Skip to main content Accessibility help
×
  • Cited by 124
    • The digital format of this book is no longer available to purchase from Cambridge Core. Other formats may be available.
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Mathematical Association of America
      Publication date:
      05 January 2012
      01 June 1993
      ISBN:
      9781614440239
      9780883850275
      Dimensions:
      Weight & Pages:
      00kg,
      Dimensions:
      Weight & Pages:
    You may already have access via personal or institutional login
    Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    Knot Theory, a lively exposition of the mathematics of knotting, will appeal to a diverse audience from the undergraduate seeking experience outside the traditional range of studies to mathematicians wanting a leisurely introduction to the subject. Graduate students beginning a program of advanced study will find a worthwhile overview, and the reader will need no training beyond linear algebra to understand the mathematics presented. The interplay between topology and algebra, known as algebraic topology, arises early in the book, when tools from linear algebra and from basic group theory are introduced to study the properties of knots. Livingston guides you through a general survey of the topic showing how to use the techniques of linear algebra to address some sophisticated problems, including one of mathematics' most beautiful topics, symmetry. The book closes with a discussion of high-dimensional knot theory and a presentation of some of the recent advances in the subject—the Conway, Jones, and Kauffman polynomials. A supplementary section presents the fundamental group, which is a centerpiece of algebraic topology.

    Reviews

    The author's book would be a good text for an undergraduate course in knot theory...The topics in the book are nicely tied together...The topics and the exercises together can provide an opportunity for many undergraduates to get a real taste of what present day mathematics is like.

    Source: Mathematical Reviews

    This monograph by Charles Livingston is a most accessible introductory survey of serious, mathematical twentieth century knot theory ... At a time when non-trivial topics are required for so many student projects, no school library with a mathematics section should be without this book. It is a thoroughly well written, well thought out account of a subject of current mathematical research which anyone of a mathematical orientation can enjoy.

    Source: Mathematical Gazette

    Knot Theory is a concise, comprehensive, and well-written introduction to the definitions, theorems, techniques, and problems of knot theory … the expository sections of the text are quite well organized.

    Source: The Mathematics Teacher

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.