Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-23T22:20:29.593Z Has data issue: false hasContentIssue false

1 - Channels, codes and capacity

Published online by Cambridge University Press:  05 June 2012

Sarah J. Johnson
Affiliation:
University of Newcastle, New South Wales
Get access

Summary

In this chapter we introduce our task: communicating a digital message without error (or with as few errors as possible) despite an imperfect communications medium. Figure 1.1 shows a typical communications system. In this text we will assume that our source is producing binary data, but it could equally be an analog source followed by analog-to-digital conversion.

Through the early 1940s, engineers designing the first digital communications systems, based on pulse code modulation, worked on the assumption that information could be transmitted usefully in digital form over noise-corrupted communication channels but only in such a way that the transmission was unavoidably compromised. The effects of noise could be managed, it was believed, only by increasing the transmitted signal power enough to ensure that the received signal-to-noise ratio was sufficiently high.

Shannon's revolutionary 1948 work changed this view in a fundamental way, showing that it is possible to transmit digital data with arbitrarily high reliability, over noise-corrupted channels, by encoding the digital message with an error correction code prior to transmission and subsequently decoding it at the receiver. The error correction encoder maps each vector of K digits representing the message to longer vectors of N digits known as codewords. The redundancy implicit in the transmission of codewords, rather than the raw data alone, is the quid pro quo for achieving reliable communication over intrinsically unreliable channels. The code rate r = K/N defines the amount of redundancy added by the error correction code.

Type
Chapter
Information
Iterative Error Correction
Turbo, Low-Density Parity-Check and Repeat-Accumulate Codes
, pp. 1 - 33
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×