2), in cryptography (see Chapter 9, Section 2), and in several branches of electrical engineering. In these applications, the underlying field is often taken to be F2, but the theory can be developed quite generally for any finite field.

In Section 1 we show how to implement the generation of linear recurring sequences on special switching circuits called feedback shift registers. We discuss also some basic periodicity properties of such sequences. Section 2 introduces the concept of an impulse response sequence, which is of both practical and theoretical interest. Further relations to periodicity properties are found in this way, and also through the use of the so-called characteristic polynomial of a linear recurring sequence. Another application of the characteristic polynomial yields explicit formulas for the terms of a linear recurring sequence. Maximal period sequences are also defined in this section. These sequences will appear in various applications in later chapters.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×